Skip to main content
Erschienen in: Pediatric Radiology 1/2019

Open Access 03.10.2018 | Review

Differential diagnosis of perinatal hypophosphatasia: radiologic perspectives

verfasst von: Amaka C. Offiah, Jerry Vockley, Craig F. Munns, Jun Murotsuki

Erschienen in: Pediatric Radiology | Ausgabe 1/2019

Abstract

Perinatal hypophosphatasia (HPP) is a rare, potentially life-threatening, inherited, systemic metabolic bone disease that can be difficult to recognize in utero and postnatally. Diagnosis is challenging because of the large number of skeletal dysplasias with overlapping clinical features. This review focuses on the role of fetal and neonatal imaging modalities in the differential diagnosis of perinatal HPP from other skeletal dysplasias (e.g., osteogenesis imperfecta, campomelic dysplasia, achondrogenesis subtypes, hypochondrogenesis, cleidocranial dysplasia). Perinatal HPP is associated with a broad spectrum of imaging findings that are characteristic of but do not occur in all cases of HPP and are not unique to HPP, such as shortening, bowing and angulation of the long bones, and slender, poorly ossified ribs and metaphyseal lucencies. Conversely, absent ossification of whole bones is characteristic of severe lethal HPP and is associated with very few other conditions. Certain features may help distinguish HPP from other skeletal dysplasias, such as sites of angulation of long bones, patterns of hypomineralization, and metaphyseal characteristics. In utero recognition of HPP allows for the assembly and preparation of a multidisciplinary care team before delivery and provides additional time to devise treatment strategies.

Introduction

Hypophosphatasia (HPP) is a rare, inherited, systemic, metabolic bone disease caused by low tissue-nonspecific alkaline phosphatase activity [13]. In patients with HPP, low alkaline phosphatase activity results in the accumulation of phosphorylated substrates, specifically inorganic pyrophosphate, pyridoxal 5′-phosphate and phosphoethanolamine [1, 35]. Elevated inorganic pyrophosphate levels inhibit mineralization of the bone matrix, leading to hypomineralization of the skeleton [2, 68]. The inability of pyridoxal 5′-phosphate, the circulating form of vitamin B6, to cross the blood-brain barrier likely contributes to the seizures observed in some infants with HPP [2, 8].
HPP is a clinically heterogeneous disease traditionally categorized by the age of onset of the first signs and symptoms as perinatal onset (in utero and at birth), infantile onset (age < 6 months), childhood onset (age ≥ 6 months to <18 years), and adult onset (age ≥ 18 years) or, in patients with only dental manifestations, as odonto-HPP [2, 3, 9]. Characteristic signs, symptoms and complications of perinatal HPP include skeletal manifestations (e.g., hypomineralization, chest deformity, bowing, craniosynostosis) [9, 10], vitamin B–responsive seizures [9, 1113] and respiratory failure [11, 14]. Before the availability of enzyme replacement therapy, mortality among patients with perinatal/infantile HPP was high, ranging from 58% to 100% within the first year of life [1517]. The incidence of HPP has been estimated to be 1:100,000 in Ontario, Canada, based on the local birth rate in 1957 [9]. The prevalence of perinatal and infantile HPP in Europe has been estimated to be 1:538,000, based on molecular diagnoses made from 2000 to 2009 [18]. Local populations with a higher incidence of HPP include the Mennonite communities in Canada [19] and an endogamous village in Hungary [20, 21]. Because of the rarity of HPP, its true incidence and prevalence remain unknown [3].
HPP is confirmed with consistently low age- and gender-adjusted alkaline phosphatase activity in conjunction with medical history and physical findings, radiologic findings, elevated levels of tissue-nonspecific alkaline phosphatase substrates or sequencing of the ALPL gene [3, 22, 23]. In utero and postnatal recognition and diagnosis of perinatal HPP based on radiologic findings can be challenging because of features that overlap with many of the more than 400 other skeletal dysplasias, the phenotypic variability and a lack of information about the in utero natural history of HPP [2426]. The skeletal abnormalities and the gestational and postnatal ages at which they manifest vary across skeletal dysplasias, including HPP. Many sonographic and radiographic findings are not pathognomonic for a specific disorder, as obtaining reliable information regarding skeletal mineralization is difficult with prenatal sonography and computed tomography (CT). These difficulties are confounded by a general lack of familiarity with HPP among the health care providers who perform prenatal ultrasound (US) and neonatal imaging. In addition, abnormalities can be detected at earlier gestational ages than they have in the past [27], underscoring the need for obstetricians, ultrasonographers and radiologists to possess in-depth knowledge of the appearance of the fetal skeleton at all gestational ages [28]. This review focuses on the role of fetal and neonatal imaging modalities in the differential diagnosis of perinatal HPP.

Prenatal imaging

Prenatal diagnosis of skeletal dysplasia relies on cross-sectional imaging modalities (US, CT and magnetic resonance imaging [MRI]), whereas postnatal diagnosis relies more heavily on radiography [29]. The International Society of Ultrasound in Obstetrics and Gynecology [30] and the United Kingdom’s National Institute for Health and Care Excellence [31] recommend that all pregnant women undergo US scanning at 10 to 14 weeks to establish gestational age and at 18 to 22 weeks to screen for structural anomalies. Thereafter, the frequency of fetal monitoring depends on the severity of findings, the mother’s health and the family’s wishes. High-resolution US is required to clearly identify the skeletal abnormalities of HPP. Two- or three-dimensional (2-D or 3-D) US may be used to visualize the skeleton by gestational week 12 [29]. Although radiologists are usually trained with 2-D images and generally prefer 2-D to 3-D US when reviewing image slices, 3-D US may allow the radiologist to more clearly visualize characteristic dysmorphic findings of the face, hands, feet, vertebrae, ribs and skull sutures in skeletal dysplasias [32].
Prenatal CT is a useful modality when skeletal dysplasia is suspected after sonographic examination [33, 34] and is best performed from 30 weeks’ gestation; image quality is poor at earlier gestational ages because of relatively poor skeletal mineralization and artefacts caused by fetal movement [29, 34]. Although the added diagnostic value of CT over US has not been formally assessed in a large study, CT allows detailed visualization of the fetal skeleton and is less dependent on amniotic fluid volume and fetal position than US [3335]. The risk associated with fetal radiation is a common concern with prenatal CT; however, the risk to benefit ratio can be relatively low if the radiation dose is kept to a minimum by selecting appropriate technical parameters [34, 3639]. A recommended threshold of radiation that would have negligible risk to the fetus is 50 milligray [38]. Advances in model-based iterative reconstruction methods for ultra-low-dose fetal CT yield fetal radiation exposures as low as 0.5 milligray while maintaining excellent image quality for the diagnosis of skeletal dysplasias [40].
MRI has shown only limited utility in prenatal diagnosis of skeletal dysplasias and is not routinely used in HPP diagnosis [29, 41]; however, fetal MRI can provide valuable details when targeted US is unable to clarify the diagnosis [42, 43]. Fetal “black bone” MRI, compared with standard MRI sequences, may improve visualization of the mineralized skeleton [44].

Postnatal imaging

A whole-body radiograph of an infant (i.e. babygram) is required for any live-born infant, preterm fetus or stillborn with a suspected constitutional disorder of bone [29, 45]. The babygram includes anteroposterior (AP) and lateral radiographs of the full body length. Figures 1, 2 and 3 show postmortem whole-body radiographs of fetuses with normal skeletons at 11, 14 and 15 weeks’ gestation. In cases of stillbirths, babygrams may be performed using cabinet X-ray machines that visualize all bones of the skeleton on a single projection [28, 29]. For live-born, larger infants, a standard skeletal survey may be required to enhance diagnostic accuracy [29, 45]. The series of radiographs obtained for a standard skeletal survey may vary among institutions but should include the following views: AP and lateral skull, AP chest (including AP thoracic spine), lateral thoracolumbar spine, AP pelvis (including AP lumbar spine), AP one upper limb, AP one lower limb and dorsipalmar left hand [29, 45]. A review of family members’ previous radiographs, if available, may help if any first-degree relatives are suspected of being affected [29].
Cross-sectional imaging modalities (e.g., US, CT, MRI) are generally reserved for specific skeletal and systemic abnormalities. Whole-body MRI findings associated with HPP have been described in children [46] but may be less useful/practical in a perinatal setting.

