Skip to main content
Erschienen in: Sleep and Breathing 2/2021

Open Access 23.07.2020 | Sleep Breathing Physiology and Disorders • Original Article

Development and psychometric evaluation of the Motivation to Use CPAP Scale (MUC-S) using factorial structure and Rasch analysis among patients with obstructive sleep apnea before CPAP treatment is initiated

verfasst von: Anders Broström, M. Ulander, P. Nilsen, Chung-Ying Lin, A. H. Pakpour

Erschienen in: Sleep and Breathing | Ausgabe 2/2021

Abstract

Background

Continuous positive airway treatment (CPAP) is first-line treatment for obstructive sleep apnea (OSA), but adherence tends to be low. A clinical tool focusing on motivation to use CPAP is missing. The purpose was to develop a brief questionnaire to assess motivation to use CPAP that is psychometrically robust and suitable for use in clinical practice.

Methods

A convenience sample including 193 treatment naive patients with OSA (67% men; mean age = 59.7 years, SD 11.5) from two CPAP clinics was used. Clinical assessments and full night polygraphy were performed. Questionnaires administered before CPAP treatment included the newly developed Motivation to Use CPAP Scale (MUC-S), Minimal Insomnia Symptoms Scale (MISS), Epworth Sleepiness Scale (ESS), and Attitude towards CPAP treatment Inventory (ACTI). The validity and reliability of the MUC-S were investigated using Rasch and exploratory factor analysis models. Measurement invariance, dimensionality and differential item functioning (i.e., across gender groups, excessive daytime sleepiness (ESS), insomnia (MISS) and attitude towards CPAP (ACTI) groups) were assessed.

Results

The results supported a two-factor solution (autonomous motivation, 6 items, factor loadings between 0.61 and 0.85 and controlled motivation, 3 items, factor loadings between 0.79 and 0.88) explaining 60% of the total variance. The internal consistency was good with Cronbach’s alpha of 0.88 and 0.86 for the two factors. No differential item functioning was found. A latent class analysis yielded three profiles of patients with high (n = 111), moderate (n = 60) and low (n = 22) motivation. Patients with high motivation were older, had higher daytime sleepiness scores, more insomnia symptoms and a more positive attitude towards CPAP.

Conclusions

The MUC-S seems to be a valid tool with robust psychometric properties suitable for use at CPAP clinics. Future studies should focus on how motivation changes over time and if MUC-S can predict objective long-term CPAP adherence.
Hinweise

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Obstructive sleep apnea (OSA) is a prevalent and successively increasing multifaceted condition influencing the whole life situation of the patient [1, 2]. Continuous positive airway pressure (CPAP) is the preferred treatment alternative [3], especially for moderate and severe OSA, which if optimally used leads to reduced symptoms, improved metabolic control, lowered cardiovascular morbidity, as well as decreased all-cause and cardiovascular mortality [4]. Despite these effects, patients often struggle during treatment initiation causing numerous early dropouts [5, 6]. Long-term CPAP adherence, often defined as > 4 h use on 70% of the nights [7] vary greatly [8] and is generally seen as a substantial clinical problem [9]. A dose-response relationship between CPAP usage and a variety of outcomes seem to exist, and the optimal adherence level differs depending on the outcome in question. Importantly, sleep duration should also be considered, and a usage level as high as possible is desirable [6]. Two recent review studies [10, 11] stated that socio-demographic characteristics (e.g., age, gender, socio economic status), symptoms and disease severity (e.g., daytime sleepiness and AHI), as well as treatment aspects (e.g., initiation procedure, side-effects), apart from symptomatic improvement, generally show limited predictive power for CPAP adherence. On the other hand, psychosocial variables (e.g., attitude, self-efficacy, illness and treatment beliefs or social support) have been found to be vital during the initiation in studies using patient- [1217], partner- [18, 19] and practitioner-centred perspectives [9, 20] and ought to be thought of as probable predictors for CPAP use [6].
The initiation of CPAP is a complex procedure although it can be simplified and made more effective by a good interaction between patient and practitioner [16, 20]. A recent survey including all CPAP centres in Sweden and Norway showed that practitioners perceived patients’ motivation, attitudes and knowledge to be the main determinants of CPAP adherence, but educating patients about effects, management and treatment adjustments were the most common actions they used to improve adherence [9]. The value of basing CPAP treatment on theory and include psychosocial variables to understand the mechanisms of change and predictors of CPAP adherence has been stressed [10]. A comprehensive and well-supported theory to understand human motivation is the Self-determination theory (SDT) [21]. SDT posits that all behaviours lie along a continuum of relative autonomy, i.e., self-determination, mirroring the degree to which a person supports what he or she is doing. At one end of the self-determination continuum is behaviour that is intrinsically motivated and executed for its natural satisfaction, e.g., for the fun, curiosity or challenge it offers. At the other end is amotivation, which refers to a lack of intent to execute the behaviour. In between intrinsically motivated behaviours and amotivation lie behaviours that are described as extrinsic, suggesting that they are done to obtain certain outcomes contrary to intrinsic behaviours, which are done for their own sake. Four types of extrinsically motivated behaviours are recognized: integrated (i.e., behaviours consistent with a person’s values and needs, done because they signify what the person stands for), identified (i.e., behaviours experienced as beneficial to a person’s development, but not necessarily done with enjoyment), introjected (i.e., behaviours done to avoid negative feelings such as guilt or shame) and externally regulated (i.e., behaviours done to satisfy an external demand or reward contingency). Introjected and external regulations are portrayed as controlled motivation, whereas intrinsic, integrated and identified types of motivation are labelled autonomous motivation. A substantial body of research exists that shows that more autonomously motivated behaviours are more stable, performed with greater care and quality and accompanied by more positive experiences [21]. Despite wide acknowledgment of the significance of motivation to use CPAP and adhere to the treatment, a validated questionnaire to measure and quantify motivation among patients with OSA is missing. By using a validated instrument when initiating CPAP, practitioners can identify patients with low motivation and after exploring causes subsequently improve adherence through dealing with identified reasons. The aim of this study was to develop a brief questionnaire to assess motivation to use CPAP that is psychometrically robust and suitable for use in clinical practice.

Materials and methods

Development and description of the Motivation to Use CPAP Scale (MUC-S)

Initially, qualitative studies were identified by three members of the research group (i.e., a physician, a nurse and a behavioural scientist) to receive an in-depth understanding of the patient, partner and practitioner perspective of motivation to use CPAP [14, 16, 1820, 22, 23]. In the second step, several review studies summarizing factors associated to CPAP adherence (e.g., 8), with specific focus on behavioural aspects (e.g., 10), were studied. In the third step, the three researchers used their clinical experience, knowledge of the SDT and understanding of the reviewed literature to inspire the development of a pool of potential items (i.e., 15 items) aimed to measure different aspects of motivation to use CPAP. In the fourth step, eight new persons joined the group: two physicians (i.e., clinical experts and distinguished CPAP adherence researchers), five nurses (i.e., clinical experts with long experience working with CPAP treatment), as well as one nurse researcher with extensive experience of instrument development. The aim was to discuss and mutually establish content validity (i.e., finding items with a high level of clinical significance). All 15 items were scrutinized based on the group’s clinical- and research-related understanding of the concept and scored either as inappropriate, or as appropriate for measuring motivation to use CPAP, and inclusion in the scale. A consensus discussion generated 12 items that was intended to span different regulatory styles from the SDT [21] describing autonomous motivation, controlled motivation and amotivation to use CPAP treatment. In the fifth step, the instrument was pilot tested on a group of 10 CPAP patients who confirmed layout, content, wording and readability of the 12 items. A 5-point Likert-type scale from strongly agree (5) to strongly disagree (1) was deemed appropriate for each item. The final version of MUC-S is presented in Table 7. The possible range for the scale is 9–45. A higher score indicates greater motivation to use CPAP treatment.

