Skip to main content
Erschienen in: Brain Structure and Function 9/2017

22.06.2017 | Original Article

Differential role of GABAA receptors and neuroligin 2 for perisomatic GABAergic synapse formation in the hippocampus

verfasst von: Patrizia Panzanelli, Simon Früh, Jean-Marc Fritschy

Erschienen in: Brain Structure and Function | Ausgabe 9/2017

Einloggen, um Zugang zu erhalten

Abstract

Perisomatic GABAergic synapses onto hippocampal pyramidal cells arise from two populations of basket cells with different neurochemical and functional properties. The presence of the dystrophin–glycoprotein complex in their postsynaptic density (PSD) distinguishes perisomatic synapses from GABAergic synapses on dendrites and the axon-initial segment. Targeted deletion of neuroligin 2 (NL2), a transmembrane protein interacting with presynaptic neurexin, has been reported to disrupt postsynaptic clustering of GABAA receptors (GABAAR) and their anchoring protein, gephyrin, at perisomatic synapses. In contrast, targeted deletion of Gabra2 disrupts perisomatic clustering of gephyrin, but not of α1-GABAAR, NL2, or dystrophin/dystroglycan. Unexpectedly, conditional deletion of Dag1, encoding dystroglycan, selectively prevents the formation of perisomatic GABAergic synapses from basket cells expressing cholecystokinin. Collectively, these observations suggest that multiple mechanisms regulate formation and molecular composition of the GABAergic PSD at perisomatic synapses. Here, we further explored this issue by investigating the effect of targeted deletion of Gabra1 and NL2 on the dystrophin–glycoprotein complex and on perisomatic synapse formation, using immunofluorescence analysis with a battery of GABAergic pre- and postsynaptic markers. We show that the absence of α1-GABAAR increases GABAergic synapses containing the α2 subunit, without affecting the clustering of dystrophin and NL2; in contrast, the absence of NL2 produces highly variable effects postsynaptically, not restricted to perisomatic synapses and being more severe for the GABAAR subunits and gephyrin than dystrophin. Altogether, the results confirm the importance of NL2 as organizer of the GABAergic PSD and unravel distinct roles for α1- and α2-GABAARs in the formation of GABAergic circuits in close interaction with the dystrophin–glycoprotein complex.
Literatur
Zurück zum Zitat Baudouin S (2014) Heterogeneity and convergence: the synaptic pathophysiology of autism. Eur J Neurosci 39:1107–1113CrossRefPubMed Baudouin S (2014) Heterogeneity and convergence: the synaptic pathophysiology of autism. Eur J Neurosci 39:1107–1113CrossRefPubMed
Zurück zum Zitat Benke D, Mertens S, Trzeciak A, Gillessen D, Mohler H (1991) GABAA receptors display association of gamma2-subunit with alpha1- and beta2/3 subunits. J Biol Chem 266:4478–4483PubMed Benke D, Mertens S, Trzeciak A, Gillessen D, Mohler H (1991) GABAA receptors display association of gamma2-subunit with alpha1- and beta2/3 subunits. J Biol Chem 266:4478–4483PubMed
Zurück zum Zitat Benke D, Honer M, Michel C, Mohler H (1996) GABAA receptor subtypes differentiated by their gamma-subunit variants: prevalence, pharmacology and subunit architercture. Neuropharmacol 35:1413–1422CrossRef Benke D, Honer M, Michel C, Mohler H (1996) GABAA receptor subtypes differentiated by their gamma-subunit variants: prevalence, pharmacology and subunit architercture. Neuropharmacol 35:1413–1422CrossRef
