Skip to main content
Erschienen in: Diabetologia 7/2012

01.07.2012 | Article

Differentiating neural crest stem cells induce proliferation of cultured rodent islet beta cells

verfasst von: G. Grouwels, S. Vasylovska, J. Olerud, G. Leuckx, A. Ngamjariyawat, Y. Yuchi, L. Jansson, M. Van de Casteele, E. N. Kozlova, H. Heimberg

Erschienen in: Diabetologia | Ausgabe 7/2012

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Efficient stimulation of cycling activity in cultured beta cells would allow the design of new strategies for cell therapy in diabetes. Neural crest stem cells (NCSCs) play a role in beta cell development and maturation and increase the beta cell number in co-transplants. The mechanism behind NCSC-induced beta cell proliferation and the functional capacity of the new beta cells is not known.

Methods

We developed a new in vitro co-culture system that enables the dissection of the elements that control the cellular interactions that lead to NCSC-dependent increase in islet beta cells.

Results

Mouse NCSCs were cultured in vitro, first in medium that stimulated their proliferation, then under conditions that supported their differentiation. When mouse islet cells were cultured together with the NCSCs, more than 35% of the beta cells showed cycle activity. This labelling index is more than tenfold higher than control islets cultured without NCSCs. Beta cells that proliferated under these culture conditions were fully glucose responsive in terms of insulin secretion. NCSCs also induced beta cell proliferation in islets isolated from 1-year-old mice, but not in dissociated islet cells isolated from human donor pancreas tissue. To stimulate beta cell proliferation, NCSCs need to be in intimate contact with the beta cells.