Design and population

This was a psychometric validation study with a cross-sectional design including 193 consecutive treatment-naive patients with OSA from two CPAP clinics at one university and one county hospital in southern Sweden. Inclusion criteria were objectively verified OSA, receiving CPAP treatment for the first time. The following exclusion criteria were used: terminal disease, ongoing treatment for OSA, severe psychiatric disease, dementia, alcohol/drug abuse or difficulties reading and understanding the Swedish language. All data were collected before CPAP was initiated.

Data collection

Clinical variables

Clinical variables, co-morbidities, blood pressure and body mass index were collected from medical records or face to face during clinical examinations at the CPAP clinics before treatment was initiated. An all-night home-based polygraphy (Embletta, ResMed Sweden AB) including nasal airflow, pulse oximetry, breathing movements and posture, assessed by an experienced sleep specialist, was used to diagnose OSA.

Questionnaires

Insomnia

The main features of insomnia (i.e., difficulties initiating sleep, difficulties maintaining sleep, as well as difficulties with non-restorative sleep) were measured by the validated Minimal insomnia symptoms scale (MISS) [24]. The three items focus on perceived difficulties on each one of the features with scales ranging from no problems (0) to very great problems (4). A total score of 0–3 implies no clinical insomnia, 4–6 subclinical insomnia, 7–9 moderate clinical insomnia and 10–12 severe clinical insomnia.

Excessive daytime sleepiness

Excessive daytime sleepiness was measured by the comprehensively validated Epworth sleepiness scale (ESS) [25]. Eight various daily situations are used where patients score (i.e., 0–3) the probability of dozing or falling asleep. The total score of ESS range from 0 to 24 points, with a cut-off of > 10 indicating excessive daytime sleepiness.

Global perceived health

The first item regarding present health status from the SF-36 was applied to measure global perceived health [26]. The patients rated their health as (1) excellent, (2) very good, (3) good, (4) fair or (5) poor.

Attitudes towards CPAP treatment

The validated Attitudes to CPAP treatment inventory (ACTI) was used to assess attitudes towards CPAP treatment [15]. The five items are rated on a 5-point Likert-type scale and range from strongly agree (1) to strongly disagree (5). A higher total score indicates a more negative attitude towards CPAP treatment.

Statistical analysis

Descriptive statistics were used to calculate data regarding baseline characteristics. Normally distributed clinical variables on an interval scale were presented with mean ± standard deviations (SD) or in the case of categorical variables as n (%).
To perform a satisfactory validation and psychometric testing of a new instrument, such as MUC-S, two testing theories (i.e., classical test theory [CTT] and modern test theory, such as Rasch models) are suggested to be applied concurrently [2730]. CTT as compared with Rasch uses more basic mathematic methods to assess the psychometric properties of an instrument. On the other hand, Rasch models have the advantages of a rigorous in additive calculation, the lack of which is a major limitation in the CTT. Also, Rasch is sample-free (i.e., the psychometric properties obtained from Rasch are not affected by the sample characteristics), while CTT suffers the weakness of sample-dependency [27, 31]. Both CTT and modern test theory were used in the psychometric validation of MUC-S.

Reliability

Cronbach’s alpha and item-total correlation were used to evaluate internal consistency, with values of > 0.7 and > 0.4 implying satisfactory internal consistency. The standard error of measurement was calculated to evaluate measurement errors in the two factors originated from the exploratory factor analysis. A value of < SD/2 suggests a satisfactory measurement error [32].The percentages of missing data for each included item, as well as floor (i.e., the proportion of patients with the worst possible score) and ceiling effects (i.e., the proportion of patients with the best possible score), were calculated. Values > 20% indicate the presence of floor or ceiling effects [33].

Validity

An exploratory factor analysis was applied (i.e., a principal axis factoring analysis with two factors rotated using a direct oblimin procedure) to reveal the underlying structure of the scale [34, 35]. Bartlett’s test of sphericity with Kaiser–Meyer–Olkin measure was used for each item, and all items together to indicate sampling adequacy. The Kaiser criteria (eigenvalue > 1.0) was used to determine the number of extracted factors, and factor loadings > 0.4 were judged as significant according to the sample size [35].
Rasch modelling [31] (using the WINSTEPS Rasch Analysis software version 4.01) was applied to evaluate local dependency, item validity, item and person separation reliabilities and item and person separation indices, as well as differential item functioning. Two fit indices were used to measure item validity: information-weighted fit statistic (infit) mean square and outlier-sensitive fit statistic (outfit) mean square, with a suggested range between 0.5 and 1.5 to show satisfactory fit to the model. Values > 0.7 were judged tolerable for item and person reliability. The capability of the items and individuals to divide into two or more distinct groups was assessed by means of item and person indices, with values > 2 being acceptable. Moreover, analysis of differential item functioning was conducted to make sure that subgroups of patients (based on gender, sleepiness (i.e., ESS score > 10 vs ≤ 10) and insomnia (i.e., MISS score > 7 vs ≤ 7) groups) could interpret the MUC-S items equally. A differential item functioning contrast greater than 0.5 logits indicates a noticeable and non-ignorable difference in item interpretation between groups with different characteristics.

Latent class analysis

Latent class analyses (performed in Mplus 7.3) were used to define complex individual-centred pattern of associations [36]. The following fit indices were used to select an appropriate model for motivation: the Akaike information criterion, the Bayesian information criterion, the sample-size-adjusted Bayesian information criterion, entropy and the adjusted Lo-Mendell-Rubin’s likelihood ratio test [37]. In line with recommendations, an acceptable model fit was indicated by lower values on Akaike information criterion, Bayesian information criterion and sample-size-adjusted Bayesian information criterion. Also, higher values on entropy suggest better classification. We also used the Lo-Mendell-Rubin’s likelihood ratio test, where a significant result reveals that a K-class model fits the data better than a (K-1)-class model [37].