Zurück zum Zitat Brown L, Nicholson M, Arama J, Mercer A, Thomson A, Jovanovic J (2016) γ-Aminobutyric acid type A (GABAA) receptor subunits play a direct structural role in synaptic contact formation via their N-terminal extracellular domains. J Biol Chem 291:13926–13942CrossRefPubMedPubMedCentral Brown L, Nicholson M, Arama J, Mercer A, Thomson A, Jovanovic J (2016) γ-Aminobutyric acid type A (GABAA) receptor subunits play a direct structural role in synaptic contact formation via their N-terminal extracellular domains. J Biol Chem 291:13926–13942CrossRefPubMedPubMedCentral
Zurück zum Zitat Brünig I, Suter A, Knuesel I, Luscher B, Fritschy JM (2002) GABAergic presynaptic terminals are required for postsynaptic clustering of dystrophin, but not of GABAA receptors and gephyrin. J Neurosci 22:4805–4813PubMed Brünig I, Suter A, Knuesel I, Luscher B, Fritschy JM (2002) GABAergic presynaptic terminals are required for postsynaptic clustering of dystrophin, but not of GABAA receptors and gephyrin. J Neurosci 22:4805–4813PubMed
Zurück zum Zitat Budreck EC, Scheiffele P (2007) Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses. Eur J Neurosci 26:1738–1748CrossRefPubMed Budreck EC, Scheiffele P (2007) Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses. Eur J Neurosci 26:1738–1748CrossRefPubMed
Zurück zum Zitat Celio MR (1990) Calbindin D-28 k and parvalbumin in the rat nervous system. Neuroscience 35:375–475CrossRefPubMed Celio MR (1990) Calbindin D-28 k and parvalbumin in the rat nervous system. Neuroscience 35:375–475CrossRefPubMed
Zurück zum Zitat Dumoulin A, Rostaing P, Bedet C, Levi S, Isambert MF, Henry JP, Triller A, Gasnier B (1999) Presence of the vesicular inhibitory amino acid transporter in GABAergic and glycinergic synaptic terminal boutons. J Cell Sci 112:811–823PubMed Dumoulin A, Rostaing P, Bedet C, Levi S, Isambert MF, Henry JP, Triller A, Gasnier B (1999) Presence of the vesicular inhibitory amino acid transporter in GABAergic and glycinergic synaptic terminal boutons. J Cell Sci 112:811–823PubMed
Zurück zum Zitat Fremeau RT, Burman J, Qureshi T, Tran CH, Proctor J, Johnson JA, Zhang H, Sulzer D, Copenhagen DR, Storm-Mathisen J, Reimer RJ, Chaudhry FA, Edwards RH (2002) The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc Natl Acad Sci USA 99(22):14488–14493CrossRefPubMedPubMedCentral Fremeau RT, Burman J, Qureshi T, Tran CH, Proctor J, Johnson JA, Zhang H, Sulzer D, Copenhagen DR, Storm-Mathisen J, Reimer RJ, Chaudhry FA, Edwards RH (2002) The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc Natl Acad Sci USA 99(22):14488–14493CrossRefPubMedPubMedCentral
Zurück zum Zitat Fritschy JM, Mohler H (1995) GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol 359:154–194CrossRefPubMed Fritschy JM, Mohler H (1995) GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol 359:154–194CrossRefPubMed