Perinatal hypophosphatasia

A broad spectrum of skeletal characteristics is consistent with perinatal HPP in fetuses and neonates but is not exclusive to this disease (Table 1) (Figs. 4, 5, 6, 7 and 8) [4758]. Early scans may appear unremarkable simply because of the normal absence of bony ossification at earlier gestational ages (<8 weeks) [28], while later scans may show characteristic features of HPP (Figs. 4, 5, 6, 7 and 8). To our knowledge, absent ossification of whole bones at or after 11 weeks’ gestation is characteristic of severe lethal HPP and is associated with very few other conditions. Shortening, bowing and angulation of the long bones are common characteristics but do not occur in all cases of HPP and are not unique to HPP. Slender, poorly ossified ribs are consistent with but not exclusive to HPP and could be related to gestational age or other conditions, in particular osteogenesis imperfecta [59, 60]. Metaphyseal lucencies or “tongues” are also strongly characteristic of but not exclusive to HPP. In HPP, the skull vault has deficient ossification with wide sutures and fontanelles; deficient ossification of the skull allows visualization of intracranial structures that are not normally visible on prenatal US [61]. Mid-diaphyseal spurs (Bowdler spurs) are rare but almost always diagnostic for HPP [10, 56, 58, 62, 63]. These spurs may protrude through or cause dimpling or indentation of the overlying skin [10, 58, 62]. Although once considered specific to HPP [62], diaphyseal spurs have also been reported in campomelic and cleidocranial dysplasia [64, 65]. Spurs can be difficult to detect on US because they are usually unossified [56], but they have been visualized as early as 18 weeks’ gestation on 3-D US when not visible on 2-D US [56, 63].
Table 1
Key radiographic and sonographic features of perinatal hypophosphatasia [4758]
Long bones: shortening, bowing, angulation
Small/narrow thorax (chest size smaller than abdominal circumference)
Osteochondral spurs (Bowdler spur)
Fractures
Metaphyseal irregularities
 Lucencies (“cupping” or “tongues”)
Ribs
 Short and beadeda
 Thinb
Deficient/absent ossification of bones
 Tubular bones, skull vault, ribs, vertebrae
 Abnormal sonolucency of bony structures
 Hypoechogenic skull
 Increased nuchal translucency
Wide sutures and fontanellesb
Polyhydramnios
aSecond trimester (13–27 weeks’ gestation)
bFull-term neonate
The gestational age at which skeletal abnormalities are apparent in perinatal HPP varies widely, with some cases detected on prenatal US as early as 13 weeks’ gestation [66]. However, HPP diagnosis based on US findings cannot be definitive until halfway through the second trimester, when characteristics of in utero HPP become more evident. In the second trimester, all bony features become more apparent as the fetus grows and increase in visibility as ossification progresses. If the diaphysis of a tubular bone is not ossified in the second trimester, it is likely abnormal rather than physiologically related to gestational age.
Prenatal US findings may help predict lethality of a skeletal dysplasia [67]. The three most accurate predictors of fatality when evaluated in conjunction with fetal amniotic fluid volume are 3-D fetal lung volume [67, 68], the ratio of femur length to abdominal circumference and the ratio of chest circumference to abdominal circumference [67]. In general, the risk of fatality is greater if chest size is small and/or multiple rib fractures are present because this will lead to breathing difficulties ex utero [14, 67, 68]. Lethal perinatal HPP is characterized by diffuse hypomineralization of the fetal skeleton with the absence of many bones and a lack of posterior acoustic shadowing from bones that are sonographically visible [54, 67]. In particular, the neural arches and the thoracic spine may be poorly ossified or absent [56, 67]. In general, lethal perinatal HPP is clearly more severe than other forms of HPP at first detection, with a lack of improvement in skeletal signs with increasing gestational age. The severity of hypomineralization may also predict fatality. A diagnosis of lethal HPP can usually be made by the late second or early third trimester. Lack of mineralization of bones in the hands is considered an important feature. However, no correlation is apparent between the gestational age when skeletal disease is first observed and the severity of HPP after birth [66].
A slowly progressing type of perinatal HPP, with only some or none of the skeletal abnormalities considered characteristic of HPP, may also present prenatally [4850, 52, 66]. This phenotype of HPP is relatively mild at birth, with some patients presenting with long bone bowing, femoral or humeral angulation, and presumed in utero fractures but no other radiologic features of HPP (Figs. 9, 10 and 11) [49, 52, 66]. Bone ossification is usually normal or only slightly reduced on US examinations, and chest size is usually normal. In such cases, the diagnosis of HPP may be suspected based on family history (e.g., dental abnormalities) or diagnosed after confirmation of low alkaline phosphatase activity. These patients have a better prognosis in the perinatal period than patients with perinatal or infantile HPP, which may be fatal [49, 50, 52].
Pregnancy in cases of perinatal HPP may be complicated by polyhydramnios [2]. Whether perinatal HPP is associated with other maternal complications, small size for gestational age or premature birth has not been systematically studied. A retrospective review of 15 Manitoban Mennonite patients with perinatal HPP reported during an 80-year period (1927–2007) found that most of the infants (73.3% [11/15]) were born at full term, 13.3% (2/15) were born early at 36 weeks’ gestation, and 13.3% (2/15) were born prematurely at 30 and 33 weeks’ gestation [15]. Birth weights (n=6) ranged from below the 5th percentile (2.3 kg) to within the 25th–50th percentile (3.3 kg). As technology advances, we may learn more about maternal complications.

Differential diagnosis

Metaphyseal abnormalities similar to those observed in HPP are also observed in rickets and osteopathy of prematurity [69]. Active rickets may present with widened zones of provisional calcification and wide costochondral junctions, including widening along the anterior ends of the ribs (i.e. rachitic rosary). Osteopathy of prematurity is associated with radiologic changes characteristic of rickets, and fractures may be seen in infants with very low birth weights [69, 70].

Osteogenesis imperfecta

Osteogenesis imperfecta and perinatal and infantile HPP share features of reduced bone density, deficient ossification of the skull vault, bowed long bones, fractures, gracile ribs and narrow thorax (Table 2) [27, 29, 56, 5961, 64, 65, 7177]. Although it may be difficult to distinguish osteogenesis imperfecta from HPP on US [27], certain patterns of demineralization may help [61]. Osteogenesis imperfecta types II, III and IV are characterized by overall diffuse osteopenia (Figs. 12, 13, 14 and 15), whereas HPP is characterized by a near complete lack of mineralization in individual bones with more densely or normally mineralized adjacent bones [61, 73, 74, 78]. Wormian bones of the skull and compression fractures in the spine are common findings in the majority of cases of severe osteogenesis imperfecta [59, 79] but not in HPP. Demineralization of the skull is usually severe and diffuse in HPP. This is in contrast to the “island-like” centers of ossification (i.e. Wormian bones) in the frontal, parietal and occipital bones often observed in osteogenesis imperfecta. The hand bones are echogenic in osteogenesis imperfecta but are usually sonolucent in HPP [54, 61]. Similar to HPP, in the neonatal period, osteogenesis imperfecta type V may present with reduced bone density, metaphyseal widening/flaring and widening of the growth plates [59]. However, unlike active rickets, the metaphyses are sclerotic and irregular and there may be centrally located wedge-shaped sclerosis of the anterior vertebral bodies and unusual lucency of the metadiaphyseal regions [59].
Table 2
Differential diagnoses for perinatal hypophosphatasia (HPP)
 