Results

Study population

Patient demographics and clinical data are shown in Table 1. A total of 193 patients (mean age = 59.7 years, SD 11.5, range 20–84) participated, of which 68% were males and 61% were married. The mean AHI was 35.6 (SD 18.7, range 10–94) and 10%, 27% and 63% of the patients suffered from mild, moderate and severe OSA, respectively. A total of 49% of the patients reported moderate or severe insomnia, and 57% experienced excessive daytime sleepiness.
Table 1
Characteristics of the population (n = 193)
Variables
Value
Gender, male, n (%)
131 (68)
Age (years), mean (SD, range)
59.7 (11.5, 20–84)
Education, n (%)
  9 years or below
47 (24)
  12–13 years
87 (45)
  University
59 (31)
Civil status, n (%)
  Married/living together
155 (80)
  Living alone
38 (20)
Body composition
  BMI (kg/m2), mean (SD)
30.8 (4.4)
Comorbidities, n (%)
  Ischemic heart disease
54 (28)
  Diabetes
21 (11)
Sleep-disordered breathing, mean (SD)
  Apnea-Hypopnea Index
35.6 (18.4, range 10–94)
  Oxygen desaturation index
35.9 (22.1, range 10–96)
  Mild OSA/moderate OSA/severe OSA, n (%)
21 (10)/51 (27)/121 (63)
Insomnia
  MISS score, mean (SD)
6.3 (2.2)
Daytime sleepiness
  ESS score, mean (SD)
10.8 (4.8)
  ESS > 10, n (%)
111 (57)

Validity and reliability testing

Based on the results from the exploratory factor analysis, three items (i.e., “I use the CPAP treatment because I want to avoid disturbing others”, “I use the CPAP because I understand that apneas are dangerous” and “I use the CPAP even if I don’t want to”) of the initial twelve were omitted. Table 2 shows the final two-factor solution containing nine items that explained 60% of the total variance. The first factor, depicting autonomous motivation, contained six items with factor loadings varying between 0.61 and 0.85. The second factor, depicting controlled motivation, contained three items with factor loadings varying between 0.79 and 0.88. The communalities for factor one and factor two varied between 0.39 to 0.73 and 0.63 to 0.78, respectively.
Table 2
Psychometric properties of the Motivation to Use CPAP Scale at item level (n = 183)
 
Factor loading*
h2**
Infit MnSq***
Outfit MnSq****
Difficulty
DIF contrast across gendera, b
DIF contrast across sleepiness conditiona, c
DIF contrast across insomnia conditiona, d
Factor 1 “Autonomous motivation”/items
  1. I use the CPAP treatment because it makes me feel good.
0.721
0.554
1.10
1.07
− 0.28
0.18
− 0.06
0.13
  2. I use the CPAP treatment because I want to avoid having apneas.
0.773
0.611
1.01
0.93
0.95
− 0.49
− 0.33
− 0.44
  3. I use the CPAP treatment because I want to feel more alert.
0.803
0.650
0.88
0.69
0.91
− 0.44
− 0.26
− 0.26
  4. I use the CPAP treatment because it feels important to me.
0.854
0.731
0.64
0.64
− 0.20
0.13
0.02
− 0.20
  5. I use the CPAP treatment because my health is important to me.
0.611
0.385
1.35
1.41
0.36
0.18
− 0.37
− 0.07
  6. I use the CPAP treatment because it feels good to use CPAP.
0.682
0.466
1.19
1.13
− 1.73
0.21
0.01
0.37
Factor 2 “Controlled motivation”/items
  7. I use the CPAP treatment because other people say I have to.
0.801
0.642
1.06
1.06
− 0.37
0.34
0.09
0.01
  8. I use the CPAP treatment because the personnel say I have to.
0.881
0.776
0.76
0.75
− 0.10
0.01
0.27
0.06
  9. I use the CPAP treatment because I have to.
0.791
0.625
1.15
1.08
0.47
− 0.36
0.11
0.01
MnSq mean square error, DIF differential item functioning
*Extraction method: Oblimin rotation with Kaiser normalization
**h2 = communalities
***Infit MnSq = information-weighted fit statistic mean square
****Outfit MnSq = outlier-sensitive fit statistic mean square
aDIF contrast > 0.5 indicates substantial DIF
bDIF contrast across gender = difficulty for males − difficulty for females
cDIF contrast across sleepiness = difficulty for patients with scores of the ESS > 10 − difficulty for patients with scores of the ESS ≤ 10
dDIF contrast across insomnia = difficulty for patients with scores of the MISS > 7 − difficulty for patients with scores of the MISS ≤ 7
The fit statistics showed that all nine items incorporated in the MUC-S had acceptable infit MnSq (0.61 to 1.35 for factor one and 0.63 to 0.78 for factor two) and outfit MnSq (0.64 to 1.41 for factor one and 0.75 to 1.08 for factor two). No differential item functioning was demonstrated for any of the items across gender, excessive daytime sleepiness or insomnia groups (Table 2). Item difficulty varied between − 1.73 and 0.95. Internal consistency was found to be high, 0.88 and 0.86. Item separation reliability and index, as well as Person separation reliability and index from Rasch, were all good (Table 3).
Table 3
Psychometric properties of the Motivation to Use CPAP Scale at scale level (n = 183)
Psychometric testing
Factor 1
Factor 2
Suggested cutoff
Standard error of measurement
1.54
1.51
The smaller the better
Ceiling effects (%)
0
5.7
< 20
Floor effects (%)
0
0.5
< 20
Internal consistency (Cronbach’s α)
0.83
0.78
> 0.7
Item separation reliability from Rasch
0.96
0.90
> 0.7
Item separation index from Rasch
4.65
3.04
> 2
Person separation reliability from Rasch
0.73
0.73
> 0.7
Person separation index from Rasch
2.30
2.63
> 2
The response frequencies for the items are shown in Table 4. There was a cumulative, but consistent response pattern, with the majority of the patients scoring strongly agree or agree, especially for the six items in factor one describing autonomous motivation. The items in factor two, describing controlled motivation, showed a more varied response pattern with fewer patients indicating high scores. No response alternative had a greater frequency of endorsement than 61%. Floor and ceiling effects were acceptable for both factors (Table 3).
Table 4
Descriptive statistics and item-total correlation of the Motivation to Use CPAP Scale (n = 183)
Factors/item
Item score distribution
Missing data (%)
Mean (SD)
Corrected item–total correlation
Skewness
Kurtosis
Strongly agree, n (%)
Agree, n (%)
Undecided, n (%)
Disagree, n (%)
Strongly disagree, n (%)
Factor 1 “Autonomous motivation”
  1. I use the CPAP treatment because it makes me feel good.
104 (58)
61 (34)
15 (8)
0 (0)
0 (0)
6.73
1.51 (0.65)
0.579
0.917
− 0.245
  2. I use the CPAP treatment because I want to avoid having apneas.
132 (68)
43 (22)
4 (2)
2 (1)
0 (0)
6.22
1.31 (0.57)
0.631
2.02
4.974
  3. I use the CPAP treatment because I want to feel more alert.
132 (68)
41 (21)
7 (4)
1 (1)
0 (0)
6.22
1.32 (0.57)
0.679
1.81
3.138
  4. I use the CPAP treatment because it feels important to use the CPAP.
102 (53)
69 (36)
9 (5)
1 (1)
0 (0)
6.22
1.50 (0.62)
0.755
0.99–
0.666
  5. I use the CPAP treatment because my health is important to me.
117 (61)
56 (29)
7 (4)
1 (1)
0 (0)
6.22
1.40 (0.59)
0.479
1.345
1.609
  6. I use the CPAP treatment because it feels good to use CPAP.
68 (35)
87 (45)
21 (11)
3 (2)
2 (1)
6.22
1.81 (0.79)
0.550
1.112
2.104
Factor 2 “Controlled motivation”
  7. I use the CPAP treatment because other people say I have to.
16 (8)
41 (21)
53 (28)
32 (17)
38 (20)
6.73
3.19 (1.26)
0.580
0.003
− 1.024
  8. I use the CPAP treatment because the personnel say I have to.
22 (11)
46 (24)
44 (23)
36 (19)
32 (17)
6.73
3.06 (1.29)
0.705
0.054
− 1.093
  9. I use the CPAP treatment because I have to.
30 (16)
58 (30)
42 (22)
25 (14)
25 (14)
6.73
2.76 (1.28)
0.554
0.376
− 0.901
Table 5 shows the fit statistics for the latent class analysis model. The three-class model was found to be the optimal model to identify subgroups of participants (i.e., high, medium and low motivation). The Lo-Mendell-Rubin likelihood ratio test became non-significant at four classes, indicating that adding an extra class to the three-class model did not provide a better model. The largest group (n = 111, 61%) was called high motivation. Comparisons among patients with different motivation levels (i.e., high, moderate and low motivation) are shown in Table 6. Those with high motivation were older, had higher levels of daytime sleepiness, more problems from insomnia symptoms, a poorer global perceived health and a more positive attitude towards CPAP treatment.
Table 5
Latent class analysis to identify subgroups of participants (n = 183)
 