Conclusions/interpretation

Culture of islet cells in contact with NCSCs induces highly efficient beta cell proliferation. The reported culture system is an excellent platform for further dissection of the minimal set of factors needed to drive this process and explore its potential for translation to diabetes therapy.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Brunicardi FC, Shavelle DM, Andersen DK (1995) Neural regulation of the endocrine pancreas. Int J Pancreatol 18:177–195PubMed Brunicardi FC, Shavelle DM, Andersen DK (1995) Neural regulation of the endocrine pancreas. Int J Pancreatol 18:177–195PubMed
2.
Zurück zum Zitat Ahrén B (2004) Sensory nerves contribute to insulin secretion by glucagon-like peptide-1 in mice. Am J Physiol Regul Integr Comp Physiol 286:R269–R272PubMedCrossRef Ahrén B (2004) Sensory nerves contribute to insulin secretion by glucagon-like peptide-1 in mice. Am J Physiol Regul Integr Comp Physiol 286:R269–R272PubMedCrossRef
3.
Zurück zum Zitat Ahrén B (2000) Autonomic regulation of islet hormone secretion—implications for health and disease. Diabetologia 43:393–410PubMedCrossRef Ahrén B (2000) Autonomic regulation of islet hormone secretion—implications for health and disease. Diabetologia 43:393–410PubMedCrossRef
4.
Zurück zum Zitat Teitelman G, Guz Y, Ivkovic S, Ehrlich M (1998) Islet injury induces neurotrophin expression in pancreatic cells and reactive gliosis of peri-islet Schwann cells. J Neurobiol 34:304–318PubMedCrossRef Teitelman G, Guz Y, Ivkovic S, Ehrlich M (1998) Islet injury induces neurotrophin expression in pancreatic cells and reactive gliosis of peri-islet Schwann cells. J Neurobiol 34:304–318PubMedCrossRef
5.
Zurück zum Zitat Winer S, Tsui H, Lau A et al (2003) Autoimmune islet destruction in spontaneous type 1 diabetes is not beta-cell exclusive. Nat Med 9:198–205PubMedCrossRef Winer S, Tsui H, Lau A et al (2003) Autoimmune islet destruction in spontaneous type 1 diabetes is not beta-cell exclusive. Nat Med 9:198–205PubMedCrossRef
6.
Zurück zum Zitat Mei Q, Mundinger TO, Lernmark A, Taborsky GJ Jr (2002) Early, selective, and marked loss of sympathetic nerves from the islets of BioBreeder diabetic rats. Diabetes 51:2997–3002PubMedCrossRef Mei Q, Mundinger TO, Lernmark A, Taborsky GJ Jr (2002) Early, selective, and marked loss of sympathetic nerves from the islets of BioBreeder diabetic rats. Diabetes 51:2997–3002PubMedCrossRef
7.
Zurück zum Zitat Plank JL, Mundell NA, Frist AY et al (2011) Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation. Dev Biol 349:321–330PubMedCrossRef Plank JL, Mundell NA, Frist AY et al (2011) Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation. Dev Biol 349:321–330PubMedCrossRef
8.
Zurück zum Zitat Nekrep N, Wang J, Miyatsuka T, German MS (2008) Signals from the neural crest regulate beta-cell mass in the pancreas. Development 135:2151–2160PubMedCrossRef Nekrep N, Wang J, Miyatsuka T, German MS (2008) Signals from the neural crest regulate beta-cell mass in the pancreas. Development 135:2151–2160PubMedCrossRef
9.
Zurück zum Zitat Burris RE, Hebrok M (2007) Pancreatic innervation in mouse development and beta-cell regeneration. Neuroscience 150:592–602PubMedCrossRef Burris RE, Hebrok M (2007) Pancreatic innervation in mouse development and beta-cell regeneration. Neuroscience 150:592–602PubMedCrossRef
10.
Zurück zum Zitat Kozlova EN, Jansson L (2009) Differentiation and migration of neural crest stem cells are stimulated by pancreatic islets. Neuroreport 20:833–888PubMedCrossRef Kozlova EN, Jansson L (2009) Differentiation and migration of neural crest stem cells are stimulated by pancreatic islets. Neuroreport 20:833–888PubMedCrossRef
11.