Zurück zum Zitat Fritschy JM, Panzanelli P, Tyagarajan SK (2012) Molecular and functional heterogeneity of GABAergic synapses. Cell Mol Life Sci 69:2485–2499CrossRefPubMed Fritschy JM, Panzanelli P, Tyagarajan SK (2012) Molecular and functional heterogeneity of GABAergic synapses. Cell Mol Life Sci 69:2485–2499CrossRefPubMed
Zurück zum Zitat Früh S, Romanos J, Panzanelli P, Bürgisser D, Tyagarajan S, Campbell K, Santello M, Fritschy J (2016) Neuronal dystroglycan is necessary for formation and maintenance of functional CCK-positive basket cell terminals on pyramidal cells. J Neurosci 36:10296–10313CrossRefPubMed Früh S, Romanos J, Panzanelli P, Bürgisser D, Tyagarajan S, Campbell K, Santello M, Fritschy J (2016) Neuronal dystroglycan is necessary for formation and maintenance of functional CCK-positive basket cell terminals on pyramidal cells. J Neurosci 36:10296–10313CrossRefPubMed
Zurück zum Zitat Fukaya M, Kamata A, Hara Y, Tamaki H, Katsumata O, Ito N, Takeda S, Hata Y, Suzuki T, Watanabe M, Harvey RJ, Sakagami H (2011) SynArfGEF is a guanine nucleotide exchange factor for Arf6 and localizes preferentially at post-synaptic specializations of inhibitory synapses. J Neurochem 116:1122–1137CrossRefPubMed Fukaya M, Kamata A, Hara Y, Tamaki H, Katsumata O, Ito N, Takeda S, Hata Y, Suzuki T, Watanabe M, Harvey RJ, Sakagami H (2011) SynArfGEF is a guanine nucleotide exchange factor for Arf6 and localizes preferentially at post-synaptic specializations of inhibitory synapses. J Neurochem 116:1122–1137CrossRefPubMed
Zurück zum Zitat Gunther U, Benson J, Benke D, Fritschy JM, Reyes GH, Knoflach F, Crestani F, Aguzzi A, Arigoni M, Lang Y, Bluethmann H, Mohler H, Luscher B (1995) Benzodiazepine-insensitive mice generated by targeted disruption of the g2-subunit gene of g-aminobutyric acid type A receptors. Proc Natl Acad Sci USA 92:7749–7753CrossRefPubMedPubMedCentral Gunther U, Benson J, Benke D, Fritschy JM, Reyes GH, Knoflach F, Crestani F, Aguzzi A, Arigoni M, Lang Y, Bluethmann H, Mohler H, Luscher B (1995) Benzodiazepine-insensitive mice generated by targeted disruption of the g2-subunit gene of g-aminobutyric acid type A receptors. Proc Natl Acad Sci USA 92:7749–7753CrossRefPubMedPubMedCentral
Zurück zum Zitat Hoon M, Soykan T, Falkenburger BH, Hammer M, Patrizi A, Schmidt KF, Sassoè-Pognetto M, Löwel S, Moser T, Taschenberger H, Brose N, Varoqueaux F (2011) Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina. Proc Natl Acad Sci USA 108:3053–3058CrossRefPubMedPubMedCentral Hoon M, Soykan T, Falkenburger BH, Hammer M, Patrizi A, Schmidt KF, Sassoè-Pognetto M, Löwel S, Moser T, Taschenberger H, Brose N, Varoqueaux F (2011) Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina. Proc Natl Acad Sci USA 108:3053–3058CrossRefPubMedPubMedCentral
Zurück zum Zitat Kasugai Y, Swinny JD, Roberts JD, Dalezios Y, Fukazawa Y, Sieghart W, Shigemoto R, Somogyi P (2010) Quantitative localisation of synaptic and extrasynaptic GABAA receptor subunits on hippocampal pyramidal cells by freeze-fracture replica immunolabelling. Eur J Neurosci 32(11):1868–1888CrossRefPubMedPubMedCentral Kasugai Y, Swinny JD, Roberts JD, Dalezios Y, Fukazawa Y, Sieghart W, Shigemoto R, Somogyi P (2010) Quantitative localisation of synaptic and extrasynaptic GABAA receptor subunits on hippocampal pyramidal cells by freeze-fracture replica immunolabelling. Eur J Neurosci 32(11):1868–1888CrossRefPubMedPubMedCentral