AIC
BIC
SSABIC
Entropy
LMR test (P value)
2 classes
3439.79
3638.82
3445.58
0.938
396.970 (< 0.0001)
3 classes*
3392.67
3692.83
3401.40
0.944
108.462 (0.0449)
4 classes
3351.15
3752.46
3362.83
0.915
102.883 (0.775)
AIC Akaike’s information criterion, BIC Bayesian information criterion, SSABIC sample-size adjusted Bayesian information criterion, LMR test Lo-Mendell-Rubin’s likelihood ratio test
* Indicates the optimal model to identify subgroups of participants
Table 6
Comparisons among three subtypes of participants with different motivations classes (n = 183)
 
High motivation (n = 111)
Medium motivation (n = 60)
Low motivation (n = 22)
Overall test
F test
P value
Age in year, mean (SE)
61.4 (1.2)ab
58.4 (1.4)ac
57.6 (2.0)
3.37
0.033
Gender (male%)*
18 (81.8)ab
43 (71.7)
70 (63.1)
3.51
0.061
Motivation to use CPAP, mean (SE)
21.24 (0.75)
17.66 (0.48)
16.32 (0.41)
20.37
< 0.001
Epworth Sleepiness Scale, mean (SE)
11.06 (0.63)
10.65 (0.58)
9.89 (0.71)
11.69
< 0.001
MISS score, mean (SE)
6.94 (0.41)
6.48 (0.30)
6.04 (0.22)
8.53
< 0.001
GPH score, mean (SE)
3.50 (0.08)
3.38 (0.11)
3.18 (0.23)
3.88
0.005
ACTI score, mean (SE)
8.06 (0.90)
8.68 (0.37)
9.71 (0.39)
10.69
< 0.001
*Gender variable was analysed using χ2 test
aMean difference as compared with the low motivation class
bMean difference as compared with the medium motivation class
cMean difference as compared with the high motivation class

Discussion

Our study using psychometric testing under both CTT and Rasch measurement theory demonstrated robust psychometric properties for the newly developed MUC-S, the first validated tool to explore how a patient with OSA perceives motivation to use CPAP treatment. We found a stable and logical two-factor solution with nine items measuring autonomous and controlled motivation explaining 60% of the total variance. Another positive aspect was Cronbach’s alpha values of 0.88 and 0.86 which suggested good reliability for the two factors. Lack of differential item functioning of items across gender, excessive daytime sleepiness or insomnia groups revealed that patients with the same latent ability had equal probability of getting an item correct. The item score distribution showed a cumulative but consistent response pattern, with the majority of the patients scoring strongly agree or agree. This was seen particularly for items in factor one describing autonomous motivation, which might be explained by data being collected before CPAP treatment was initiated. Furthermore, in the latent class analyses [36], we identified three subtypes of patients with high, medium and low motivation. Those with high motivation, the largest group (61%), had higher levels of daytime sleepiness, more problems from insomnia symptoms, a poorer global perceived health and a more positive attitude towards CPAP treatment which was deemed as logical based on data being collected before treatment initiation. However, this may change, particularly among patients experiencing side-effects [38], wherefore the trajectory of motivation, as well as factors affecting motivation at different time points is of high importance to explore in future prospective studies.
CPAP is a multifaceted treatment for a chronic disorder, and the patient’s beliefs regarding suitability of the treatment should be considered as a factor of importance for adherence [39]. Beliefs, either positive or negative, form the basis of a person’s attitude towards a phenomenon, e.g., how CPAP treatment affects health [40] which in turn can be of importance for treatment motivation. In the Motivation to Engage in Treatment (MET) theory, six cognitive and emotional internal factors predict motivation to engage in treatment: problem recognition, level of suffering, external pressure, perceived cost of treatment, perceived suitability of treatment and outcome expectancy [41]. External factors such as treatment, circumstances, situations, demographic factors and type of problems may influence the internal determinants. Understandably, clinical routines vary greatly [9], and time during patient visits is often limited [20], causing the communication focus to be more on practical aspects than behavioural aspects [16], such as motivation [12, 13], which may influence adherence to treatment negatively [6, 14]. Unlike MET, and many social-cognitive theories, which illustrate different factors that predict motivation and behaviour change, the focus of SDT is on various types of motivation and how they influence behaviour. SDT states that the type of motivation (i.e., autonomous/self-determined or controlled/non-self-determined) is more vital than the amount of motivation [21]. In a CPAP context, this means that the practitioner should strive to create a CPAP user driven by autonomous motivation. Such a patient is competent and driven by awareness of treatment benefits, in contrast to a patient who depends on controlled motivation and external regulation processes, for example, due to pressure conveyed by the CPAP practitioner. SDT incorporates a sub-theory, the Cognitive Evaluation Theory, which outlines factors that might hamper or enable different types of motivation and might form the basis of interventions to encourage more autonomous motivation. This theory suggests that more autonomous forms of motivation can be encouraged by feelings of competence, autonomy and a sense of relatedness [21]. Metacognition (i.e., defined as the ability to recognize one’s own successful cognitive processing) is linked to these feelings, and of value when trying to improve CPAP adherence, but could be difficult to measure [42]. Another aspect, important to note, is that OSA patients due to hypoxic processes might suffer cognitive impairments affecting short-term memory and concentration [43]. In a CPAP context, especially when caring for an elderly patient with severe OSA, the clinician should therefore strive to adapt the communication situation [16] to the patient’s cognitive ability [44].
Few previous CPAP studies have used interventions primarily focused on motivation, but a few have shown promising results when focusing on this aspect. Positive results have been shown using motivational enhancement therapy [12]. For example, in one study, the average nightly use of CPAP over 6 months was 99.0 min/night higher in the CPAP plus motivational enhancement therapy group, compared with the control group, an effect which was maintained over 12 months [45]. Another alternative, motivational interviewing has also proven to increase adherence [46]. Further, the relationship between the user and his/her partner might also positively influence motivation to use CPAP, since many patients tend to be “forced” into the CPAP clinic by their partner due to complaints of nightly disturbances or daytime symptoms such as fatigue and tiredness or fear of consequences [18, 19]. Future CPAP studies should explore links between CPAP adherence, autonomous motivation and the need for competence and autonomy, as well as for relatedness.
The initiation of CPAP is a complex process carried out over time. Early (i.e., 1–4 weeks) and long-term follow-up visits (i.e., 3–6 months), depending on the patients’ needs, include education on lifestyle aspects, help with practical difficulties, as well as an evaluation of treatment adherence [3]. Pathophysiology regarding OSA, technical aspects (i.e., function, care and maintenance of the device) as well as benefits and potential side-effects of CPAP, all areas adapted to the patients’ competences, should be covered [9]. Practitioners should also as previously stated consider meeting a patient with cognitive impairment [44]. Information delivered by a multidisciplinary team (e.g., the referring physician, a sleep specialist, as well as a sleep technician or CPAP nurse) is recommended [16] with the intention to reach a shared treatment decision [47]. Importantly, the increased understanding of health-behaviour change suggests the addition of specific care actions focusing behavioural change [10], as well as use of brief scales measuring attitude, motivation, habit development and shared treatment decisions in clinical CPAP care to get an understanding of important aspects. Motivation might act as a mediator or moderator in between different variables.
Future prospective longitudinal studies should explore variables and/or scales within a wide range of patient-centred areas to get an understanding of aspects unique or with synergistic impact on motivation for CPAP use. Importantly, there is no single answer to solve the complex problem of motivation/nonadherence; many factors play a role. Considering the highlighted benefits of psychosocial variables [10], the following instruments could be potential tools used together with MUC-S: ACTI [15] (i.e., measuring attitude towards CPAP), CollaboRATE and SURE (i.e., measuring aspects of shared decision making) [47] and the CPAP Habit Index-5 (i.e., measuring habit development) [48]. Another interesting scale is the Self-Efficacy Measure for Sleep Apnea [49] which explores a range of outcome expectations and aims to operationalize self-efficacy. Furthermore, it is of great importance to explore the correlation between objective CPAP use and MUC-S, and how motivation at different time-points can predict objective long-term use and healthcare utilization. The adoption of sophisticated statistical approaches (e.g., structural equational modelling) could be used to explore interactive effects of motivation between biomedical, other psychological as well as social variables on CPAP adherence.

