Skip to main content
Erschienen in: Malaria Journal 1/2015

Open Access 01.12.2015 | Research

Direct and indirect determinants of childhood malaria morbidity in Malawi: a survey cross-sectional analysis based on malaria indicator survey data for 2012

verfasst von: Simangaliso Chitunhu, Eustasius Musenge

Erschienen in: Malaria Journal | Ausgabe 1/2015

Abstract

Background

Children under the age of five are most vulnerable to malaria (malaria is a major health challenge in sub-Saharan Africa) with a child dying every 30 s from malaria. Hampered socio-economic development, poverty, diseconomies of scale, marginalization, and exploitation are associated with malaria. Therefore establishing determinants of malaria in affected sub-Saharan populations is important in order to come up with informed interventions that will be effective in malaria control.

Methods

The study was a cross-sectional survey design based on data from the Malawi 2012 Malaria indicator Survey obtained from Demographic and Health Survey (DHS) programme website. The outcome variable was positive laboratory-based blood smear result for malaria in children less than 5 years, after an initial positive rapid malaria diagnostic test done at the homestead. Statistical modelling was done using survey logistic regression as well as generalized structural equation modelling (G-SEM) to analyse direct and indirect effects of malaria.

Results

The propensity score matched data had 1 325 children with 367 (27.7%) having blood smear positive malaria. Female children made up approximately 53% of the total study participants. Child related variables (age, haemoglobin and position in household) and household wealth index were significant directly and indirectly. Further on G-SEM based multivariable analysis showed socio-economic status (SES) [Odds ratio (OR) = 0.96, 95% Confidence interval (CI) = 0.92, 0.99] and primary level of education [OR = 0.50, 95% CI = 0.32, 0.77] were important direct and indirect determinants of malaria morbidity.

Conclusion

Socio-economic status and education are important factors that influence malaria control. These factors need to be taken into consideration when planning malaria control programmes in order to have effective programmes. Direct and indirect effect modelling can also provide an alternative modelling technique that incorporates surrogate confounders that may not be significant when modelled directly. This holistic approach is useful and will help in improving malaria control.
Abkürzungen
CI
confidence interval
DHS
demographic and health survey
DST
Department of Science and Technology
EA
enumeration area
GDP
gross domestic product
G-SEM
generalized-structural equation modelling
HIV
human immunodeficiency virus
ITNs
insecticide-treated bed nets
MDGs
millennium development goals
MIS
malaria indicator survey
NRF
National Research Foundation
OR
odds ratio
SACEMA
South African Centre of Excellence in Epidemiological Modelling and Analysis
SES
socio-economic status
WHO
World Health Organization

Background

Malaria is a common cause of ill-health and death mainly in the poorest countries of the world [1]. Most poor countries in sub-Saharan Africa are affected, with nine out of ten cases of the global malaria morbidity [2]. This makes it one of the most important global health problems [3]. Malaria is endemic and a major public health problem to Malawi, a low income country in sub-Saharan Africa [2, 4]. In the year 2010, malaria accounted for the third highest number of deaths in Malawi [57].
Malaria is caused by Plasmodium parasites and transmitted through the bite of Anopheles mosquitoes [8]. Transmission is mainly determined by climatic factors: temperature, humidity, and rainfall [912]. Other factors that also determine transmission include socio-economic status, knowledge on malaria prevention methods as well as access to health services [1316]. The extent and distribution of these factors influence the prevalence rate. Transmission is highest in areas of high temperature and frequent rainfall, especially in summer [1720].
Malaria is a disease and cause of poverty and has determinants of vulnerability [21, 22], because poor communities cannot afford malaria prevention tools, treatment tools and housing that is protective from mosquitoes [23]. According to a report on the epidemiological profile of malaria and its control in Malawi [24], the country is low-income and is amongst one of the poorest nations of the world. Poverty levels are extremely high with about 65% of the population being classified as poor [25]. In 2012, Malawi was classified as one of the ten poorest countries in the world [26] and urbanization is very low [24]. Therefore, there is need to fully understand the determinants of malaria in order to reduce the burden that malaria puts on the health care system [27, 28] due to the poverty levels in Malawi. Identifying direct and indirect determinants of malaria in a low income malaria endemic country will assist in the identification of important determinants of the disease and this will help in the development of health programmes that target those determinants in order to effectively reduce the burden of malaria with the available resources and also inform health policy [29]. Policies that the poor countries can afford are important as they may be easier to implement [30].
The aim of this study was to investigate the direct and indirect determinants of malaria morbidity in children under 5 years using pathway analysis on data from the Malawi malaria indicator survey collected in 2012. This age group was selected as it is the most vulnerable in malaria endemic areas [3134].