Zurück zum Zitat Kerti-Szigeti K, Nusser Z (2016) Similar GABAA receptor subunit composition in somatic and axon initial segment synapses of hippocampal pyramidal cells. Elife 5:e18426CrossRefPubMedPubMedCentral Kerti-Szigeti K, Nusser Z (2016) Similar GABAA receptor subunit composition in somatic and axon initial segment synapses of hippocampal pyramidal cells. Elife 5:e18426CrossRefPubMedPubMedCentral
Zurück zum Zitat Klausberger T, Marton L, O’Neill J, Huck J, Dalezios Y, Fuentealba P, Suen WY, Papp E, Kaneko T, Watanabe M, Csicsvari J, Somogyi P (2005) Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations. J Neurosci 25:9782–9793CrossRefPubMed Klausberger T, Marton L, O’Neill J, Huck J, Dalezios Y, Fuentealba P, Suen WY, Papp E, Kaneko T, Watanabe M, Csicsvari J, Somogyi P (2005) Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations. J Neurosci 25:9782–9793CrossRefPubMed
Zurück zum Zitat Knuesel I, Mastrocola M, Zuellig RA, Bornhauser B, Schaub MC, Fritschy JM (1999) Altered synaptic clustering of GABAA-receptors in mice lacking dystrophin (mdx mice). Eur J Neurosci 11:4457–4462CrossRefPubMed Knuesel I, Mastrocola M, Zuellig RA, Bornhauser B, Schaub MC, Fritschy JM (1999) Altered synaptic clustering of GABAA-receptors in mice lacking dystrophin (mdx mice). Eur J Neurosci 11:4457–4462CrossRefPubMed
Zurück zum Zitat Knuesel I, Züllig RA, Bornhauser B, Schaub MC, Fritschy JM (2000) Differential expression of utrophin and dystrophin in CNS neurons: an in situ hybridization and immunohistochemical study. J Comp Neurol 422:594–611CrossRefPubMed Knuesel I, Züllig RA, Bornhauser B, Schaub MC, Fritschy JM (2000) Differential expression of utrophin and dystrophin in CNS neurons: an in situ hybridization and immunohistochemical study. J Comp Neurol 422:594–611CrossRefPubMed
Zurück zum Zitat Kralic JE, Korpi ER, O’Buckley TK, Homanics GE, Morrow A (2002) Molecular and pharmacological characterization of GABAA receptor a1 subunit knockout mice. J Pharmacol Exp Ther 302(3):1037–1045CrossRefPubMed Kralic JE, Korpi ER, O’Buckley TK, Homanics GE, Morrow A (2002) Molecular and pharmacological characterization of GABAA receptor a1 subunit knockout mice. J Pharmacol Exp Ther 302(3):1037–1045CrossRefPubMed
Zurück zum Zitat Kralic JE, Sidler C, Parpan F, Homanics G, Morrow AL, Fritschy JM (2006) Compensatory alteration of inhibitory synaptic circuits in thalamus and cerebellum of GABAA receptor a1 subunit knockout mice. J Comp Neurol 495:408–421CrossRefPubMed Kralic JE, Sidler C, Parpan F, Homanics G, Morrow AL, Fritschy JM (2006) Compensatory alteration of inhibitory synaptic circuits in thalamus and cerebellum of GABAA receptor a1 subunit knockout mice. J Comp Neurol 495:408–421CrossRefPubMed
Zurück zum Zitat Lagier S, Panzanelli P, Russo RE, Nissant A, Bathellier B, Sassoè-Pognetto M, Fritschy JM, Lledo PM (2007) GABAergic inhibition at dendrodendritic synapses tunes g oscillations in the olfactory bulb. Proc Natl Acad Sci USA 104:7259–7264CrossRefPubMedPubMedCentral Lagier S, Panzanelli P, Russo RE, Nissant A, Bathellier B, Sassoè-Pognetto M, Fritschy JM, Lledo PM (2007) GABAergic inhibition at dendrodendritic synapses tunes g oscillations in the olfactory bulb. Proc Natl Acad Sci USA 104:7259–7264CrossRefPubMedPubMedCentral