Strengths and limitations

This is, to our knowledge, the first study that examines motivation to use CPAP treatment in patients with OSA. No other suitable instrument for measuring motivation in this context is available. A larger sample, with data being collected at different time points, might have led to a greater variation in the response pattern. According to general recommendations for 10 observations per item, the sample size was adequate for the validation analyses of the MUC-S with its 9 items [35, 37]. A big strength of this study is the use of two important psychometric testing theories (CTT and Rasch models) [2731]. More specifically, CTT and Rasch models provide different advantages. With the two theories, healthcare practitioners can have better understanding in the psychometric features of the MUC-S and later benefit from using the MUC-S in assessing motivation to use CPAP treatment in patients with OSA.
There are some limitations in this study. First, all data were gathered before CPAP initiation, with patients who had agreed to come to the clinic and try CPAP, which might have affected their scores. No test-retest reliability was done. Therefore, whether the MUC-S score is stable over time is uncertain. Future prospective studies are warranted to examine the stability and reproducibility of the MUC-S including patients of both genders in various age groups and with a clinically relevant range of AHI (i.e., as seen at a CPAP clinic). Second, although the sample size is decent and sufficient for the current psychometric testing, our sample size was not large enough to conduct a cross-validation. More specifically, whether the factor structure found by our exploratory factor analysis can be verified in another sample is unknown. If we attempted to do a cross-validation, the current sample size should be at least twofold to fulfil the requirement in psychometric testing (i.e., a subsample tested using exploratory factor analysis like we did and another subsample using confirmatory factor analysis with a size of 200). Third, the convenience sampling used in this study restricts the generalizability of our findings, and future large-scale multicentre studies are therefore warranted. Whether MUC-S has promising psychometric properties in other ethnicity (e.g., Asians and African Americans) is also unsure.

Conclusion

The present study shows that the nine items included in the MUC-S were embedded in two factors measuring internal and external aspects of motivation. The scale showed good validity and reliability and operated equivalently across male and female patients. Accordingly, CPAP practitioners can use the MUC-S as a psychometrically sound tool to explore motivation related to CPAP treatment, as well as to evaluate the effects of CPAP treatment.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study protocol was approved by the ethics committee (Dnr M29–07) at the Faculty of Health Sciences, University of Linköping, Sweden. The study was conducted in accordance with the 1964 Helsinki Declaration and its later amendments, and all participants provided written informed consent.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Dent – Das Online-Abo der Zahnmedizin

Online-Abonnement

Mit e.Dent erhalten Sie Zugang zu allen zahnmedizinischen Fortbildungen und unseren zahnmedizinischen und ausgesuchten medizinischen Zeitschriften.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Anhänge