Zurück zum Zitat Olerud J, Kanaykina N, Vasylovska S et al (2009) Neural crest stem cells increase beta cell proliferation and improve islet function in co-transplanted murine pancreatic islets. Diabetologia 52:2594–2601PubMedCrossRef Olerud J, Kanaykina N, Vasylovska S et al (2009) Neural crest stem cells increase beta cell proliferation and improve islet function in co-transplanted murine pancreatic islets. Diabetologia 52:2594–2601PubMedCrossRef
12.
Zurück zum Zitat Marmigere F, Ernfors P (2007) Specification and connectivity of neuronal subtypes in the sensory lineage. Nat Rev Neurosci 8:114–127PubMedCrossRef Marmigere F, Ernfors P (2007) Specification and connectivity of neuronal subtypes in the sensory lineage. Nat Rev Neurosci 8:114–127PubMedCrossRef
13.
Zurück zum Zitat Maro GS, Vermeren M, Voiculescu O et al (2004) Neural crest boundary cap cells constitute a source of neuronal and glial cells of the PNS. Nat Neurosci 7:930–938PubMedCrossRef Maro GS, Vermeren M, Voiculescu O et al (2004) Neural crest boundary cap cells constitute a source of neuronal and glial cells of the PNS. Nat Neurosci 7:930–938PubMedCrossRef
14.
Zurück zum Zitat Ma Q, Fode C, Guillemot F, Anderson DJ (1999) Neurogenin1 and neurogenin2 control two distinct waves of neurogenesis in developing dorsal root ganglia. Genes Dev 13:1717–1728PubMedCrossRef Ma Q, Fode C, Guillemot F, Anderson DJ (1999) Neurogenin1 and neurogenin2 control two distinct waves of neurogenesis in developing dorsal root ganglia. Genes Dev 13:1717–1728PubMedCrossRef
15.
Zurück zum Zitat Andang M, Hjerling-Leffler J, Moliner A et al (2008) Histone H2AX-dependent GABA(A) receptor regulation of stem cell proliferation. Nature 451:460–464PubMedCrossRef Andang M, Hjerling-Leffler J, Moliner A et al (2008) Histone H2AX-dependent GABA(A) receptor regulation of stem cell proliferation. Nature 451:460–464PubMedCrossRef
16.
Zurück zum Zitat Hjerling-Leffler J, Marmigere F, Heglind M et al (2005) The boundary cap: a source of neural crest stem cells that generate multiple sensory neuron subtypes. Development 132:2623–2632PubMedCrossRef Hjerling-Leffler J, Marmigere F, Heglind M et al (2005) The boundary cap: a source of neural crest stem cells that generate multiple sensory neuron subtypes. Development 132:2623–2632PubMedCrossRef
17.
Zurück zum Zitat Aldskogius H, Berens C, Kanaykina N et al (2009) Regulation of boundary cap neural crest stem cell differentiation after transplantation. Stem Cells 27:1592–1603PubMedCrossRef Aldskogius H, Berens C, Kanaykina N et al (2009) Regulation of boundary cap neural crest stem cell differentiation after transplantation. Stem Cells 27:1592–1603PubMedCrossRef
18.
Zurück zum Zitat Aquino JB, Hjerling-Leffler J, Koltzenburg M, Edlund T, Villar MJ, Ernfors P (2006) In vitro and in vivo differentiation of boundary cap neural crest stem cells into mature Schwann cells. Exp Neurol 198:438–449PubMedCrossRef Aquino JB, Hjerling-Leffler J, Koltzenburg M, Edlund T, Villar MJ, Ernfors P (2006) In vitro and in vivo differentiation of boundary cap neural crest stem cells into mature Schwann cells. Exp Neurol 198:438–449PubMedCrossRef
19.
Zurück zum Zitat Ronn LC, Ralets I, Hartz BP et al (2000) A simple procedure for quantification of neurite outgrowth based on stereological principles. J Neurosci Methods 100:25–32PubMedCrossRef Ronn LC, Ralets I, Hartz BP et al (2000) A simple procedure for quantification of neurite outgrowth based on stereological principles. J Neurosci Methods 100:25–32PubMedCrossRef
20.
Zurück zum Zitat Grouwels G, Cai Y, Hoebeke I et al (2010) Ectopic expression of E2F1 stimulates beta-cell proliferation and function. Diabetes 59:1435–1444PubMedCrossRef Grouwels G, Cai Y, Hoebeke I et al (2010) Ectopic expression of E2F1 stimulates beta-cell proliferation and function. Diabetes 59:1435–1444PubMedCrossRef
21.
Zurück zum Zitat Olsson R, Carlsson PO (2006) The pancreatic islet endothelial cell: emerging roles in islet function and disease. Int J Biochem Cell Biol 38:492–497PubMedCrossRef Olsson R, Carlsson PO (2006) The pancreatic islet endothelial cell: emerging roles in islet function and disease. Int J Biochem Cell Biol 38:492–497PubMedCrossRef