Zurück zum Zitat Lardi-Studler B, Smolinsky B, Petitjean CM, Koenig F, Sidler C, Meier JC, Fritschy JM, Schwarz G (2007) Vertebrate-specific sequences in the gephyrin E-domain regulate cytosolic aggregation and postsynaptic clustering. J Cell Biol 120:1371–1382 Lardi-Studler B, Smolinsky B, Petitjean CM, Koenig F, Sidler C, Meier JC, Fritschy JM, Schwarz G (2007) Vertebrate-specific sequences in the gephyrin E-domain regulate cytosolic aggregation and postsynaptic clustering. J Cell Biol 120:1371–1382
Zurück zum Zitat Morini R, Ghirardini E, Butti E, Verderio C, Martino G, Matteoli M (2015) Subventricular zone neural progenitors reverse TNF-alpha effects in cortical neurons. Stem Cell Res Therapy 6:166CrossRef Morini R, Ghirardini E, Butti E, Verderio C, Martino G, Matteoli M (2015) Subventricular zone neural progenitors reverse TNF-alpha effects in cortical neurons. Stem Cell Res Therapy 6:166CrossRef
Zurück zum Zitat Notter T, Panzanelli P, Pfister S, Mircsof D, Fritschy J (2014) A protocol for concurrent high-quality immunohistochemical and biochemical analyses in adult mouse central nervous system. Eur J Neurosci 39:165–175CrossRefPubMed Notter T, Panzanelli P, Pfister S, Mircsof D, Fritschy J (2014) A protocol for concurrent high-quality immunohistochemical and biochemical analyses in adult mouse central nervous system. Eur J Neurosci 39:165–175CrossRefPubMed
Zurück zum Zitat Nyiri G, Freund TF, Somogyi P (2001) Input-dependent synaptic targeting of a2-subunit-containing GABAA receptors in synapses of hippocampal pyramidal cells of the rat. Eur J Neurosci 13(3):428–442CrossRefPubMed Nyiri G, Freund TF, Somogyi P (2001) Input-dependent synaptic targeting of a2-subunit-containing GABAA receptors in synapses of hippocampal pyramidal cells of the rat. Eur J Neurosci 13(3):428–442CrossRefPubMed
Zurück zum Zitat Omiya Y, Uchigashima M, Konno K, Yamasaki M, Miyazaki T, Yoshida T, Kusumi I, Watanabe M (2015) VGluT3-expressing CCK-positive basket cells construct invaginating synapses enriched with endocannabinoid signaling proteins in particular cortical and cortex-like amygdaloid regions of mouse brains. J Neurosci 35:4215–4228CrossRefPubMed Omiya Y, Uchigashima M, Konno K, Yamasaki M, Miyazaki T, Yoshida T, Kusumi I, Watanabe M (2015) VGluT3-expressing CCK-positive basket cells construct invaginating synapses enriched with endocannabinoid signaling proteins in particular cortical and cortex-like amygdaloid regions of mouse brains. J Neurosci 35:4215–4228CrossRefPubMed
Zurück zum Zitat Panzanelli P, Bardy C, Nissant A, Pallotto M, Sassoè-Pognetto M, Lledo PM, Fritschy JM (2009) Early synapse formation in developing interneurons of the adult olfactory bulb. J Neurosci 29:15039–15052CrossRefPubMed Panzanelli P, Bardy C, Nissant A, Pallotto M, Sassoè-Pognetto M, Lledo PM, Fritschy JM (2009) Early synapse formation in developing interneurons of the adult olfactory bulb. J Neurosci 29:15039–15052CrossRefPubMed