Appendix

Table. 7
Motivation to Use CPAP Scale
Items
Response alternatives
1. I use the CPAP treatment because it makes me feel good.
Strongly agree 5
Agree 4
Undecided 3
Disagree 2
Strongly disagree 1
2. I use the CPAP treatment because I want to avoid having apneas.
Strongly agree 5
Agree 4
Undecided 3
Disagree 2
Strongly disagree 1
3. I use the CPAP treatment because I want to feel more alert.
Strongly agree 5
Agree 4
Undecided 3
Disagree 2
Strongly disagree 1
4. I use the CPAP treatment because it feels important to use the CPAP.
Strongly agree 5
Agree 4
Undecided 3
Disagree 2
Strongly disagree 1
5. I use the CPAP treatment because my health is important to me.
Strongly agree 5
Agree 4
Undecided 3
Disagree 2
Strongly disagree 1
6. I use the CPAP treatment because it feels good to use CPAP.
Strongly agree 5
Agree 4
Undecided 3
Disagree 2
Strongly disagree 1
7. I use the CPAP treatment because other people say I have to.
Strongly agree 5
Agree 4
Undecided 3
Disagree 2
Strongly disagree 1
8. I use the CPAP treatment because the personnel say I have to.
Strongly agree 5
Agree 4
Undecided 3
Disagree 2
Strongly disagree 1
9. I use the CPAP treatment because I have to.
Strongly agree 5
Agree 4
Undecided 3
Disagree 2
Strongly disagree 1
Literatur
1.
Zurück zum Zitat Heinzer R, Vat S, Marques-Vidal P, Marti-Soler H, Andries D, Tobback N, Mooser V, Preisig M, Malhotra A, Waeber G, Vollenweider P, Tafti M, Haba-Rubio J (2015) Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respir Med 3:310–318PubMedPubMedCentral Heinzer R, Vat S, Marques-Vidal P, Marti-Soler H, Andries D, Tobback N, Mooser V, Preisig M, Malhotra A, Waeber G, Vollenweider P, Tafti M, Haba-Rubio J (2015) Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respir Med 3:310–318PubMedPubMedCentral
2.
Zurück zum Zitat Senaratna CV, Perret JL, Lodge CJ, Lowe AJ, Campbell BE, Matheson MC, Hamilton GS, Dharmage SC (2017) Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev 34:70–81PubMed Senaratna CV, Perret JL, Lodge CJ, Lowe AJ, Campbell BE, Matheson MC, Hamilton GS, Dharmage SC (2017) Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev 34:70–81PubMed
3.
Zurück zum Zitat Epstein LJ, Kristo D, Strollo PJ Jr et al (2009) Adult Obstructive Sleep Apnea Task Force of the American Academy of Sleep Medicine. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med 5:263e276 Epstein LJ, Kristo D, Strollo PJ Jr et al (2009) Adult Obstructive Sleep Apnea Task Force of the American Academy of Sleep Medicine. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med 5:263e276
4.
Zurück zum Zitat Baratta F, Pastori D, Bucci T, Fabiani M, Fabiani V, Brunori M, Loffredo L, Lillo R, Pannitteri G, Angelico F, del Ben M (2018) Long-term prediction of adherence to continuous positive air pressure therapy for the treatment of moderate/severe obstructive sleep apnea syndrome. Sleep Med 43:66–70PubMed Baratta F, Pastori D, Bucci T, Fabiani M, Fabiani V, Brunori M, Loffredo L, Lillo R, Pannitteri G, Angelico F, del Ben M (2018) Long-term prediction of adherence to continuous positive air pressure therapy for the treatment of moderate/severe obstructive sleep apnea syndrome. Sleep Med 43:66–70PubMed
5.
Zurück zum Zitat Rotenberg BW, Murariu D, Pang KP (2016) Trends in CPAP adherence over twenty years of data collection: a flattened curve. J Otolar - Head Neck Surg 45:43 Rotenberg BW, Murariu D, Pang KP (2016) Trends in CPAP adherence over twenty years of data collection: a flattened curve. J Otolar - Head Neck Surg 45:43
6.
Zurück zum Zitat Bakker JP, Weaver TE, Parthasarathy S, Aloia MS (2019) Adherence to CPAP: what should we be aiming for, and how can we get there? Chest 155:1272–1287PubMed Bakker JP, Weaver TE, Parthasarathy S, Aloia MS (2019) Adherence to CPAP: what should we be aiming for, and how can we get there? Chest 155:1272–1287PubMed
7.
Zurück zum Zitat Kribbs NB, Pack AI, Kline LR, Kline LR, Smith PL, Schwartz AR, Schubert NM, Redline S, Henry JN, Getsy JE, Dinges DF (1993) Objective measurement of patterns of nasal CPAP use by patients with obstructive sleep apnoea. Am Rev Respir Dis 147:887–895PubMed Kribbs NB, Pack AI, Kline LR, Kline LR, Smith PL, Schwartz AR, Schubert NM, Redline S, Henry JN, Getsy JE, Dinges DF (1993) Objective measurement of patterns of nasal CPAP use by patients with obstructive sleep apnoea. Am Rev Respir Dis 147:887–895PubMed
8.
Zurück zum Zitat Sawyer AM, Gooneratne NS, Marcus CL, Ofer D, Richards KC, Weaver TE (2011) A systematic review of CPAP adherence across age groups: clinical and empiric insights for developing CPAP adherence interventions. Sleep Med Rev 15:343–356PubMedPubMedCentral Sawyer AM, Gooneratne NS, Marcus CL, Ofer D, Richards KC, Weaver TE (2011) A systematic review of CPAP adherence across age groups: clinical and empiric insights for developing CPAP adherence interventions. Sleep Med Rev 15:343–356PubMedPubMedCentral
9.
Zurück zum Zitat Broström A, Pakpour AH, Nilsen P, Gardner B, Ulander M (2018) Promoting CPAP adherence in clinical practice: a survey of Swedish and Norwegian CPAP practitioners’ beliefs and practices. J Sleep Res 27(6):e12675PubMed Broström A, Pakpour AH, Nilsen P, Gardner B, Ulander M (2018) Promoting CPAP adherence in clinical practice: a survey of Swedish and Norwegian CPAP practitioners’ beliefs and practices. J Sleep Res 27(6):e12675PubMed
10.
Zurück zum Zitat Crawford MR, Espie CA, Bartlett DJ, Grunstein RR (2014) Integrating psychology and medicine in CPAP adherence - new concepts? Sleep Med Rev 18:123e139 Crawford MR, Espie CA, Bartlett DJ, Grunstein RR (2014) Integrating psychology and medicine in CPAP adherence - new concepts? Sleep Med Rev 18:123e139
11.
Zurück zum Zitat Mehrtash M, Bakker JP, Ayas N (2019) Predictors of continuous positive airway pressure adherence in patients with obstructive sleep apnea. Lung 197:115–121PubMed Mehrtash M, Bakker JP, Ayas N (2019) Predictors of continuous positive airway pressure adherence in patients with obstructive sleep apnea. Lung 197:115–121PubMed
12.
Zurück zum Zitat Aloia MS, Arnedt JT, Strand M, Millman RP, Borrelli B (2013) Motivational enhancement to improve adherence to positive airway pressure in patients with obstructive sleep apnea: a randomized controlled trial. Sleep 36(11):1655–1662PubMedPubMedCentral Aloia MS, Arnedt JT, Strand M, Millman RP, Borrelli B (2013) Motivational enhancement to improve adherence to positive airway pressure in patients with obstructive sleep apnea: a randomized controlled trial. Sleep 36(11):1655–1662PubMedPubMedCentral
13.
Zurück zum Zitat Bakker JP, Wang R, Weng J, Aloia MS, Toth C, Morrical MG, Gleason KJ, Rueschman M, Dorsey C, Patel SR, Ware JH, Mittleman MA, Redline S (2016) Motivational enhancement for increasing adherence to CPAP: a randomized controlled trial. Chest 150(2):337–345PubMedPubMedCentral Bakker JP, Wang R, Weng J, Aloia MS, Toth C, Morrical MG, Gleason KJ, Rueschman M, Dorsey C, Patel SR, Ware JH, Mittleman MA, Redline S (2016) Motivational enhancement for increasing adherence to CPAP: a randomized controlled trial. Chest 150(2):337–345PubMedPubMedCentral
14.
Zurück zum Zitat Broström A, Nilsen P, Johansson P, Ulander M, Strömberg A, Svanborg E, Fridlund B (2010) Putative facilitators and barriers for adherence to CPAP treatment in patients with obstructive sleep apnea syndrome: a qualitative content analysis. Sleep Med 11:126–130PubMed Broström A, Nilsen P, Johansson P, Ulander M, Strömberg A, Svanborg E, Fridlund B (2010) Putative facilitators and barriers for adherence to CPAP treatment in patients with obstructive sleep apnea syndrome: a qualitative content analysis. Sleep Med 11:126–130PubMed