Methods

Study area

Malawi is a country in southern Africa that has an area of approximately 120,000 km2 and is bordered by Zambia to the west, Mozambique to the south and Tanzania to the north of the country [4]. The presence of many water bodies especially on the eastern side makes the nation vulnerable to malaria morbidity and mortality.

Malawi malaria indicator survey data

The malaria data used for the analysis were obtained from the 2012 malaria indicator survey (MIS) and were obtained from the Demographic and Health Survey (DHS) programme website. The original study collected data on basic demographic and health indicators, malaria prevention, treatment and morbidity. A total of 3,500 households were selected for data collection. A two-stage cluster sampling technique was used to select the households. The first stage selected 140 enumeration areas (EAs) with 96 from rural areas and 44 from urban areas. At the second stage, 25 households per EA were selected. The data were obtained through use of a household questionnaire that collected household characteristics, and identified all household members and their basic characteristics. Data for children less than five were collected from their mothers. Population sampling adjustments weights were done for the 140 clusters (EAs) to account for differences due to the unequal proportions selected per cluster [4, 35]. Malaria in children under five was initially tested at the household using a rapid malaria diagnostic test and those who tested positive had their blood collected for a confirmatory blood smear laboratory test [4, 35]. A positive blood smear laboratory test was used as the main outcome variable in data analysis. The variables used were region, type of place of residence, cluster altitude, wealth index of household, position of child in the family, child’s age in month, use of bed net on the previous night before the interview, mother’s knowledge of malaria, mother’s level of education, child’s altitude-adjusted haemoglobin level and time to get to the source of water. The wealth index of a household is a measure of the household’s standard of living and is based on data on household’s ownership of durable goods, dwelling characteristics, water source, toilet facilities, and other characteristics that are indicators of a household’s socioeconomic status [4, 35]. A special variable was created and used as proxy for socio-economic status. It was based on presence of tap water, toilet and electricity in the household. Presence of all three was defined as none slum and absence of one or more of these variables was defined as slum. This was based on a study that was done in rural South Africa [36].

Statistical analysis methods

The sample size was determined during the primary study; it was established that data used in this study had a greater than 80% power. Since the data were observational, propensity score matching on some unbalanced selected variables was done to adjust for selection bias [37, 38].
As a proxy for use of preventative methods the variable on use of bed net the previous night by children under five was utilized. This was then used as the treatment variable and propensity scores were extracted post multivariable logistic regression. The method that was used in matching these scores was caliper matching [39].
Survey adjusted bivariate analysis was done using Pearson’s Chi Square and Student’s t-tests. Variables that were selected for multivariable analysis were based on their significant association with the outcome variable. Smear positive malaria result was modelled using survey logistic regression in order to determine the associations between the independent variables that were selected for analysis. Clustered robust method was used in analysing the data and the cluster was the primary sampling unit also used as the weighting variable. Generalized structural equation modelling (G-SEM) was used to model the direct and indirect pathways. This direct and an indirect model was developed to analyse the complex relationships between selected variables and the pathways that were conceptualized as having had an impact on a child having a smear positive malaria result in a household in 2012. All statistical analyses for this paper were carried out using Stata®13.1 (Copyright 1985–2013, StataCorp LP).

Ethics approval

This study was granted ethics approval by the University of the Witwatersrand’s Human Research Ethics Committee (Medical) (Clearance Certificate No. M130962). Approval to use the MIS data was obtained from the measure DHS website. The primary study, where the data was collected, verbal informed consent for testing of children was obtained from the child’s parent or guardian at the end of the household interview and ethical clearances with the Malawi authorities before study started. The survey was also anonymized so that household or individual information is not identifiable [35].