Zurück zum Zitat Panzanelli P, Gunn BG, Schlatter MC, Benke D, Tyagarajan SK, Scheiffele P, Belelli D, Lambert JJ, Rudolph U, Fritschy JM (2011) Distinct mechanisms regulate GABAA receptor and gephyrin clustering at perisomatic and axo-axonic synapses on CA1 pyramidal cells. J Physiol 589:4959–4980CrossRefPubMedPubMedCentral Panzanelli P, Gunn BG, Schlatter MC, Benke D, Tyagarajan SK, Scheiffele P, Belelli D, Lambert JJ, Rudolph U, Fritschy JM (2011) Distinct mechanisms regulate GABAA receptor and gephyrin clustering at perisomatic and axo-axonic synapses on CA1 pyramidal cells. J Physiol 589:4959–4980CrossRefPubMedPubMedCentral
Zurück zum Zitat Poulopoulos A, Aramuni G, Meyer G, Soykan T, Hoon M, Papadopoulos T, Zhang M, Paarmann I, Fuchs C, Harvey K, Jedlicka P, Schwarzacher SW, Betz H, Harvey RJ, Brose N, Zhang W, Varoqueaux F (2009) Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. Neuron 63:628–642CrossRefPubMed Poulopoulos A, Aramuni G, Meyer G, Soykan T, Hoon M, Papadopoulos T, Zhang M, Paarmann I, Fuchs C, Harvey K, Jedlicka P, Schwarzacher SW, Betz H, Harvey RJ, Brose N, Zhang W, Varoqueaux F (2009) Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. Neuron 63:628–642CrossRefPubMed
Zurück zum Zitat Sassoè-Pognetto M, Fritschy JM (2000) Gephyrin, a major postsynaptic protein of GABAergic synapses. Eur J Neurosci 7:2205–2210CrossRef Sassoè-Pognetto M, Fritschy JM (2000) Gephyrin, a major postsynaptic protein of GABAergic synapses. Eur J Neurosci 7:2205–2210CrossRef
Zurück zum Zitat Schneider Gasser EM, Straub CJ, Panzanelli P, Weinmann O, Sassoè-Pognetto M, Fritschy JM (2006) Immunofluorescence in brain sections: simultaneous detection of presynaptic and postsynaptic proteins in identified neurons. Nat Protoc 1:1887–1897CrossRefPubMed Schneider Gasser EM, Straub CJ, Panzanelli P, Weinmann O, Sassoè-Pognetto M, Fritschy JM (2006) Immunofluorescence in brain sections: simultaneous detection of presynaptic and postsynaptic proteins in identified neurons. Nat Protoc 1:1887–1897CrossRefPubMed
Zurück zum Zitat Schneider Gasser EM, Duveau V, Prenosil GA, Fritschy JM (2007) Reorganization of GABAergic circuits maintains GABAA receptor-mediated transmission onto CA1 interneurons in a1-subunit-null mice. Eur J Neurosci 25:3287–3304CrossRefPubMed Schneider Gasser EM, Duveau V, Prenosil GA, Fritschy JM (2007) Reorganization of GABAergic circuits maintains GABAA receptor-mediated transmission onto CA1 interneurons in a1-subunit-null mice. Eur J Neurosci 25:3287–3304CrossRefPubMed
Zurück zum Zitat Somogyi J, Baude A, Omori Y, Shimizu H, El Mestikawy S, Fukaya M, Shigemoto R, Watanabe M, Somogyi P (2004) GABAergic basket cells expressing cholecystokinin contain vesicular glutamate transporter type 3 (VGLUT3) in their synaptic terminals in hippocampus and isocortex of the rat. Eur J Neurosci 19:552–569CrossRefPubMed Somogyi J, Baude A, Omori Y, Shimizu H, El Mestikawy S, Fukaya M, Shigemoto R, Watanabe M, Somogyi P (2004) GABAergic basket cells expressing cholecystokinin contain vesicular glutamate transporter type 3 (VGLUT3) in their synaptic terminals in hippocampus and isocortex of the rat. Eur J Neurosci 19:552–569CrossRefPubMed