15.
Zurück zum Zitat Broström A, Ulander M, Nilsen P, Svanborg E, Årestedt KF (2011) The attitudes to CPAP treatment inventory: development and initial validation of a new tool for measuring attitudes to CPAP treatment. J Sleep Res 20:460–471PubMed Broström A, Ulander M, Nilsen P, Svanborg E, Årestedt KF (2011) The attitudes to CPAP treatment inventory: development and initial validation of a new tool for measuring attitudes to CPAP treatment. J Sleep Res 20:460–471PubMed
16.
Zurück zum Zitat Broström A, Fridlund B, Hedberg B, Nilsen P, Ulander M (2017) Communication between patients with obstructive sleep apnoea syndrome and healthcare personnel during the initial visit to a continuous positive airway pressure clinic. J Clin Nurs 26:568–577PubMed Broström A, Fridlund B, Hedberg B, Nilsen P, Ulander M (2017) Communication between patients with obstructive sleep apnoea syndrome and healthcare personnel during the initial visit to a continuous positive airway pressure clinic. J Clin Nurs 26:568–577PubMed
17.
Zurück zum Zitat Dzierzewski JM, Wallace DM, Wohlgemuth WK (2016) Adherence to continuous positive airway pressure in existing users: self-efficacy enhances the association between continuous positive airway pressure and adherence. J Clin Sleep Med 12(2):169–176PubMedPubMedCentral Dzierzewski JM, Wallace DM, Wohlgemuth WK (2016) Adherence to continuous positive airway pressure in existing users: self-efficacy enhances the association between continuous positive airway pressure and adherence. J Clin Sleep Med 12(2):169–176PubMedPubMedCentral
18.
Zurück zum Zitat Stålkrantz A, Broström A, Wiberg J, Svanborg E, Malm D (2012) Everyday life for the spouses of patients with untreated OSA syndrome. Scand J Caring Sci 26(2):324–332PubMed Stålkrantz A, Broström A, Wiberg J, Svanborg E, Malm D (2012) Everyday life for the spouses of patients with untreated OSA syndrome. Scand J Caring Sci 26(2):324–332PubMed
19.
Zurück zum Zitat Elfström M, Karlsson S, Nilsen P, Fridlund B, Svanborg E, Broström A (2012) Decisive situations affecting partners’ support to continuous positive airway pressure-treated patients with obstructive sleep apnea syndrome: a critical incident technique analysis of the initial treatment phase. J Cardiovasc Nurs 27(3):228–239PubMed Elfström M, Karlsson S, Nilsen P, Fridlund B, Svanborg E, Broström A (2012) Decisive situations affecting partners’ support to continuous positive airway pressure-treated patients with obstructive sleep apnea syndrome: a critical incident technique analysis of the initial treatment phase. J Cardiovasc Nurs 27(3):228–239PubMed
20.
Zurück zum Zitat Karlsson S, Elfström M, Sunnergren O, Fridlund B, Broström A (2015) Decisive situations influencing continuous positive airway pressure initiation in patients with obstructive sleep apnea syndrome – a critical incident technique analysis from the personnel’s perspective. J Hosp Adm 4(1):16–26 Karlsson S, Elfström M, Sunnergren O, Fridlund B, Broström A (2015) Decisive situations influencing continuous positive airway pressure initiation in patients with obstructive sleep apnea syndrome – a critical incident technique analysis from the personnel’s perspective. J Hosp Adm 4(1):16–26
21.
Zurück zum Zitat Ryan RM, Deci EL (2000) Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am Psychol 55(1):68–78PubMed Ryan RM, Deci EL (2000) Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am Psychol 55(1):68–78PubMed
22.
Zurück zum Zitat Broström A, Johansson P, Strömberg A, Albers J, Mårtensson J, Svanborg E (2007) Obstructive sleep apnoea syndrome – patient’s perceptions of their sleep and its effects on their life situation. J Adv Nurs 57:318–327PubMed Broström A, Johansson P, Strömberg A, Albers J, Mårtensson J, Svanborg E (2007) Obstructive sleep apnoea syndrome – patient’s perceptions of their sleep and its effects on their life situation. J Adv Nurs 57:318–327PubMed
23.
Zurück zum Zitat Broström A, Johansson P, Albers J, Wiberg J, Svanborg E, Fridlund B (2008) 6-month CPAP-treatment in a young male patient with severe obstructive sleep apnoea syndrome - a case study from the couple's perspective. Eur J Cardiovasc Nurs 7(2):103–112PubMed Broström A, Johansson P, Albers J, Wiberg J, Svanborg E, Fridlund B (2008) 6-month CPAP-treatment in a young male patient with severe obstructive sleep apnoea syndrome - a case study from the couple's perspective. Eur J Cardiovasc Nurs 7(2):103–112PubMed
24.
Zurück zum Zitat Westergren A, Broman J-E, Hellström A, Fagerström C, Willman A, Hagell P (2015) Measurement properties of the minimal insomnia symptom scale as an insomnia screening tool for adults and the elderly. Sleep Med 16:379–384PubMed Westergren A, Broman J-E, Hellström A, Fagerström C, Willman A, Hagell P (2015) Measurement properties of the minimal insomnia symptom scale as an insomnia screening tool for adults and the elderly. Sleep Med 16:379–384PubMed
25.
Zurück zum Zitat Johns MW (1991) A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14:540–545PubMed Johns MW (1991) A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14:540–545PubMed
26.
Zurück zum Zitat Ware JE Jr, Sherbourne CD (1992) The MOS 36-item short-form health survey (SF-36): I. conceptual framework and item selection. Med Care 30:473–483PubMed Ware JE Jr, Sherbourne CD (1992) The MOS 36-item short-form health survey (SF-36): I. conceptual framework and item selection. Med Care 30:473–483PubMed
27.
Zurück zum Zitat Petrillo J, Cano SJ, McLeod LD, Coon CD (2015) Using classical test theory, item response theory, and Rasch measurement theory to evaluate patient-reported outcome measures: a comparison of worked examples. Value Health 18(1):25–34PubMed Petrillo J, Cano SJ, McLeod LD, Coon CD (2015) Using classical test theory, item response theory, and Rasch measurement theory to evaluate patient-reported outcome measures: a comparison of worked examples. Value Health 18(1):25–34PubMed
28.
Zurück zum Zitat Lin C-Y, Hwang J-S, Wang W-C, Lai WW, Su WC, Wu TY, Yao G, Wang JD (2019) Psychometric evaluation of the WHOQOL-BREF, Taiwan version, across five kinds of Taiwanese cancer survivors: Rasch analysis and confirmatory factor analysis. J Form Med Assoc 118(1):215–222 Lin C-Y, Hwang J-S, Wang W-C, Lai WW, Su WC, Wu TY, Yao G, Wang JD (2019) Psychometric evaluation of the WHOQOL-BREF, Taiwan version, across five kinds of Taiwanese cancer survivors: Rasch analysis and confirmatory factor analysis. J Form Med Assoc 118(1):215–222
29.
Zurück zum Zitat Lin C-Y, Broström A, Nilsen P, Griffiths MD, Pakpour AH (2017) Psychometric validation of the Bergen Social Media Addiction Scale using classic test theory and Rasch models. J Behav Add 6(4):620–629 Lin C-Y, Broström A, Nilsen P, Griffiths MD, Pakpour AH (2017) Psychometric validation of the Bergen Social Media Addiction Scale using classic test theory and Rasch models. J Behav Add 6(4):620–629
30.
Zurück zum Zitat Lin C-Y, Pakpour AH, Broström A, Fridlund B, Årestedt K, Strömberg A, Jaarsma T, Mårtensson J (2018) Psychometric properties of the 9-item European Heart Failure Self-Care Behavior Scale using confirmatory factor analysis and Rasch analysis among Iranian patients. J Card Nurs 33(3):281–288 Lin C-Y, Pakpour AH, Broström A, Fridlund B, Årestedt K, Strömberg A, Jaarsma T, Mårtensson J (2018) Psychometric properties of the 9-item European Heart Failure Self-Care Behavior Scale using confirmatory factor analysis and Rasch analysis among Iranian patients. J Card Nurs 33(3):281–288