Results

The total number of children used in the study was 1,898 and their ages ranged from 6 months to 59 months with a mean age of 32.06 months. This was the number of children who were tested for malaria using a laboratory-based test, of whom 468 (24.7%) had a positive result for malaria and 1,430 (75.3%) had a negative result for malaria. The Central Province had 53.3% of the total cases; the Southern Province had 37.4% and the Northern Province had 9.3% of total cases. A total of 522 (27.1%) children were from urban areas and 1 376 (72.9%) were from the rural areas. Female children made up approximately 53% of the total study participants. Most of the mothers in this study had no education (71.7%), but 55.4% of the mothers were able to read whole sentences.
In the propensity-matched data, a total of 1,325 children were analysed with 367 (27.7%) having blood smear positive malaria and 958 (72.3%) having no malaria. Table 1 shows the descriptive statistics for both matched and unmatched data that were selected for analysis looking at the association between the selected variable and positive blood smear for malaria. An association was considered significant if it had a p value of less than 0.05. Univariate and multiple variable analyses were done to establish the relationships between blood smear positive malaria and selected variables and how they influence blood smear positive malaria in children under 5 years of age.
Table 1
Descriptive statistics of both initial and propensity score matched data for Malawi in 2012
Independent variables
Unmatched data
Propensity score matched data
Variable
Category
Blood smear positive [n = 468 (24.7%)]
Blood smear negative [n = 1430 (74.9%)]
Test statistic (p-valuea)
Blood smear positive [n = 367 (27.7%)]
Blood smear negative [n = 958 (72.3%)]
Test statistic (p-value)
Region*
Northern
60 (9.3%)
266(15.4%)
χ2 = 3.64 (0.01)
47 (9.6%)
176 (15.4%)
χ2 = 3.27 (0.015)
Central
234 (53.3%)
525 (38.0%)
181 (51.4%)
348 (36.6%)
Southern
174 (37.4%)
639 (46.6%)
139 (39.0%)
434 (48.1%)
Type of place of residence
Urban
54 (5.0%)
468 (16.4%)
χ2 = 9.82 (<0.01)
48 (5.9%)
278 (14.3%)
χ2 = 5.96 (0.003)
Rural
414 (95.0%)
962 (83.6%)
319 (94.1%)
680 (85.7%)
Cluster altitude (km)
Mean ± SE
0.90 ± 0.03
0.89 ± 0.03
t = −0.49 (0.623)
0.90 ± 0.03
0.88 ± 0.03
t = −0.43 (0.667)
Position of child in household
1
254 (54.1%)
973 (68.0%)
χ2 = 11.17 (<0.01)
224 (59.8%)
723 (74.3%)
χ2 = 7.20 (<0.001)
2
153 (32.6%)
297 (20.2%)
135 (38.1%)
217 (24.0%)
3
61 (13.3%)
160 (11.8%)
8 (2.1%)
18 (1.7%)
Mother’s highest education level*
None
415 (88.9%)
949 (73.1%)
χ2 = 7.30 (< 0.01)
329 (89.6%)
700 (78.8%)
χ2 = 3.54 (0.012)
Primary
47 (9.9%)
361 (21.5%)
34 (9.3%)
221 (18.9%)
Secondary
6 (1.2%)
120 (5.4%)
4 (1.1%)
37 (2.3%)
Mother has heard of malaria
No
47 (10.5%)
62 (4.9%)
χ2 = 4.27 (0.02)
38 (11.0%)
50 (5.9%)
χ2 = 3.09 (0.048)
Yes
421 (89.5%)
1,368 (95.1%)
329 (89.0%)
908 (94.1%)
Child’s age in months*
Mean ± SE
34.79 ± 0.56
31.25 ± 0.40
t = −5.08 (<0.001)
34.7 ± 0.64
31.7 ± 0.52
t = −3.60 (<0.001)
Child’s altitude adjusted haemoglobin level
Mean ± SE
9.2 ± 0.96
10.4 ± 0.56
t = 11.90 (<0.01)
9.2 ± 0.91
10.3 ± 0.63
t = 10.7 (<0.001
Wealth index score*
Mean ± SE
−5.58 ± 0.25
−2.47 ± 0.32
t = 8.05 (< 0.01)
−5.68 ± 0.35
−3.56 ± 0.36
t = 6.41 (<0.001)
Children under 5 slept under mosquito bed net last night*
No
206 (41.3%)
488 (34.1%)
χ2 = 1.89 (0.15)
184 (47.4%)
481 (48.8%)
χ2 = 0.36 (0.691)
Yes
262 (58.7%)
942 (65.9%)
183 (52.6%)
477 (51.2%)
Time in hours to get to water source*
Mean ± SE
5.23 ± 0.52
6.63 ± 0.47
t = 2.71 (< 0.01)
5.05 ± 0.55
6.18 ± 0.49
t = 1.92 (0.057)
SE standard error.
* Variables that were used in propensity score matching.
asignificance was calculated at 5%.
Table 2 shows results of the univariate survey logistic regression, multiple variable survey logistic regression as well as the results of the G-SEM. Table 3 shows the results of the propensity score matched results of the same data.
Table 2
Univariate, multiple variable and G-SEM analyses of results of unmatched data for children 6–59 months in Malawi in 2012
Variable
Univariate analysis
Multivariable analysis
Odds ratio (95% CI), p-value
Odds ratio (95% CI), p-value
Region
 Northern
1.00
1.00
 Central
2.43 (1.24, 4.74), 0.01
1.79 (1.24, 2.59), <0.01
Southern
1.36 (0.69, 2.68), 0.89
0.89 (0.58, 1.39), 0.62
Type of place of residence
 Urban
1.00
1.00
 Rural
3.87 (2.22, 6.73), <0.01
1.83 (1.18, 2.83), <0.01
Cluster altitude in kilometers
1.11 (0.63, 1.96), 0.73
0.72 (0.45, 1.12), 0.15
Child’s position in household
 1
1.00
1.00
 2
2.03 (1.59, 2.60), <0.01
1.43 (1.04, 1.96), 0.03
 3
1.46 (1.08, 1.99), 0.02
0.99 (0.40, 2.45), 0.98
Mother’s highest education level
 None
1.00
1.00
 Primary
0.40 (0.28, 0.57), <0.01
0.53 (0.37, 0.76), <0.01
 Secondary
0.18 (0.08, 0.42), <0.01
0.57 (0.23, 1.47), 0.25
Child’s age in months
1.02 (1.00, 1.02), <0.01
1.03 (1.02, 1.04), <0.01
Child’s haemoglobin level
0.95 (0.95, 0.96), <0.01
0.95 (0.94, 0.96), <0.01
Wealth index score
0.90 (0.87, 0.94), <0.01
0.95 (0.93, 0.98), <0.01
Child slept under mosquito bed net
 No
1.00
1.00
 Yes
0.74 (0.54, 1.03), 0.07
0.77 (0.60, 0.99), 0.04
Time to water source
0.98 (0.96, 1.00), 0.01
0.97 (0.96, 0.99), <0.01
Table 3
Propensity score matched univariate and multivariable results for children 6–59 months in Malawi in 2012
Variable category
Univariate analysis
Multivariable analysis
G-SEM direct effects
G-SEM indirect effects
Odds ratio (95% CI), p-value
Odds ratio (95% CI), p-value
Odds ratio (95% CI), p-value
Odds ratio (95% CI), p-value
Region
 Northern
1.00
1.00
1.00
 