Perinatal hypohposphatasia
[29, 61, 75]
Osteogenesis imperfecta type II
[56, 59, 61, 71]
Campomelic dysplasia
[27, 29, 65, 76]
Achondrogenesis/hypochondrogenesis
[27, 29, 71]
Cleidocranial dysplasia
[29, 64, 77]
Thanatophoric dysplasia
[27, 29, 71]
Long bones
Micromelia
Bowed
Angulation (tibiae)
Absent ossification of whole bones
Diaphyseal spurs (tibial dimple)
Metaphyseal lucencies (“tongues”)
Hypoplastic fibulae
Micromelia
Thick
Crumpled shafts
Multiple fractures
Callus formation
Wrinkled appearance on sonograms
Shortening of the long bones
Angulation (tibiae and short fibula)
Mild to moderate bowing
Diaphyseal spurs (tibial dimple)
Hypoplastic fibulae
Micromelia
Metaphyseal spikes
Dysplastic limbs
Bowed limbs
Diaphyseal spurs
Micromelia
Femoral bowing (type I)
Thorax
Shortened ribs
Thin ribs
Small thoracic circumference
Shortened ribs
Thick/broad irregular ribs
Continuous beading of ribs
Flaring at anterior rib ends
Small chest circumference
11 pairs of ribs
Absent or hypoplastic scapula
Small, bell-shaped thorax
Short ribs
Narrow barrel-shaped thorax
Prominent abdomen
Hypoplastic or absent clavicles
Shortened ribs
Narrow thorax
Prominent abdomen
Skull
Absent ossification of skull base
Wide sutures and fontanelles
Prominent falx cerebri in sonograms
Caput membranaceum
Wormian bones
Hypomineralization of skull
Abnormal skull shape
Caput membranaceum
Flattened facial profile
 
Severe hypomineralization of skull
Micrognathia
Flattened facial profile
Hypomineralization of the skull
Wide sutures and fontanelles
Parietal bones absent in extreme cases
Macrocephaly
Craniosynostosis (type II)
Narrowed or closed cranial sutures
Metopic bossing
Spine
Underossification of vertebrae and neural arches
Absent pedicles and bodies of the vertebrae
Increased nuchal translucency
Absent pedicles of the T spine
Scoliosis
Severe hypomineralization of vertebral bodies
Platyspondyly
Large nuchal lucencies
 
Platyspondyly
Pelvis
Absent ossification
 
Dislocated hips
Crescent ilia
Absent ischia
Deficient ossification of the pubic rami
Wide symphysis pubis
Trident acetabulum
Hands and feet
Underossification and sonolucency of hands
Hands appear grossly normal and are echogenic
Short fingers and toes
Clubbed feet
Very small hands and feet
Trident hands
 
Brachydactyly
Other
Generalized hypomineralization
Decreased echogenicity of bones
Small for gestational age
Polyhydramnios
Generalized hypomineralization
Normal bone density
Micrognathia
Flat nasal bridge
Low-set ears
Nuchal edema
Early hydrops
Cystic hygroma
Short crown–rump length
Polyhydramnios (type II)
Omphalocele
Normal trunk length
Depressed nasal bridge
Hydrocephaly
Polyhydramnios

Campomelic dysplasia

Campomelic dysplasia shares some characteristics with HPP, including shortening, bowing and angulation of the long bones, diaphyseal spurs, tibial dimple, absent ossification of the pedicles and hypoplastic fibulae (Table 2) (Figs. 16 and 17) [27, 65, 76]. Unlike HPP, the absence of ossification of the pedicles is limited to the thoracic spine in campomelic dysplasia. Campomelic dysplasia is also distinguished from HPP by characteristic sites of long bone angulation, specifically in the femur at the junction of the proximal third and distal two-thirds and in the tibia at the junction of proximal two-thirds and distal third. Other distinguishing characteristics of campomelic dysplasia include the absence of ossification of the wings of the scapulae, dislocated elbows, 11 pairs of ribs, narrow iliac wings and normal bone density [27].

Achondrogenesis/hypochondrogenesis

Achondrogenesis is characterized by early hydrops and a short trunk (crown–rump length), narrow barrel-shaped thorax and prominent abdomen (Figs. 18, 19 and 20) [27]. Achondrogenesis types IA/B are inherited by autosomal-recessive transmission and are associated with extreme micromelia, short hands and feet, poor mineralization, a large head, a flat face and a short neck. Achondrogenesis type II (autosomal dominant) is less severe and presents later in gestation than type I, often with polyhydramnios. Hypochondrogenesis is characterized by a small thorax, short limbs, a flat face with micrognathia, a short trunk and macrocephaly, a flat nose and depressed nasal bridge [27].
In achondrogenesis and hypochondrogenesis, deficient ossification of the vertebral bodies is usually most severe in the lumbosacral and cervical spine [56]. In achondrogenesis, the whole spine may be unossified, with complete absence of vertebral bodies. In contrast, HPP typically presents as deficient spine ossification in the thoracic region, with a sharp demarcation between almost normal ossification in the lumbar spine and complete absence of ossification in the thoracic spine.

Cleidocranial dysplasia

Cleidocranial dysplasia is an autosomal-dominant skeletal dysplasia characterized by clavicular hypoplasia or aplasia, delayed closure of fontanelles and sutures, and hypoplasia of the pubic bones (Table 2) (Fig. 21) [64]. Prenatal US may reveal absent or hypoplastic clavicles, missing nasal bones, and hypomineralization of the cranium and vertebral spine early in the second trimester [8082]. Later in life, patients with cleidocranial dysplasia may have dental anomalies (e.g., delayed eruption of primary and secondary dentition, supernumerary teeth) and short stature. One case of cleidocranial dysplasia misdiagnosed as HPP during infancy has been reported [64]. Some patients with severe cleidocranial dysplasia may have low serum alkaline phosphatase activity [83, 84]. However, these patients may also have normal serum pyridoxal 5′-phosphate and urine phosphoethanolamine [83, 84].

Thanatophoric dysplasia

Thanatophoric dysplasia is one of the most commonly encountered lethal prenatal skeletal dysplasias [27]. Characteristic in utero sonographic features of thanatophoric dysplasia include severe micromelia and brachydactyly, bowed (type I) or straight (type II) long bones, severe platyspondyly with normal trunk length, narrow thorax, short ribs and prominent abdomen apparent by the 18-week morphology US (Table 2) (Fig. 22) [27]. In one report, suspicious findings on US performed at 13 weeks’ gestation prompted a repeat scan at 15 weeks to confirm the diagnosis of thanatophoric dysplasia [85].

Suspicion of hypophosphatasia: Next steps

If perinatal HPP is suspected, alkaline phosphatase activity may be assessed in umbilical cord blood or chorionic villus samples [8689]. Chorionic villus sampling for assay of alkaline phosphatase activity has been used to diagnose HPP as early as 11–12 weeks’ gestation [89, 90]. In some cases, however, alkaline phosphatase activity may fail to identify affected fetuses, as alkaline phosphatase activity varies with gestational age [89, 90]. After 13 weeks’ gestation, the placenta may produce alkaline phosphatase, affecting the interpretation of the analysis.
Measurement of parental serum alkaline phosphatase activity can be useful for prenatal diagnosis of HPP [87]. A retrospective analysis of 77 cases of fetal skeletal dysplasia (including 17 of HPP) in Japan from 2007 to 2016 showed that the presence of at least one abnormally low maternal (<123 IU/L) or paternal alkaline phosphatase value (<165 IU/L) any time during pregnancy had high sensitivity (82%) specificity (75%), and positive predictive value (80%) for HPP [87].
For newborns, alkaline phosphatase activity must be compared with age- and gender-adjusted reference ranges for the testing laboratory; alkaline phosphatase reference ranges vary widely depending on patient age and gender and the laboratory and methods used [75]. If alkaline phosphatase activity is low or suspicion for HPP is high based on images, additional testing may be necessary. In newborns, these tests should include urine concentrations of phosphoethanolamine, and serum concentrations of pyridoxal 5′-phosphate (i.e. vitamin B6), calcium, vitamin D and parathyroid hormone [75].
Genetic testing for ALPL mutations can be confirmatory in cases of diagnostic uncertainty [91, 92]. However, clinicians should be aware of the depth of coverage with whole-exome sequencing and next-generation sequencing technology, as some pathogenic variants may not be detected [92, 93].