Zurück zum Zitat Soykan T, Schneeberger D, Tria G, Buechner C, Bader N, Svergun D, Tessmer I, Poulopoulos A, Papadopoulos T, Varoqueaux F, Schindelin H, Brose N (2014) A conformational switch in collybistin determines the differentiation of inhibitory postsynapses. EMBO J 33:2113–2133CrossRefPubMedPubMedCentral Soykan T, Schneeberger D, Tria G, Buechner C, Bader N, Svergun D, Tessmer I, Poulopoulos A, Papadopoulos T, Varoqueaux F, Schindelin H, Brose N (2014) A conformational switch in collybistin determines the differentiation of inhibitory postsynapses. EMBO J 33:2113–2133CrossRefPubMedPubMedCentral
Zurück zum Zitat Sumita K, Sato Y, Iida J, Kawata A, Hamano M, Hirabayashi S, Ohno K, Peles E, Hata Y (2007) Synaptic scaffolding molecule (S-SCAM) membrane-associated guanylate kinase with inverted organization (MAGI)-2 is associated with cell adhesion molecules at inhibitory synapses in rat hippocampal neurons. J Neurochem 100:154–166CrossRefPubMed Sumita K, Sato Y, Iida J, Kawata A, Hamano M, Hirabayashi S, Ohno K, Peles E, Hata Y (2007) Synaptic scaffolding molecule (S-SCAM) membrane-associated guanylate kinase with inverted organization (MAGI)-2 is associated with cell adhesion molecules at inhibitory synapses in rat hippocampal neurons. J Neurochem 100:154–166CrossRefPubMed
Zurück zum Zitat Tyagarajan SK, Fritschy JM (2014) Gephyrin, a master regulator of neuronal function? Nature Rev Neurosci 15:141–156CrossRef Tyagarajan SK, Fritschy JM (2014) Gephyrin, a master regulator of neuronal function? Nature Rev Neurosci 15:141–156CrossRef
Zurück zum Zitat Varoqueaux F, Aramuni G, Rawson RL, Mohrmann R, Missler M, Gottmann K, Zhang W, Suedhof TC, Brose N (2006) Neuroligins determine synapse maturation and function. Neuron 51:741–754CrossRefPubMed Varoqueaux F, Aramuni G, Rawson RL, Mohrmann R, Missler M, Gottmann K, Zhang W, Suedhof TC, Brose N (2006) Neuroligins determine synapse maturation and function. Neuron 51:741–754CrossRefPubMed
Zurück zum Zitat Waite A, Tinsley CL, Locke M, Blake DJ (2009) The neurobiology of the dystrophin-associated glycoprotein complex. Ann Med 41:344–359CrossRefPubMed Waite A, Tinsley CL, Locke M, Blake DJ (2009) The neurobiology of the dystrophin-associated glycoprotein complex. Ann Med 41:344–359CrossRefPubMed
Zurück zum Zitat Waite A, Brown SC, Blake DJ (2012) The dystrophin-glycoprotein complex in brain development and disease. Trends Neurosci 35:487–496CrossRefPubMed Waite A, Brown SC, Blake DJ (2012) The dystrophin-glycoprotein complex in brain development and disease. Trends Neurosci 35:487–496CrossRefPubMed
Zurück zum Zitat Zeller A, Crestani F, Camenisch I, Iwasato T, Itohara S, Fritschy J, Rudolph U (2008) Cortical glutamatergic neurons mediate the motor sedative action of diazepam. Mol Pharmacol 73:282–291CrossRefPubMed Zeller A, Crestani F, Camenisch I, Iwasato T, Itohara S, Fritschy J, Rudolph U (2008) Cortical glutamatergic neurons mediate the motor sedative action of diazepam. Mol Pharmacol 73:282–291CrossRefPubMed
Metadaten
Titel
Differential role of GABAA receptors and neuroligin 2 for perisomatic GABAergic synapse formation in the hippocampus
verfasst von
Patrizia Panzanelli
Simon Früh
Jean-Marc Fritschy
Publikationsdatum
22.06.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 9/2017
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1462-7

Weitere Artikel der Ausgabe 9/2017

Brain Structure and Function 9/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.