 Central
2.33 (1.22, 4.48), 0.01
1.92 (1.26, 2.92), <0.01
1.92 (1.03, 3.55), 0.04
 
 Southern
1.32 (0.69, 2.56), 0.394
0.96 (0.58, 1.59), 0.88
0.96 (0.48, 1.91), 0.91
 
Type of place of residence
 Urban
1.00
1.00
1.00
 
 Rural
2.74 (1.55, 4.88), <0.01
1.58 (0.97, 2.56), 0.07
1.58 (0.84, 2.94), 0.15
 
Cluster altitude in kilometers
1.11 (0.59, 2.06), 0.75
0.75 (0.44, 1.29), 0.30
0.75 (0.31, 1.84), 0.53
1.24 (0.87, 1.62), <0.01
Position of child in household
 1
1.00
1.00
1.00
1.03 (1.01, 1.05), <0.01
 2
1.91 (1.39, 2.63), <0.01
1.49 (1.05, 2.10), 0.02
1.49 (1.04, 2.14), 0.03
 3
1.73 (0.73, 4.09), 0.21
1.12 (0.41, 3.08), 0.82
1.12 (0.42, 2.99), 0.82
Child’s age in months
1.01 (1.01, 1.02), <0.01
1.03 (1.02, 1.04), <0.01
1.03 (1.02, 1.04), <0.01
 
Child’s altitude adjusted haemoglobin level
0.95 (0.94, 0.96), < 0.01
0.94 (0.93, 0.95), < 0.01
0.94 (0.93, 0.95), <0.01
 