22.
Zurück zum Zitat Andersson A (1978) Isolated mouse pancreatic islets in culture: effects of serum and different culture media on the insulin production of the islets. Diabetologia 14:397–404PubMedCrossRef Andersson A (1978) Isolated mouse pancreatic islets in culture: effects of serum and different culture media on the insulin production of the islets. Diabetologia 14:397–404PubMedCrossRef
23.
Zurück zum Zitat Andersson A, Carlsson PO, Carlsson C et al (2004) Promoting islet cell function after transplantation. Cell Biochem Biophys 40:55–64PubMedCrossRef Andersson A, Carlsson PO, Carlsson C et al (2004) Promoting islet cell function after transplantation. Cell Biochem Biophys 40:55–64PubMedCrossRef
24.
Zurück zum Zitat Schisler JC, Fueger PT, Babu DA et al (2008) Stimulation of human and rat islet beta-cell proliferation with retention of function by the homeodomain transcription factor Nkx6.1. Mol Cell Biol 28:3465–3476PubMedCrossRef Schisler JC, Fueger PT, Babu DA et al (2008) Stimulation of human and rat islet beta-cell proliferation with retention of function by the homeodomain transcription factor Nkx6.1. Mol Cell Biol 28:3465–3476PubMedCrossRef
25.
Zurück zum Zitat Fiaschi-Taesch NM, Salim F, Kleinberger J et al (2010) Induction of human beta-cell proliferation and engraftment using a single G1/S regulatory molecule, cdk6. Diabetes 59:1926–1936PubMedCrossRef Fiaschi-Taesch NM, Salim F, Kleinberger J et al (2010) Induction of human beta-cell proliferation and engraftment using a single G1/S regulatory molecule, cdk6. Diabetes 59:1926–1936PubMedCrossRef
26.
Zurück zum Zitat Kozlova EN, Jansson L (2005) In vitro interactions between insulin-producing beta cells and embryonic dorsal root ganglia. Pancreas 31:380–384PubMedCrossRef Kozlova EN, Jansson L (2005) In vitro interactions between insulin-producing beta cells and embryonic dorsal root ganglia. Pancreas 31:380–384PubMedCrossRef
27.
Zurück zum Zitat Teta M, Long SY, Wartschow LM, Rankin MM, Kushner JA (2005) Very slow turnover of beta-cells in aged adult mice. Diabetes 54:2557–2567PubMedCrossRef Teta M, Long SY, Wartschow LM, Rankin MM, Kushner JA (2005) Very slow turnover of beta-cells in aged adult mice. Diabetes 54:2557–2567PubMedCrossRef
28.
Zurück zum Zitat Rankin MM, Kushner JA (2009) Adaptive beta-cell proliferation is severely restricted with advanced age. Diabetes 58:1365–1372PubMedCrossRef Rankin MM, Kushner JA (2009) Adaptive beta-cell proliferation is severely restricted with advanced age. Diabetes 58:1365–1372PubMedCrossRef
29.
Zurück zum Zitat Rankin MM, Kushner JA (2010) Aging induces a distinct gene expression program in mouse islets. Islets 2:345–352PubMedCrossRef Rankin MM, Kushner JA (2010) Aging induces a distinct gene expression program in mouse islets. Islets 2:345–352PubMedCrossRef
30.
Zurück zum Zitat Tschen SI, Dhawan S, Gurlo T, Bhushan A (2009) Age-dependent decline in beta-cell proliferation restricts the capacity of beta-cell regeneration in mice. Diabetes 58:1312–1320PubMedCrossRef Tschen SI, Dhawan S, Gurlo T, Bhushan A (2009) Age-dependent decline in beta-cell proliferation restricts the capacity of beta-cell regeneration in mice. Diabetes 58:1312–1320PubMedCrossRef
31.
Zurück zum Zitat Perl S, Kushner JA, Buchholz BA et al (2010) Significant human beta-cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating. J Clin Endocrinol Metab 95:E234–E239PubMedCrossRef Perl S, Kushner JA, Buchholz BA et al (2010) Significant human beta-cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating. J Clin Endocrinol Metab 95:E234–E239PubMedCrossRef
32.
Zurück zum Zitat Chen H, Gu X, Liu Y et al (2011) PDGF signalling controls age-dependent proliferation in pancreatic beta-cells. Nature 478:349–355PubMedCrossRef Chen H, Gu X, Liu Y et al (2011) PDGF signalling controls age-dependent proliferation in pancreatic beta-cells. Nature 478:349–355PubMedCrossRef