Medical genetic evaluation and genetic counseling

A medical genetic evaluation should be obtained when a diagnosis of HPP is being considered. In many centers, this will be through a prenatal genetics clinic. A medical genetics physician or genetics counselor can help obtain gene testing and interpret results, especially if variants of unknown significance are found. If gene testing results are normal, alternative genetic causes for the apparent bony abnormalities can be pursued in consultation with the radiologist and obstetrician. Family genetic counseling should also begin when HPP is suspected, and a detailed pedigree should be obtained. Genetic counseling in cases of suspected HPP may be particularly difficult due to the autosomal-dominant and autosomal-recessive patterns of inheritance and the phenotypic heterogeneity of the disease [94]. The family should receive counseling by a clinician familiar with the treatment of children with HPP so that they are informed on available treatment options before making decisions about terminating the pregnancy.
Prompt diagnosis of HPP is important, as the health care provider must evaluate treatment strategies for newborns with HPP as early as possible. If the decision is made to treat, treatment should begin as early as possible postnatally. All decisions must be made in consultation with the parents. It is important to assemble a multidisciplinary team for care in the perinatal period. The team should include the following specialists: neonatologist, pediatrician, geneticist, endocrinologist, radiologist, nephrologist, specialist nurses, genetic counselor, social worker, physical therapist, occupational therapist, respiratory physician (especially if long-term ventilation is needed), and an ears, nose, and throat specialist, neurologist and craniofacial surgeon (if craniosynostosis is present). Neonatologists should be prepared to provide invasive respiratory support, as many babies born with skeletal dysplasias are likely to require ventilation.

Conclusion

Perinatal HPP is associated with a broad spectrum of imaging findings that overlap with other perinatal skeletal dysplasias. Certain features (e.g., sites of angulation and hypomineralization, spurs, metaphyseal characteristics) may help distinguish HPP from other skeletal dysplasias. ALPL gene mutation testing during pregnancy can confirm the diagnosis before delivery. Alkaline phosphatase results are essential for confirming a suspected diagnosis of perinatal HPP. Early recognition of the disease provides more opportunity for education and counseling to prepare the parents, allows for the assembly and preparedness of a multidisciplinary care team upon delivery, and provides additional time to consider and discuss treatment options, with the goal of improving duration and quality of life or minimizing unnecessary suffering for the affected child and the family.

Acknowledgments

Dr. Gen Nishimura of Tokyo Metropolitan Children’s Medical Center, Japan, contributed images that appear in this article.

Compliance with ethical standards

Conflicts of interest

This review was sponsored by Alexion Pharmaceuticals Inc. Writing and editorial support was provided by Lela Creutz, PhD, and Bina J. Patel, PharmD, CMPP, of Peloton Advantage, LLC, and funded by Alexion Pharmaceuticals Inc. Amaka C. Offiah has received consulting fees, travel support and research grant support from Alexion Pharmaceuticals Inc. for participating on advisory boards and to support her research. Jerry Vockley has received consulting fees, travel support and research grant support from Alexion Pharmaceuticals Inc. for consulting and participating on advisory boards. Craig F. Munns has received consulting fees from Alexion Pharmaceuticals, Inc. Jun Murotsuki has received honoraria, travel support and consulting fees from Alexion Pharmaceuticals, Inc.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Pädiatrie

Kombi-Abonnement

Mit e.Med Pädiatrie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Pädiatrie, den Premium-Inhalten der pädiatrischen Fachzeitschriften, inklusive einer gedruckten Pädiatrie-Zeitschrift Ihrer Wahl.