Mother’s highest education level
 None
1.00
1.00
1.00
0.50 (0.28, 0.71), <0.01
 Primary
0.45 (0.31, 0.66), <0.01
0.50 (0.32, 0.77), <0.01
0.50 (0.32, 0.76), <0.01
 Secondary
0.40 (0.14, 1.19), 0.10
0.71 (0.20, 2.52), 0.60
0.71 (0.19, 2.71), 0.62
Wealth index score
0.91 (0.88, 0.95), <0.01
0.96 (0.92, 0.99), 0.01
0.96 (0.92, 0.99), 0.01
 
Children slept under mosquito bed net
 No
1.00
1.00
1.00
 
 Yes
1.07 (0.77, 1.50), 0.69
0.77 (0.58, 1.01), 0.06
0.77 (0.56, 1.04), 0.09
 
Time to get to water source
0.98 (0.96, 1.00), 0.07
0.97 (0.95, 0.99), <0.01
0.97 (0.95, 0.99), <0.01
 
These results from logistic regression model as well as the generalized structural equation modelling show that socio-economic status (SES) represented by wealth index; region, time to water source, mother’s highest level of education, child haemoglobin level (OR = 0.95, CI = 0.94, 0.96) as well as child’s age were important determinants of malaria episodes in children aged between 6 and 59 months in Malawi in the year 2012. Age also showed (OR = 1.03, CI = 1.02, 1.04) that positive blood smear malaria increased with increasing age and the analysis on the position of the child showed that a child in the second position was almost one and half times likely (OR = 1.43, CI = 1.04, 1.96) as a child in first position to get malaria. Time to water source was also significant in this study (OR = 0.97, CI = 0.96–0.99).
In this study, type of place of residence (urban or rural) also showed a significant effect on malaria. Those who stay in the rural areas were more likely to have a positive blood smear result for malaria as compared to their counterparts in the urban areas (OR = 1.83, CI = 1.18, 2.83). Region of residence was also an important factor in this study (p = < 0.01). The central region of Malawi was the most affected with a 79% greater odds of malaria morbidity compared to the northern and southern regions [1.79 (CI = 1.24, 2.59)].
The results of the G-SEM show both direct and indirect effects on the endogenous variable blood smear positive malaria. Figures 1 and 2 show the G-SEM models. Figure 1 showing the direct G-SEM and Figure 2 showing the indirect G-SEM. Exogenous variables; rural area means type of place of residence and primary education represents mother’s level of education.
The indirect effects were modelled on the variable cluster altitude, mother’s highest education level and the wealth index score. Cluster altitude and knowledge of malaria were identified as variables that can indirectly affect blood smear positive malaria in children less than five.