33.
Zurück zum Zitat Yamanaka M, Itakura Y, Inoue T et al (2006) Protective effect of brain-derived neurotrophic factor on pancreatic islets in obese diabetic mice. Metabolism 55:1286–1292PubMedCrossRef Yamanaka M, Itakura Y, Inoue T et al (2006) Protective effect of brain-derived neurotrophic factor on pancreatic islets in obese diabetic mice. Metabolism 55:1286–1292PubMedCrossRef
34.
Zurück zum Zitat Miao G, Mace J, Kirby M et al (2006) In vitro and in vivo improvement of islet survival following treatment with nerve growth factor. Transplantation 81:519–524PubMedCrossRef Miao G, Mace J, Kirby M et al (2006) In vitro and in vivo improvement of islet survival following treatment with nerve growth factor. Transplantation 81:519–524PubMedCrossRef
35.
Zurück zum Zitat Rezende LF, Stoppiglia LF, Souza KL, Negro A, Langone F, Boschero AC (2007) Ciliary neurotrophic factor promotes survival of neonatal rat islets via the BCL-2 anti-apoptotic pathway. J Endocrinol 195:157–165PubMedCrossRef Rezende LF, Stoppiglia LF, Souza KL, Negro A, Langone F, Boschero AC (2007) Ciliary neurotrophic factor promotes survival of neonatal rat islets via the BCL-2 anti-apoptotic pathway. J Endocrinol 195:157–165PubMedCrossRef
36.
Zurück zum Zitat Mwangi S, Anitha M, Mallikarjun C et al (2008) Glial cell line-derived neurotrophic factor increases beta-cell mass and improves glucose tolerance. Gastroenterology 134:727–737PubMedCrossRef Mwangi S, Anitha M, Mallikarjun C et al (2008) Glial cell line-derived neurotrophic factor increases beta-cell mass and improves glucose tolerance. Gastroenterology 134:727–737PubMedCrossRef
37.
Zurück zum Zitat Imai J, Katagiri H, Yamada T et al (2008) Regulation of pancreatic beta cell mass by neuronal signals from the liver. Science 322:1250–1254PubMedCrossRef Imai J, Katagiri H, Yamada T et al (2008) Regulation of pancreatic beta cell mass by neuronal signals from the liver. Science 322:1250–1254PubMedCrossRef
38.
Zurück zum Zitat Reimer MK, Mokshagundam SP, Wyler K, Sundler F, Ahren B, Stagner JI (2003) Local growth factors are beneficial for the autonomic reinnervation of transplanted islets in rats. Pancreas 26:392–397PubMedCrossRef Reimer MK, Mokshagundam SP, Wyler K, Sundler F, Ahren B, Stagner JI (2003) Local growth factors are beneficial for the autonomic reinnervation of transplanted islets in rats. Pancreas 26:392–397PubMedCrossRef
39.
Zurück zum Zitat Sieber-Blum M, Grim M, Hu YF, Szeder V (2004) Pluripotent neural crest stem cells in the adult hair follicle. Dev Dyn 231:258–269PubMedCrossRef Sieber-Blum M, Grim M, Hu YF, Szeder V (2004) Pluripotent neural crest stem cells in the adult hair follicle. Dev Dyn 231:258–269PubMedCrossRef
40.
Zurück zum Zitat Krejci E, Grim M (2010) Isolation and characterization of neural crest stem cells from adult human hair follicles. Folia Biol (Praha) 56:149–157 Krejci E, Grim M (2010) Isolation and characterization of neural crest stem cells from adult human hair follicles. Folia Biol (Praha) 56:149–157
41.
Zurück zum Zitat Chimge NO, Bayarsaihan D (2010) Generation of neural crest progenitors from human embryonic stem cells. J Exp Zool B Mol Dev Evol 314:95–103PubMedCrossRef Chimge NO, Bayarsaihan D (2010) Generation of neural crest progenitors from human embryonic stem cells. J Exp Zool B Mol Dev Evol 314:95–103PubMedCrossRef
Metadaten
Titel
Differentiating neural crest stem cells induce proliferation of cultured rodent islet beta cells
verfasst von
G. Grouwels
S. Vasylovska
J. Olerud
G. Leuckx
A. Ngamjariyawat
Y. Yuchi
L. Jansson
M. Van de Casteele
E. N. Kozlova
H. Heimberg
Publikationsdatum
01.07.2012
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 7/2012
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-012-2542-0

Weitere Artikel der Ausgabe 7/2012

Diabetologia 7/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.