31.
Zurück zum Zitat Linacre JM (2011) A user’s guide to Winstep. Ministep Rasch Model Computer Programs: Program Manual by John M. Linacre. Chicago. Winsteps.com Linacre JM (2011) A user’s guide to Winstep. Ministep Rasch Model Computer Programs: Program Manual by John M. Linacre. Chicago. Winsteps.​com
32.
Zurück zum Zitat Wang Y-S, Wang H-Y, Shee DY (2007) Measuring e-learning systems success in an organizational context: scale development and validation. Comp Human Beh 23:1792–1808 Wang Y-S, Wang H-Y, Shee DY (2007) Measuring e-learning systems success in an organizational context: scale development and validation. Comp Human Beh 23:1792–1808
33.
Zurück zum Zitat Terwee CB, Bot SD, van der De Boer MR et al (2007) Quality criteria were proposed for measurement properties of health status questionnaires. J Clin Epidemiol 60:34–42PubMed Terwee CB, Bot SD, van der De Boer MR et al (2007) Quality criteria were proposed for measurement properties of health status questionnaires. J Clin Epidemiol 60:34–42PubMed
34.
Zurück zum Zitat Nunnally JC, Bernstein IH (1994) The assessment of reliability. Psychom Theory 3:248–292 Nunnally JC, Bernstein IH (1994) The assessment of reliability. Psychom Theory 3:248–292
35.
Zurück zum Zitat Pett MA, Lackey NR, Sullivan JJ (2003) Making sense of factor analysis: the use of factor analysis for instrument development in health care research. SAGE Publications, Thousand Oaks Pett MA, Lackey NR, Sullivan JJ (2003) Making sense of factor analysis: the use of factor analysis for instrument development in health care research. SAGE Publications, Thousand Oaks
36.
Zurück zum Zitat Hagenaars JA, McCutcheon AL (2002) Applied latent class analysis. Cambridge University Press, New York Hagenaars JA, McCutcheon AL (2002) Applied latent class analysis. Cambridge University Press, New York
37.
Zurück zum Zitat Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RLC. (2006) Multivariate data analysis (sixth ed.), Prentice-Hall, New Jersey Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RLC. (2006) Multivariate data analysis (sixth ed.), Prentice-Hall, New Jersey
38.
Zurück zum Zitat Ulander M, Johansson MS, Ewaldh AE, Svanborg E, Broström A (2014) Side effects to continuous positive airway pressure treatment for obstructive sleep apnoea: changes over time and association to adherence. Sleep Breath 18:799–807PubMed Ulander M, Johansson MS, Ewaldh AE, Svanborg E, Broström A (2014) Side effects to continuous positive airway pressure treatment for obstructive sleep apnoea: changes over time and association to adherence. Sleep Breath 18:799–807PubMed
39.
Zurück zum Zitat Ward K, Hoare KJ, Gott M (2014) What is known about the experiences of using CPAP for OSA from the users’ perspective? A systematic integrative literature review. Sleep Med Rev 18:357–366PubMed Ward K, Hoare KJ, Gott M (2014) What is known about the experiences of using CPAP for OSA from the users’ perspective? A systematic integrative literature review. Sleep Med Rev 18:357–366PubMed
40.
Zurück zum Zitat Olsen S, Smith S, Oei TPS, Douglas J (2008) Health belief model predicts adherence to CPAP before experience with CPAP. Eur Respir J 32:710–717PubMed Olsen S, Smith S, Oei TPS, Douglas J (2008) Health belief model predicts adherence to CPAP before experience with CPAP. Eur Respir J 32:710–717PubMed
41.
Zurück zum Zitat Drieschner KH, Lammers SMM, van der Staak CPF (2004) Treatment motivation: an attempt for clarification of an ambiguous concept. Clin Psych Rev 23:1115–1137 Drieschner KH, Lammers SMM, van der Staak CPF (2004) Treatment motivation: an attempt for clarification of an ambiguous concept. Clin Psych Rev 23:1115–1137
42.
Zurück zum Zitat Flemming SM, Lau HC (2014) How to measure metacognition. Front Hum Neurosci 18(1):25–34 Flemming SM, Lau HC (2014) How to measure metacognition. Front Hum Neurosci 18(1):25–34
43.
Zurück zum Zitat Harper RM, Kumar R, Ogren JA, Macey PM (2013) Sleep-disordered breathing: effects on brain structure and function. Respir Physiol Neurobiol 188(3):383–391PubMedPubMedCentral Harper RM, Kumar R, Ogren JA, Macey PM (2013) Sleep-disordered breathing: effects on brain structure and function. Respir Physiol Neurobiol 188(3):383–391PubMedPubMedCentral
44.
Zurück zum Zitat Leng Y, McEvoy CT, Allen IE, Yaffe K (2017) Association of sleep-disordered breathing with cognitive function and risk of cognitive impairment a systematic review and meta-analysis. JAMA Neurol 74(10):1237–1245PubMedPubMedCentral Leng Y, McEvoy CT, Allen IE, Yaffe K (2017) Association of sleep-disordered breathing with cognitive function and risk of cognitive impairment a systematic review and meta-analysis. JAMA Neurol 74(10):1237–1245PubMedPubMedCentral
45.
Zurück zum Zitat Lai AY, Fong DY, Lam JC, Weaver TE, Ip MS (2014) The efficacy of a brief motivational enhancement education program on CPAP adherence in OSA: a randomized controlled trial. Chest 146(3):600–610PubMed Lai AY, Fong DY, Lam JC, Weaver TE, Ip MS (2014) The efficacy of a brief motivational enhancement education program on CPAP adherence in OSA: a randomized controlled trial. Chest 146(3):600–610PubMed
46.
Zurück zum Zitat Olsen S, Smith SS, Oei TPS, Douglas J (2012) Motivational interviewing (MINT) improves continuous positive airway pressure (CPAP) acceptance and adherence: a randomized controlled trial. J Consult Clin Psychol 80:151–163PubMed Olsen S, Smith SS, Oei TPS, Douglas J (2012) Motivational interviewing (MINT) improves continuous positive airway pressure (CPAP) acceptance and adherence: a randomized controlled trial. J Consult Clin Psychol 80:151–163PubMed
48.
Zurück zum Zitat Broström A, Nilsen P, Gardner B, et al. (2014) Validation of the CPAP Habit Index-5: a tool to understand adherence to CPAP treatment in patients with obstructive sleep apnea. Sleep Disord 929057 Broström A, Nilsen P, Gardner B, et al. (2014) Validation of the CPAP Habit Index-5: a tool to understand adherence to CPAP treatment in patients with obstructive sleep apnea. Sleep Disord 929057
49.
Zurück zum Zitat Weaver TE, Maislin G, Dinges DF, Younger J, Cantor C, McCloskey S, Pack AI (2003) Self-efficacy in sleep apnea: instrument development and patient perceptions of obstructive sleep apnea risk, treatment benefit, and volition to use continuous positive airway pressure. Sleep 26(6):727–732PubMed Weaver TE, Maislin G, Dinges DF, Younger J, Cantor C, McCloskey S, Pack AI (2003) Self-efficacy in sleep apnea: instrument development and patient perceptions of obstructive sleep apnea risk, treatment benefit, and volition to use continuous positive airway pressure. Sleep 26(6):727–732PubMed
Metadaten
Titel
Development and psychometric evaluation of the Motivation to Use CPAP Scale (MUC-S) using factorial structure and Rasch analysis among patients with obstructive sleep apnea before CPAP treatment is initiated
verfasst von
Anders Broström
M. Ulander
P. Nilsen
Chung-Ying Lin
A. H. Pakpour
Publikationsdatum
23.07.2020
Verlag
Springer International Publishing
Erschienen in
Sleep and Breathing / Ausgabe 2/2021
Print ISSN: 1520-9512
Elektronische ISSN: 1522-1709
DOI
https://doi.org/10.1007/s11325-020-02143-9

Weitere Artikel der Ausgabe 2/2021

Sleep and Breathing 2/2021 Zur Ausgabe

Sleep Breathing Physiology and Disorders • Review

Obstructive sleep apnea and respiratory center regulation abnormality

Psychiatrics • Short Communication

Excessive daytime sleepiness in cancer patients

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.