e.Med Radiologie

Kombi-Abonnement

Mit e.Med Radiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Radiologie, den Premium-Inhalten der radiologischen Fachzeitschriften, inklusive einer gedruckten Radiologie-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Weiss MJ, Cole DE, Ray K et al (1988) A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia. Proc Natl Acad Sci U S A 85:7666–7669CrossRefPubMedPubMedCentral Weiss MJ, Cole DE, Ray K et al (1988) A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia. Proc Natl Acad Sci U S A 85:7666–7669CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Whyte MP (2018) Hypophosphatasia and how alkaline phosphatase promotes mineralization. In: Thakker RV, Whyte MP, Eisman J, Igarashi T (eds) Genetics of bone biology and skeletal disease, 2nd edn. Elsevier (Academic Press, London), San Diego, CA, pp 481–504 Whyte MP (2018) Hypophosphatasia and how alkaline phosphatase promotes mineralization. In: Thakker RV, Whyte MP, Eisman J, Igarashi T (eds) Genetics of bone biology and skeletal disease, 2nd edn. Elsevier (Academic Press, London), San Diego, CA, pp 481–504
3.
Zurück zum Zitat Rockman-Greenberg C (2013) Hypophosphatasia. Pediatr Endocrinol Rev 10(Suppl 2):380–388PubMed Rockman-Greenberg C (2013) Hypophosphatasia. Pediatr Endocrinol Rev 10(Suppl 2):380–388PubMed
4.
Zurück zum Zitat Whyte MP, Mahuren JD, Vrabel LA, Coburn SP (1985) Markedly increased circulating pyridoxal-5′-phosphate levels in hypophosphatasia. Alkaline phosphatase acts in vitamin B6 metabolism. J Clin Invest 76:752–756CrossRefPubMedPubMedCentral Whyte MP, Mahuren JD, Vrabel LA, Coburn SP (1985) Markedly increased circulating pyridoxal-5′-phosphate levels in hypophosphatasia. Alkaline phosphatase acts in vitamin B6 metabolism. J Clin Invest 76:752–756CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Russell RG (1965) Excretion of inorganic pyrophosphate in hypophosphatasia. Lancet 2:461–464CrossRefPubMed Russell RG (1965) Excretion of inorganic pyrophosphate in hypophosphatasia. Lancet 2:461–464CrossRefPubMed
6.
Zurück zum Zitat Fleisch H, Russell RG, Straumann F (1966) Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature 212:901–903CrossRefPubMed Fleisch H, Russell RG, Straumann F (1966) Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature 212:901–903CrossRefPubMed
7.
Zurück zum Zitat Millan JL (2013) The role of phosphatases in the initiation of skeletal mineralization. Calcif Tissue Int 93:299–306CrossRefPubMed Millan JL (2013) The role of phosphatases in the initiation of skeletal mineralization. Calcif Tissue Int 93:299–306CrossRefPubMed
8.
10.
Zurück zum Zitat Kozlowski K, Sutcliffe J, Barylak A et al (1976) Hypophosphatasia. Review of 24 cases. Pediatr Radiol 5:103–117CrossRefPubMed Kozlowski K, Sutcliffe J, Barylak A et al (1976) Hypophosphatasia. Review of 24 cases. Pediatr Radiol 5:103–117CrossRefPubMed
11.
Zurück zum Zitat Baumgartner-Sigl S, Haberlandt E, Mumm S et al (2007) Pyridoxine-responsive seizures as the first symptom of infantile hypophosphatasia caused by two novel missense mutations (c.677T>C, p.M226T; c.1112C>T, p.T371I) of the tissue-nonspecific alkaline phosphatase gene. Bone 40:1655–1661CrossRefPubMed Baumgartner-Sigl S, Haberlandt E, Mumm S et al (2007) Pyridoxine-responsive seizures as the first symptom of infantile hypophosphatasia caused by two novel missense mutations (c.677T>C, p.M226T; c.1112C>T, p.T371I) of the tissue-nonspecific alkaline phosphatase gene. Bone 40:1655–1661CrossRefPubMed
12.
Zurück zum Zitat Collmann H, Mornet E, Gattenlohner S et al (2009) Neurosurgical aspects of childhood hypophosphatasia. Childs Nerv Syst 25:217–223CrossRefPubMed Collmann H, Mornet E, Gattenlohner S et al (2009) Neurosurgical aspects of childhood hypophosphatasia. Childs Nerv Syst 25:217–223CrossRefPubMed
13.
Zurück zum Zitat Balasubramaniam S, Bowling F, Carpenter K et al (2010) Perinatal hypophosphatasia presenting as neonatal epileptic encephalopathy with abnormal neurotransmitter metabolism secondary to reduced co-factor pyridoxal-5′-phosphate availability. J Inherit Metab Dis 33(Suppl 3):S25–S33CrossRefPubMed Balasubramaniam S, Bowling F, Carpenter K et al (2010) Perinatal hypophosphatasia presenting as neonatal epileptic encephalopathy with abnormal neurotransmitter metabolism secondary to reduced co-factor pyridoxal-5′-phosphate availability. J Inherit Metab Dis 33(Suppl 3):S25–S33CrossRefPubMed
14.
Zurück zum Zitat Silver MM, Vilos GA, Milne KJ (1988) Pulmonary hypoplasia in neonatal hypophosphatasia. Pediatr Pathol 8:483–493CrossRefPubMed Silver MM, Vilos GA, Milne KJ (1988) Pulmonary hypoplasia in neonatal hypophosphatasia. Pediatr Pathol 8:483–493CrossRefPubMed
15.
Zurück zum Zitat Leung EC, Mhanni AA, Reed M et al (2013) Outcome of perinatal hypophosphatasia in Manitoba Mennonites: a retrospective cohort analysis. JIMD Rep 11:73–78CrossRef Leung EC, Mhanni AA, Reed M et al (2013) Outcome of perinatal hypophosphatasia in Manitoba Mennonites: a retrospective cohort analysis. JIMD Rep 11:73–78CrossRef
16.
Zurück zum Zitat Nakamura-Utsunomiya A, Okada S, Hara K et al (2010) Clinical characteristics of perinatal lethal hypophosphatasia: a report of 6 cases. Clin Pediatr Endocrinol 19:7–13CrossRefPubMedPubMedCentral Nakamura-Utsunomiya A, Okada S, Hara K et al (2010) Clinical characteristics of perinatal lethal hypophosphatasia: a report of 6 cases. Clin Pediatr Endocrinol 19:7–13CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Whyte MP, Rockman-Greenberg C, Ozono K et al (2016) Asfotase alfa treatment improves survival for perinatal and infantile hypophosphatasia. J Clin Endocrinol Metab 101:334–342CrossRefPubMed Whyte MP, Rockman-Greenberg C, Ozono K et al (2016) Asfotase alfa treatment improves survival for perinatal and infantile hypophosphatasia. J Clin Endocrinol Metab 101:334–342CrossRefPubMed
18.
Zurück zum Zitat Mornet E, Yvard A, Taillandier A et al (2011) A molecular-based estimation of the prevalence of hypophosphatasia in the European population. Ann Hum Genet 75:439–445CrossRefPubMed Mornet E, Yvard A, Taillandier A et al (2011) A molecular-based estimation of the prevalence of hypophosphatasia in the European population. Ann Hum Genet 75:439–445CrossRefPubMed
19.
Zurück zum Zitat Greenberg CR, Evans JA, McKendry-Smith S et al (1990) Infantile hypophosphatasia: localization within chromosome region 1p36.1-34 and prenatal diagnosis using linked DNA markers. Am J Hum Genet 46:286–292PubMedPubMedCentral Greenberg CR, Evans JA, McKendry-Smith S et al (1990) Infantile hypophosphatasia: localization within chromosome region 1p36.1-34 and prenatal diagnosis using linked DNA markers. Am J Hum Genet 46:286–292PubMedPubMedCentral
20.
Zurück zum Zitat Mehes K, Klujber L, Lassu G, Kajtar P (1972) Hypophosphatasia: screening and family investigations in an endogamous Hungarian village. Clin Genet 3:60–66CrossRefPubMed Mehes K, Klujber L, Lassu G, Kajtar P (1972) Hypophosphatasia: screening and family investigations in an endogamous Hungarian village. Clin Genet 3:60–66CrossRefPubMed
21.
Zurück zum Zitat Rubecz I, Mehes K, Klujber L et al (1974) Hypophosphatasia: screening and family investigation. Clin Genet 6:155–159CrossRefPubMed Rubecz I, Mehes K, Klujber L et al (1974) Hypophosphatasia: screening and family investigation. Clin Genet 6:155–159CrossRefPubMed
22.
Zurück zum Zitat Hofmann C, Girschick HJ, Mentrup B et al (2013) Clinical aspects of hypophosphatasia: an update. Clin Rev Bone Miner Metab 11:60–70CrossRef Hofmann C, Girschick HJ, Mentrup B et al (2013) Clinical aspects of hypophosphatasia: an update. Clin Rev Bone Miner Metab 11:60–70CrossRef
25.