Discussion

SES is an important determinant of malaria and other studies [21, 23, 40] also showed that SES is an important factor in blood smear positive malaria. As mentioned earlier malaria is a disease of poverty [21, 41] so this finding compliments what other studies have shown with regards to this particular variable on malaria morbidity. One review article on economic and social burden of malaria stated that malaria thrives in poor countries [42]. The results from this study support this review because Malawi has a low GDP [43]; this means malaria puts an extra burden on the government as well as an extra burden on the population in terms of accessing healthcare. The government needs to ensure that the resources are available for diagnosis as well as treatment and the population must have the necessary financial means in order to access the treatment [42]. If the population cannot afford this treatment, then the government is forced to provide the treatment at affordable costs and this might affect the government’s self sufficiency. Since malaria is endemic in Malawi; the government needs to put in place measures to control malaria. These include providing insecticide-treated mosquito nets, indoor residual spraying as well as providing anti-malarial tablets [44] and these activities strain the budget of the country and other economic building activities will not be prioritized and therefore this affects the overall development of the country. In order to balance the spending on malaria treatment and the spending on other developmental activities, it is important for the country to know the malaria trends so that the use of resources is optimized.
GDP also affects nutrition, because nutrition is linked to economic status if one is economically sound then they are able to provide adequately for themselves and, therefore, resulting in a well-nourished body. A well-nourished body is better able to fight malaria infection by mounting an adequate response to infection as compared to an undernourished body [45]. Health status is also linked to economic status and malaria is also affected by the economic status of an individual as well as country [46]. A poor economic status results in inadequate health care facilities and therefore increasing vulnerability of the population to malaria.
Type of place of residence as well as region could be linked to the altitude, where some studies [4749] found an effect on malaria prevalence depending on the altitude. It is important for the government to know the areas that are malaria “hotspots” so that malaria prevention resources can be allocated to the areas that have higher malaria morbidity as compared to the rest of the country. Malaria endemicity is also influenced by temperature and rainfall and altitude also influences temperature and rainfall [50, 51], this is explored in further work using spatial modelling.
Education level of the mother also showed significance (p ≤ 0.001). The results showed that the more educated a mother was, the less likely the child was to have blood smear positive malaria. This could be due to the fact that an educated mother better understands information on malaria and are more likely to implement properly the preventive measures that they are taught. And also that educated mothers a more likely to be employed or be entrepreneurs, hence getting income to sustain the family and children better.
Child related variables (haemoglobin level, position of child and age of child) were also significant in influencing blood smear positive malaria in children under five. Studies [19, 5254] have shown that anaemia is a complication of malaria so this study confirms this and children with a low haemoglobin level had higher chances of having malaria as compared to children with normal haemoglobin levels From the descriptive statistics only 32.3% were not anemic and this might be linked to the low SES resulting in poor nutrition [45]. Water bodies especially stagnant water sources [50, 51] are known as breeding places for mosquitoes, therefore, this study showed that those who were nearer to water sources were at a higher risk for malaria.
The G-SEM’s indirect pathways also showed a significant association between cluster altitude and region as well as between SES and education level. G-SEM was used in this study to complement the results from the multiple variable analysis and the results showed that the multiple variable analysis and the G-SEM direct pathways show similar results. G-SEM can help in diagrammatically conceptualizing the effects of the determinants on the outcome and this helps in analysis where the variables can then be separated into those with a direct effect on the outcome and those with an indirect effect on the outcome. This will help to explain better some factors that might not directly affect the outcome, and inform policy on adopting indirect and direct approaches to dealing with the disease in children.
Some of the study limitations were that the data could not be verified and was used as it was and this might have limited the analysis as well. Multi-collinearity was another limitation of the study as some variables could not be used due this problem and were dropped from the multivariable analysis, resulting in loss of useful information and might have affected the interpretation of the results. In this study, data from a cross sectional study was used so although the study was looking at blood smear positive malaria, cross-sectional studies mainly measure prevalence and not incidence. This, therefore, limited the interpretation of the associations that were observed during data analysis. There was no temporal sequence that could be ascertained from this type of study design.
Strengths of the study were the use of propensity score matching in order to deal with selection bias and ultimately confounding. Matching was done based on insecticide treated net usage as this activity had the potential of confounding the outcome. The outcome was based on a rapid diagnostic test result as well as a laboratory test result for malaria so this was strength of the study in that the outcome was based on laboratory confirmed results and not affected by recall bias. Survey-adjusted multiple logistic regression as well as structural equation modelling were used in analysis to cater well for direct and indirect determinants.

Conclusions

It is important to understand the determinants of malaria so that effective monitoring and evaluation of malaria can be carried out. This study showed the importance of socio-economic status as well as education in the fight against malaria. In order for malaria to be eliminated in the population it is important for the government to empower the population economically and also ensure that health education is a part of the efforts that are put in place to fight malaria. This will assist in the fight to eliminate malaria. It is important to ensure that resources are channeled in order to optimize prevention strategies that are put in place. Once the population is empowered, then preventative strategies for malaria elimination can then be implemented successfully and if the population is educated, then it is able to understand better the strategies in place and implement them successfully. The other important determinates also are linked to socio-economic status, therefore, reduction of poverty will go a long way in the fight to eliminate malaria.

Authors’ contributions

S.C contributed to the structuring of the paper, running the statistical analysis, writing of all drafts of the paper, addressing peer reviewers’ and co-authors’ comments. EM contributed to the conceptualisation of research question based on main concepts. All authors read and approved the final manuscript.

Acknowledgements

The authors would like to thank the division of Epidemiology and Biostatistics at the School of Public Health, the University of the Witwatersrand for the support that they offered in the drafting of this paper and ensuring that the study received ethics approval. We also would like to thank the DST/NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA) for providing funding that made this research work possible.