Zurück zum Zitat Dighe M, Fligner C, Cheng E et al (2008) Fetal skeletal dysplasia: an approach to diagnosis with illustrative cases. Radiographics 28:1061–1077CrossRefPubMed Dighe M, Fligner C, Cheng E et al (2008) Fetal skeletal dysplasia: an approach to diagnosis with illustrative cases. Radiographics 28:1061–1077CrossRefPubMed
26.
Zurück zum Zitat Bonafe L, Cormier-Daire V, Hall C et al (2015) Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A 167A:2869–2892CrossRefPubMed Bonafe L, Cormier-Daire V, Hall C et al (2015) Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A 167A:2869–2892CrossRefPubMed
27.
Zurück zum Zitat Schramm T, Gloning KP, Minderer S et al (2009) Prenatal sonographic diagnosis of skeletal dysplasias. Ultrasound Obstet Gynecol 34:160–170CrossRefPubMed Schramm T, Gloning KP, Minderer S et al (2009) Prenatal sonographic diagnosis of skeletal dysplasias. Ultrasound Obstet Gynecol 34:160–170CrossRefPubMed
28.
Zurück zum Zitat Calder AD, Offiah AC (2015) Foetal radiography for suspected skeletal dysplasia: technique, normal appearances, diagnostic approach. Pediatr Radiol 45:536–548CrossRefPubMed Calder AD, Offiah AC (2015) Foetal radiography for suspected skeletal dysplasia: technique, normal appearances, diagnostic approach. Pediatr Radiol 45:536–548CrossRefPubMed
29.
Zurück zum Zitat Offiah AC (2015) Skeletal dysplasias: an overview. In: Allgrove J, Shaw NJ (eds) Calcium and bone disorders in children and adolescents, Vol. 28, 2nd edn, revised. Karger, Basel, Switzerland, pp 259–276 Offiah AC (2015) Skeletal dysplasias: an overview. In: Allgrove J, Shaw NJ (eds) Calcium and bone disorders in children and adolescents, Vol. 28, 2nd edn, revised. Karger, Basel, Switzerland, pp 259–276
30.
Zurück zum Zitat Salomon LJ, Alfirevic Z, Bilardo CM et al (2013) ISUOG practice guidelines: performance of first-trimester fetal ultrasound scan. Ultrasound Obstet Gynecol 41:102–113CrossRefPubMed Salomon LJ, Alfirevic Z, Bilardo CM et al (2013) ISUOG practice guidelines: performance of first-trimester fetal ultrasound scan. Ultrasound Obstet Gynecol 41:102–113CrossRefPubMed
32.
Zurück zum Zitat Krakow D, Williams J 3rd, Poehl M et al (2003) Use of three-dimensional ultrasound imaging in the diagnosis of prenatal-onset skeletal dysplasias. Ultrasound Obstet Gynecol 21:467–472CrossRefPubMed Krakow D, Williams J 3rd, Poehl M et al (2003) Use of three-dimensional ultrasound imaging in the diagnosis of prenatal-onset skeletal dysplasias. Ultrasound Obstet Gynecol 21:467–472CrossRefPubMed
33.
Zurück zum Zitat Victoria T, Epelman M, Bebbington M et al (2012) Low-dose fetal CT for evaluation of severe congenital skeletal anomalies: preliminary experience. Pediatr Radiol 42(Suppl 1):S142–S149CrossRefPubMed Victoria T, Epelman M, Bebbington M et al (2012) Low-dose fetal CT for evaluation of severe congenital skeletal anomalies: preliminary experience. Pediatr Radiol 42(Suppl 1):S142–S149CrossRefPubMed
34.
Zurück zum Zitat Cassart M (2010) Suspected fetal skeletal malformations or bone diseases: how to explore. Pediatr Radiol 40:1046–1051CrossRefPubMed Cassart M (2010) Suspected fetal skeletal malformations or bone diseases: how to explore. Pediatr Radiol 40:1046–1051CrossRefPubMed
35.
Zurück zum Zitat Guillerman RP (2011) Newer CT applications and their alternatives: what is appropriate in children? Pediatr Radiol 41(Suppl 2):534–548CrossRefPubMed Guillerman RP (2011) Newer CT applications and their alternatives: what is appropriate in children? Pediatr Radiol 41(Suppl 2):534–548CrossRefPubMed
36.
Zurück zum Zitat Miyazaki O, Sawai H, Murotsuki J et al (2014) Nationwide radiation dose survey of computed tomography for fetal skeletal dysplasias. Pediatr Radiol 44:971–979CrossRefPubMed Miyazaki O, Sawai H, Murotsuki J et al (2014) Nationwide radiation dose survey of computed tomography for fetal skeletal dysplasias. Pediatr Radiol 44:971–979CrossRefPubMed
37.
Zurück zum Zitat Victoria T, Epelman M, Coleman BG et al (2013) Low-dose fetal CT in the prenatal evaluation of skeletal dysplasias and other severe skeletal abnormalities. AJR Am J Roentgenol 200:989–1000CrossRefPubMed Victoria T, Epelman M, Coleman BG et al (2013) Low-dose fetal CT in the prenatal evaluation of skeletal dysplasias and other severe skeletal abnormalities. AJR Am J Roentgenol 200:989–1000CrossRefPubMed
38.
Zurück zum Zitat Hall CM, Offiah A, Forzano F et al (2012) Diagnosis of fetal skeletal dysplasias. In: Fetal and perinatal skeletal dysplasias: an atlas of multimodality imaging. Radcliffe Publishing, London Hall CM, Offiah A, Forzano F et al (2012) Diagnosis of fetal skeletal dysplasias. In: Fetal and perinatal skeletal dysplasias: an atlas of multimodality imaging. Radcliffe Publishing, London
39.
Zurück zum Zitat Sadro CT, Dubinsky TJ (2013) CT in pregnancy: risks and benefits. Appl Radiol 42:6–16 Sadro CT, Dubinsky TJ (2013) CT in pregnancy: risks and benefits. Appl Radiol 42:6–16
40.
Zurück zum Zitat Imai R, Miyazaki O, Horiuchi T et al (2017) Ultra-low-dose fetal CT with model-based iterative reconstruction: a prospective pilot study. AJR Am J Roentgenol 208:1365–1372CrossRefPubMed Imai R, Miyazaki O, Horiuchi T et al (2017) Ultra-low-dose fetal CT with model-based iterative reconstruction: a prospective pilot study. AJR Am J Roentgenol 208:1365–1372CrossRefPubMed
41.
Zurück zum Zitat Noel AE, Brown RN (2014) Advances in evaluating the fetal skeleton. Intl J Womens Health 6:489–500 Noel AE, Brown RN (2014) Advances in evaluating the fetal skeleton. Intl J Womens Health 6:489–500
42.
Zurück zum Zitat Berceanu C, Gheonea IA, Vladareanu S et al (2017) Ultrasound and MRI comprehensive approach in prenatal diagnosis of fetal osteochondrodysplasias. Cases series. Med Ultrason 19:66–72CrossRefPubMed Berceanu C, Gheonea IA, Vladareanu S et al (2017) Ultrasound and MRI comprehensive approach in prenatal diagnosis of fetal osteochondrodysplasias. Cases series. Med Ultrason 19:66–72CrossRefPubMed
44.
45.
Zurück zum Zitat Offiah AC, Hall CM (2003) Radiological diagnosis of the constitutional disorders of bone. As easy as A, B, C? Pediatr Radiol 33:153–161 Offiah AC, Hall CM (2003) Radiological diagnosis of the constitutional disorders of bone. As easy as A, B, C? Pediatr Radiol 33:153–161
46.
Zurück zum Zitat Beck C, Morbach H, Wirth C et al (2011) Whole-body MRI in the childhood form of hypophosphatasia. Rheumatol Int 31:1315–1320CrossRefPubMed Beck C, Morbach H, Wirth C et al (2011) Whole-body MRI in the childhood form of hypophosphatasia. Rheumatol Int 31:1315–1320CrossRefPubMed
47.
Zurück zum Zitat Kritsaneepaiboon S, Jaruratanasirikul S, Dissaneevate S (2006) Clinics in diagnostic imaging (112). Perinatal lethal hypophosphatasia (PLH). Singap Med J 47:987–992 Kritsaneepaiboon S, Jaruratanasirikul S, Dissaneevate S (2006) Clinics in diagnostic imaging (112). Perinatal lethal hypophosphatasia (PLH). Singap Med J 47:987–992
48.
Zurück zum Zitat Matsushita M, Kitoh H, Michigami T et al (2014) Benign prenatal hypophosphatasia: a treatable disease not to be missed. Pediatr Radiol 44:340–343CrossRefPubMed Matsushita M, Kitoh H, Michigami T et al (2014) Benign prenatal hypophosphatasia: a treatable disease not to be missed. Pediatr Radiol 44:340–343CrossRefPubMed
49.
Zurück zum Zitat Comstock C, Bronsteen R, Lee W, Vettraino I (2005) Mild hypophosphatasia in utero: bent bones in a family with dental disease. J Ultrasound Med 24:707–709CrossRefPubMed Comstock C, Bronsteen R, Lee W, Vettraino I (2005) Mild hypophosphatasia in utero: bent bones in a family with dental disease. J Ultrasound Med 24:707–709CrossRefPubMed
50.
Zurück zum Zitat Pauli RM, Modaff P, Sipes SL, Whyte MP (1999) Mild hypophosphatasia mimicking severe osteogenesis imperfecta in utero: bent but not broken. Am J Med Genet 86:434–438CrossRefPubMed Pauli RM, Modaff P, Sipes SL, Whyte MP (1999) Mild hypophosphatasia mimicking severe osteogenesis imperfecta in utero: bent but not broken. Am J Med Genet 86:434–438CrossRefPubMed
51.
Zurück zum Zitat Gortzak-Uzan L, Sheiner E, Gohar J (2000) Prenatal diagnosis of congenital hypophosphatasia in a consanguineous Bedouin couple. A case report. J Reprod Med 45:588–590 Gortzak-Uzan L, Sheiner E, Gohar J (2000) Prenatal diagnosis of congenital hypophosphatasia in a consanguineous Bedouin couple. A case report. J Reprod Med 45:588–590
52.
Zurück zum Zitat Moore CA, Curry CJ, Henthorn PS et al (1999) Mild autosomal dominant hypophosphatasia: in utero presentation in two families. Am J Med Genet 86:410–415CrossRefPubMed Moore CA, Curry CJ, Henthorn PS et al (1999) Mild autosomal dominant hypophosphatasia: in utero presentation in two families. Am J Med Genet 86:410–415CrossRefPubMed
53.
Zurück zum Zitat Souka AP, Raymond FL, Mornet E et al (2002) Hypophosphatasia associated with increased nuchal translucency: a report of two affected pregnancies. Ultrasound Obstet Gynecol 20:294–295CrossRefPubMed Souka AP, Raymond FL, Mornet E et al (2002) Hypophosphatasia associated with increased nuchal translucency: a report of two affected pregnancies. Ultrasound Obstet Gynecol 20:294–295CrossRefPubMed
54.
Zurück zum Zitat Tongsong T, Pongsatha S (2000) Early prenatal sonographic diagnosis of congenital hypophosphatasia. Ultrasound Obstet Gynecol 15:252–255CrossRefPubMed Tongsong T, Pongsatha S (2000) Early prenatal sonographic diagnosis of congenital hypophosphatasia. Ultrasound Obstet Gynecol 15:252–255CrossRefPubMed
55.
Zurück zum Zitat Sergi C, Mornet E, Troeger J, Voigtlaender T (2001) Perinatal hypophosphatasia: radiology, pathology and molecular biology studies in a family harboring a splicing mutation (648+1A) and a novel missense mutation (N400S) in the tissue-nonspecific alkaline phosphatase (TNSALP) gene. Am J Med Genet 103:235–240CrossRefPubMed Sergi C, Mornet E, Troeger J, Voigtlaender T (2001) Perinatal hypophosphatasia: radiology, pathology and molecular biology studies in a family harboring a splicing mutation (648+1A) and a novel missense mutation (N400S) in the tissue-nonspecific alkaline phosphatase (TNSALP) gene. Am J Med Genet 103:235–240CrossRefPubMed
56.
Zurück zum Zitat Zankl A, Mornet E, Wong S (2008) Specific ultrasonographic features of perinatal lethal hypophosphatasia. Am J Med Genet A 146A:1200–1204CrossRefPubMed Zankl A, Mornet E, Wong S (2008) Specific ultrasonographic features of perinatal lethal hypophosphatasia. Am J Med Genet A 146A:1200–1204CrossRefPubMed
57.
Zurück zum Zitat Guguloth A, Aswani Y, Anandpara KM (2016) Prenatal diagnosis of hypophosphatasia congenita using ultrasonography. Ultrasonography 35:83–86CrossRefPubMed Guguloth A, Aswani Y, Anandpara KM (2016) Prenatal diagnosis of hypophosphatasia congenita using ultrasonography. Ultrasonography 35:83–86CrossRefPubMed
58.
Zurück zum Zitat Shohat M, Rimoin DL, Gruber HE, Lachman RS (1991) Perinatal lethal hypophosphatasia; clinical, radiologic and morphologic findings. Pediatr Radiol 21:421–427CrossRefPubMed Shohat M, Rimoin DL, Gruber HE, Lachman RS (1991) Perinatal lethal hypophosphatasia; clinical, radiologic and morphologic findings. Pediatr Radiol 21:421–427CrossRefPubMed
59.
Zurück zum Zitat Arundel P, Offiah A, Bishop NJ (2011) Evolution of the radiographic appearance of the metaphyses over the first year of life in type V osteogenesis imperfecta: clues to pathogenesis. J Bone Miner Res 26:894–898CrossRefPubMed Arundel P, Offiah A, Bishop NJ (2011) Evolution of the radiographic appearance of the metaphyses over the first year of life in type V osteogenesis imperfecta: clues to pathogenesis. J Bone Miner Res 26:894–898CrossRefPubMed
60.
Zurück zum Zitat Calder AD (2015) Radiology of osteogenesis imperfecta, rickets and other bony fragility states. Endocr Dev 28:56–71CrossRefPubMed Calder AD (2015) Radiology of osteogenesis imperfecta, rickets and other bony fragility states. Endocr Dev 28:56–71CrossRefPubMed
61.
Zurück zum Zitat Wiebe S, Suchet I, Lemire EG (2007) Radiographic and prenatal ultrasound features of perinatal lethal hypophosphatasia - differentiation from osteogenesis imperfecta type II. S Afr J Radiol 11:32–35 Wiebe S, Suchet I, Lemire EG (2007) Radiographic and prenatal ultrasound features of perinatal lethal hypophosphatasia - differentiation from osteogenesis imperfecta type II. S Afr J Radiol 11:32–35
62.
Zurück zum Zitat Oestreich AE, Bofinger MK (1989) Prominent transverse (Bowdler) bone spurs as a diagnostic clue in a case of neonatal hypophosphatasia without metaphyseal irregularity. Pediatr Radiol 19:341–342CrossRefPubMed Oestreich AE, Bofinger MK (1989) Prominent transverse (Bowdler) bone spurs as a diagnostic clue in a case of neonatal hypophosphatasia without metaphyseal irregularity. Pediatr Radiol 19:341–342CrossRefPubMed
63.
Zurück zum Zitat Sinico M, Levaillant JM, Vergnaud A et al (2007) Specific osseous spurs in a lethal form of hypophosphatasia correlated with 3D prenatal ultrasonographic images. Prenat Diagn 27:222–227CrossRefPubMed Sinico M, Levaillant JM, Vergnaud A et al (2007) Specific osseous spurs in a lethal form of hypophosphatasia correlated with 3D prenatal ultrasonographic images. Prenat Diagn 27:222–227CrossRefPubMed
64.
Zurück zum Zitat Unger S, Mornet E, Mundlos S et al (2002) Severe cleidocranial dysplasia can mimic hypophosphatasia. Eur J Pediatr 161:623–626CrossRefPubMed Unger S, Mornet E, Mundlos S et al (2002) Severe cleidocranial dysplasia can mimic hypophosphatasia. Eur J Pediatr 161:623–626CrossRefPubMed
65.
66.
Zurück zum Zitat Wenkert D, McAlister WH, Coburn SP et al (2011) Hypophosphatasia: nonlethal disease despite skeletal presentation in utero (17 new cases and literature review). J Bone Miner Res 26:2389–2398CrossRefPubMed Wenkert D, McAlister WH, Coburn SP et al (2011) Hypophosphatasia: nonlethal disease despite skeletal presentation in utero (17 new cases and literature review). J Bone Miner Res 26:2389–2398CrossRefPubMed
67.
Zurück zum Zitat Milks KS, Hill LM, Hosseinzadeh K (2016) Evaluating skeletal dysplasias on prenatal ultrasound: an emphasis on predicting lethality. Pediatr Radiol 47:134–145CrossRefPubMed Milks KS, Hill LM, Hosseinzadeh K (2016) Evaluating skeletal dysplasias on prenatal ultrasound: an emphasis on predicting lethality. Pediatr Radiol 47:134–145CrossRefPubMed
68.
Zurück zum Zitat Barros CA, Rezende Gde C, Araujo Junior E et al (2016) Prediction of lethal pulmonary hypoplasia by means fetal lung volume in skeletal dysplasias: a three-dimensional ultrasound assessment. J Matern Fetal Neonatal Med 29:1725–1730 Barros CA, Rezende Gde C, Araujo Junior E et al (2016) Prediction of lethal pulmonary hypoplasia by means fetal lung volume in skeletal dysplasias: a three-dimensional ultrasound assessment. J Matern Fetal Neonatal Med 29:1725–1730
69.
Zurück zum Zitat Backstrom MC, Kuusela AL, Maki R (1996) Metabolic bone disease of prematurity. Ann Med 28:275–282CrossRefPubMed Backstrom MC, Kuusela AL, Maki R (1996) Metabolic bone disease of prematurity. Ann Med 28:275–282CrossRefPubMed
70.
Zurück zum Zitat Samson GR (2005) Skeletal dysplasias with osteopenia in the newborn: the value of alkaline phosphatase. J Matern Fetal Neonatal Med 17:229–231CrossRefPubMed Samson GR (2005) Skeletal dysplasias with osteopenia in the newborn: the value of alkaline phosphatase. J Matern Fetal Neonatal Med 17:229–231CrossRefPubMed
71.
Zurück zum Zitat Krakow D, Alanay Y, Rimoin LP et al (2008) Evaluation of prenatal-onset osteochondrodysplasias by ultrasonography: a retrospective and prospective analysis. Am J Med Genet A 146A:1917–1924CrossRefPubMedPubMedCentral Krakow D, Alanay Y, Rimoin LP et al (2008) Evaluation of prenatal-onset osteochondrodysplasias by ultrasonography: a retrospective and prospective analysis. Am J Med Genet A 146A:1917–1924CrossRefPubMedPubMedCentral