Compliance with ethical guidelines

Competing interests The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Mhalu FS (2005) Burden of diseases in poor resource countries: meeting the challenges of combating HIV/AIDS, tuberculosis and malaria. Tanzan Health Res Bull 7:179–184PubMed Mhalu FS (2005) Burden of diseases in poor resource countries: meeting the challenges of combating HIV/AIDS, tuberculosis and malaria. Tanzan Health Res Bull 7:179–184PubMed
3.
Zurück zum Zitat WHO (2004) Malaria and HIV/AIDS interactions and implications: conclusions of a technical consultation convened by WHO. World Health Organization, pp 23–25 WHO (2004) Malaria and HIV/AIDS interactions and implications: conclusions of a technical consultation convened by WHO. World Health Organization, pp 23–25
4.
Zurück zum Zitat Lowe R, Chirombo J, Tompkins AM (2013) Relative importance of climatic, geographic and socio-economic determinants of malaria in Malawi. Malar J 12:416PubMedCentralPubMedCrossRef Lowe R, Chirombo J, Tompkins AM (2013) Relative importance of climatic, geographic and socio-economic determinants of malaria in Malawi. Malar J 12:416PubMedCentralPubMedCrossRef
5.
Zurück zum Zitat Casella G, George EI (1992) Explaining the Gibbs sampler. Am Stat 46:167–174 Casella G, George EI (1992) Explaining the Gibbs sampler. Am Stat 46:167–174
8.
Zurück zum Zitat Snow RW, Omumbo JA (2006) Malaria. In: Jamison DT, Feachem RG, Makgoba MW, Bos ER, Baingana FK, Hofman KJ et al (eds) Disease and Mortality in Sub-Saharan Africa, 2nd edn. World Bank, Washington, DC Snow RW, Omumbo JA (2006) Malaria. In: Jamison DT, Feachem RG, Makgoba MW, Bos ER, Baingana FK, Hofman KJ et al (eds) Disease and Mortality in Sub-Saharan Africa, 2nd edn. World Bank, Washington, DC
9.
Zurück zum Zitat Patz JA, Olson SH (2006) Malaria risk and temperature: Influences from global climate change and local land use practices. Proc Natl Acad Sci USA 103:5635–5636PubMedCentralPubMedCrossRef Patz JA, Olson SH (2006) Malaria risk and temperature: Influences from global climate change and local land use practices. Proc Natl Acad Sci USA 103:5635–5636PubMedCentralPubMedCrossRef
10.
Zurück zum Zitat Hay SI, Guerra CA, Gething PW, Patil AP, Tatem AJ, Noor AM et al (2009) A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med 6:e1000048PubMedCentralPubMedCrossRef Hay SI, Guerra CA, Gething PW, Patil AP, Tatem AJ, Noor AM et al (2009) A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med 6:e1000048PubMedCentralPubMedCrossRef
11.
Zurück zum Zitat Tanser FC, Sharp B, Le Sueur D (2003) Potential effect of climate change on malaria transmission in Africa. Lancet 362:1792–1798PubMedCrossRef Tanser FC, Sharp B, Le Sueur D (2003) Potential effect of climate change on malaria transmission in Africa. Lancet 362:1792–1798PubMedCrossRef
12.
Zurück zum Zitat Kiszewski A, Mellinger A, Spielman A, Malaney P, Sachs SE, Sachs J (2004) A global index representing the stability of malaria transmission. Am J Trop Med Hyg 70:486–498PubMed Kiszewski A, Mellinger A, Spielman A, Malaney P, Sachs SE, Sachs J (2004) A global index representing the stability of malaria transmission. Am J Trop Med Hyg 70:486–498PubMed
13.
Zurück zum Zitat Somi MF, Butler JR, Vahid F, Njau J, Kachur SP, Abdulla S (2007) Is there evidence for dual causation between malaria and socioeconomic status? Findings from rural Tanzania. Am J Trop Med Hyg 77:1020–1027PubMed Somi MF, Butler JR, Vahid F, Njau J, Kachur SP, Abdulla S (2007) Is there evidence for dual causation between malaria and socioeconomic status? Findings from rural Tanzania. Am J Trop Med Hyg 77:1020–1027PubMed
14.
Zurück zum Zitat Robert V, Macintyre K, Keating J, Trape J-F, Duchemin J-B, Warren M et al (2003) Malaria transmission in urban sub-Saharan Africa. Am J Trop Med Hyg 68:169–176PubMed Robert V, Macintyre K, Keating J, Trape J-F, Duchemin J-B, Warren M et al (2003) Malaria transmission in urban sub-Saharan Africa. Am J Trop Med Hyg 68:169–176PubMed