72.
Zurück zum Zitat Bulas DI, Stern HJ, Rosenbaum KN et al (1994) Variable prenatal appearance of osteogenesis imperfecta. J Ultrasound Med 13:419–427CrossRefPubMed Bulas DI, Stern HJ, Rosenbaum KN et al (1994) Variable prenatal appearance of osteogenesis imperfecta. J Ultrasound Med 13:419–427CrossRefPubMed
73.
Zurück zum Zitat Wu Q, Wang W, Cao L et al (2015) Diagnosis of fetal osteogenesis imperfecta by multidisciplinary assessment: a retrospective study of 10 cases. Fetal Pediatr Pathol 34:57–64CrossRefPubMed Wu Q, Wang W, Cao L et al (2015) Diagnosis of fetal osteogenesis imperfecta by multidisciplinary assessment: a retrospective study of 10 cases. Fetal Pediatr Pathol 34:57–64CrossRefPubMed
75.
Zurück zum Zitat Mornet E, Nunes ME (2016) Hypophosphatasia. In: Pagon RA, Adam MP, Ardinger HH et al (eds) GeneReviews. University of Washington, Seattle Mornet E, Nunes ME (2016) Hypophosphatasia. In: Pagon RA, Adam MP, Ardinger HH et al (eds) GeneReviews. University of Washington, Seattle
76.
Zurück zum Zitat Cordone M, Lituania M, Zampatti C et al (1989) In utero ultrasonographic features of campomelic dysplasia. Prenat Diagn 9:745–750CrossRefPubMed Cordone M, Lituania M, Zampatti C et al (1989) In utero ultrasonographic features of campomelic dysplasia. Prenat Diagn 9:745–750CrossRefPubMed
79.
Zurück zum Zitat Kim OH, Jin DK, Kosaki K et al (2013) Osteogenesis imperfecta type V: clinical and radiographic manifestations in mutation confirmed patients. Am J Med Genet A 161A:1972–1979CrossRefPubMed Kim OH, Jin DK, Kosaki K et al (2013) Osteogenesis imperfecta type V: clinical and radiographic manifestations in mutation confirmed patients. Am J Med Genet A 161A:1972–1979CrossRefPubMed
80.
Zurück zum Zitat Stewart PA, Wallerstein R, Moran E, Lee MJ (2000) Early prenatal ultrasound diagnosis of cleidocranial dysplasia. Ultrasound Obstet Gynecol 15:154–156CrossRefPubMed Stewart PA, Wallerstein R, Moran E, Lee MJ (2000) Early prenatal ultrasound diagnosis of cleidocranial dysplasia. Ultrasound Obstet Gynecol 15:154–156CrossRefPubMed
81.
Zurück zum Zitat Hove HD, Hermann NV, Jorgensen C et al (2008) An echo-poor spine at 13 weeks: an early sign of cleidocranial dysplasia. Fetal Diagn Ther 24:103–105CrossRefPubMed Hove HD, Hermann NV, Jorgensen C et al (2008) An echo-poor spine at 13 weeks: an early sign of cleidocranial dysplasia. Fetal Diagn Ther 24:103–105CrossRefPubMed
82.
Zurück zum Zitat Hermann NV, Hove HD, Jorgensen C et al (2009) Prenatal 3D ultrasound diagnostics in cleidocranial dysplasia. Fetal Diagn Ther 25:36–39CrossRefPubMed Hermann NV, Hove HD, Jorgensen C et al (2009) Prenatal 3D ultrasound diagnostics in cleidocranial dysplasia. Fetal Diagn Ther 25:36–39CrossRefPubMed
83.
Zurück zum Zitat Morava E, Karteszi J, Weisenbach J et al (2002) Cleidocranial dysplasia with decreased bone density and biochemical findings of hypophosphatasia. Eur J Pediatr 161:619–622CrossRefPubMed Morava E, Karteszi J, Weisenbach J et al (2002) Cleidocranial dysplasia with decreased bone density and biochemical findings of hypophosphatasia. Eur J Pediatr 161:619–622CrossRefPubMed
84.
Zurück zum Zitat El-Gharbawy AH, Peeden JN Jr, Lachman RS et al (2010) Severe cleidocranial dysplasia and hypophosphatasia in a child with microdeletion of the C-terminal region of RUNX2. Am J Med Genet A 152A:169–174CrossRefPubMedPubMedCentral El-Gharbawy AH, Peeden JN Jr, Lachman RS et al (2010) Severe cleidocranial dysplasia and hypophosphatasia in a child with microdeletion of the C-terminal region of RUNX2. Am J Med Genet A 152A:169–174CrossRefPubMedPubMedCentral
85.
Zurück zum Zitat Benacerraf BR, Lister JE, DuPonte BL (1988) First-trimester diagnosis of fetal abnormalities. A report of three cases. J Reprod Med 33:777–780 Benacerraf BR, Lister JE, DuPonte BL (1988) First-trimester diagnosis of fetal abnormalities. A report of three cases. J Reprod Med 33:777–780
86.
Zurück zum Zitat Suzumori N, Mornet E, Mizutani E et al (2011) Prenatal diagnosis of familial lethal hypophosphatasia using imaging, blood enzyme levels, chorionic villus sampling and archived fetal tissue. J Obstet Gynaecol Res 37:1470–1473CrossRefPubMed Suzumori N, Mornet E, Mizutani E et al (2011) Prenatal diagnosis of familial lethal hypophosphatasia using imaging, blood enzyme levels, chorionic villus sampling and archived fetal tissue. J Obstet Gynaecol Res 37:1470–1473CrossRefPubMed
87.
Zurück zum Zitat Takahashi Y, Sawai H, Murotsuki J et al (2017) Parental serum alkaline phosphatase activity as an auxiliary tool for prenatal diagnosis of hypophosphatasia. Prenat Diagn 37:491–496CrossRefPubMed Takahashi Y, Sawai H, Murotsuki J et al (2017) Parental serum alkaline phosphatase activity as an auxiliary tool for prenatal diagnosis of hypophosphatasia. Prenat Diagn 37:491–496CrossRefPubMed
88.
Zurück zum Zitat Brock DJ, Barron L (1991) First-trimester prenatal diagnosis of hypophosphatasia: experience with 16 cases. Prenat Diagn 11:387–391CrossRefPubMed Brock DJ, Barron L (1991) First-trimester prenatal diagnosis of hypophosphatasia: experience with 16 cases. Prenat Diagn 11:387–391CrossRefPubMed
89.
Zurück zum Zitat Mornet E, Muller F, Ngo S et al (1999) Correlation of alkaline phosphatase (ALP) determination and analysis of the tissue non-specific ALP gene in prenatal diagnosis of severe hypophosphatasia. Prenat Diagn 19:755–757CrossRefPubMed Mornet E, Muller F, Ngo S et al (1999) Correlation of alkaline phosphatase (ALP) determination and analysis of the tissue non-specific ALP gene in prenatal diagnosis of severe hypophosphatasia. Prenat Diagn 19:755–757CrossRefPubMed
90.
Zurück zum Zitat Muller F, Oury JF, Bussiere P et al (1991) First-trimester diagnosis of hypophosphatasia. Importance of gestational age and purity of CV samples. Prenat Diagn 11:725–730CrossRefPubMed Muller F, Oury JF, Bussiere P et al (1991) First-trimester diagnosis of hypophosphatasia. Importance of gestational age and purity of CV samples. Prenat Diagn 11:725–730CrossRefPubMed
91.
Zurück zum Zitat Taillandier A, Domingues C, De Cazanove C et al (2015) Molecular diagnosis of hypophosphatasia and differential diagnosis by targeted Next Generation Sequencing. Mol Genet Metab 116:215–220CrossRefPubMedPubMedCentral Taillandier A, Domingues C, De Cazanove C et al (2015) Molecular diagnosis of hypophosphatasia and differential diagnosis by targeted Next Generation Sequencing. Mol Genet Metab 116:215–220CrossRefPubMedPubMedCentral
92.
Zurück zum Zitat Kishnani PS, Rush ET, Arundel P et al (2017) Monitoring guidance for patients with hypophosphatasia treated with asfotase alfa. Mol Genet Metab 122:4–17CrossRefPubMed Kishnani PS, Rush ET, Arundel P et al (2017) Monitoring guidance for patients with hypophosphatasia treated with asfotase alfa. Mol Genet Metab 122:4–17CrossRefPubMed
94.
Zurück zum Zitat Simon-Bouy B, Taillandier A, Fauvert D et al (2008) Hypophosphatasia: molecular testing of 19 prenatal cases and discussion about genetic counseling. Prenat Diagn 28:993–998CrossRefPubMed Simon-Bouy B, Taillandier A, Fauvert D et al (2008) Hypophosphatasia: molecular testing of 19 prenatal cases and discussion about genetic counseling. Prenat Diagn 28:993–998CrossRefPubMed
Metadaten
Titel
Differential diagnosis of perinatal hypophosphatasia: radiologic perspectives
verfasst von
Amaka C. Offiah
Jerry Vockley
Craig F. Munns
Jun Murotsuki
Publikationsdatum
03.10.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Radiology / Ausgabe 1/2019
Print ISSN: 0301-0449
Elektronische ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-018-4239-0

Weitere Artikel der Ausgabe 1/2019

Pediatric Radiology 1/2019 Zur Ausgabe

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärzte und Psychotherapeuten.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.