15.
Zurück zum Zitat Hay SI, Guerra CA, Tatem AJ, Atkinson PM, Snow RW (2005) Tropical infectious diseases: urbanization, malaria transmission and disease burden in Africa. Nat Rev Microbiol 3:81–90PubMedCentralPubMedCrossRef Hay SI, Guerra CA, Tatem AJ, Atkinson PM, Snow RW (2005) Tropical infectious diseases: urbanization, malaria transmission and disease burden in Africa. Nat Rev Microbiol 3:81–90PubMedCentralPubMedCrossRef
16.
Zurück zum Zitat Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434:214–217PubMedCentralPubMedCrossRef Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434:214–217PubMedCentralPubMedCrossRef
17.
Zurück zum Zitat Bi P, Tong S, Donald K, Parton KA, Ni J (2003) Climatic variables and transmission of malaria: a 12-year data analysis in Shuchen County China. Public Health Reports 118:65PubMedCentralPubMedCrossRef Bi P, Tong S, Donald K, Parton KA, Ni J (2003) Climatic variables and transmission of malaria: a 12-year data analysis in Shuchen County China. Public Health Reports 118:65PubMedCentralPubMedCrossRef
18.
Zurück zum Zitat Bruce MC, Macheso A, Kelly-Hope LA, Nkhoma S, McConnachie A, Molyneux ME (2008) Effect of transmission setting and mixed species infections on clinical measures of malaria in Malawi. PLoS One 3:e2775PubMedCentralPubMedCrossRef Bruce MC, Macheso A, Kelly-Hope LA, Nkhoma S, McConnachie A, Molyneux ME (2008) Effect of transmission setting and mixed species infections on clinical measures of malaria in Malawi. PLoS One 3:e2775PubMedCentralPubMedCrossRef
19.
Zurück zum Zitat Price RN, Simpson JA, Nosten F, Luxemburger C, Hkirjaroen L, ter Kuile F et al (2001) Factors contributing to anemia after uncomplicated falciparum malaria. Am J Trop Med Hyg 65:614–622PubMedCentralPubMed Price RN, Simpson JA, Nosten F, Luxemburger C, Hkirjaroen L, ter Kuile F et al (2001) Factors contributing to anemia after uncomplicated falciparum malaria. Am J Trop Med Hyg 65:614–622PubMedCentralPubMed
20.
Zurück zum Zitat Thomson MC, Doblas-Reyes FJ, Mason SJ, Hagedorn R, Connor SJ, Phindela T et al (2006) Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 439:576–579PubMedCrossRef Thomson MC, Doblas-Reyes FJ, Mason SJ, Hagedorn R, Connor SJ, Phindela T et al (2006) Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 439:576–579PubMedCrossRef
21.
Zurück zum Zitat Snow RW, Craig MH, Newton C, Steketee RW (2003) The public health burden of Plasmodium falciparum malaria in Africa. Working Paper 11. Disease Control Priorities Project, Fogarty International Center, National Institutes of Health, Bethesda Snow RW, Craig MH, Newton C, Steketee RW (2003) The public health burden of Plasmodium falciparum malaria in Africa. Working Paper 11. Disease Control Priorities Project, Fogarty International Center, National Institutes of Health, Bethesda
22.
Zurück zum Zitat Van Lieshout M, Kovats R, Livermore M, Martens P (2004) Climate change and malaria: analysis of the SRES climate and socio-economic scenarios. Glob Environ Change 14:87–99CrossRef Van Lieshout M, Kovats R, Livermore M, Martens P (2004) Climate change and malaria: analysis of the SRES climate and socio-economic scenarios. Glob Environ Change 14:87–99CrossRef
24.
Zurück zum Zitat Okiro EA, Noor AM, Malinga J, Mitto B, Mundia CW, Mathanga D et al. (2014) An epidemiological profile of malaria and its control in Malawi. A report prepared for the Ministry of Health, the Roll Back Malaria partnership and the Department for International Development, UK Okiro EA, Noor AM, Malinga J, Mitto B, Mundia CW, Mathanga D et al. (2014) An epidemiological profile of malaria and its control in Malawi. A report prepared for the Ministry of Health, the Roll Back Malaria partnership and the Department for International Development, UK
26.
Zurück zum Zitat Heilig GK (2012)World urbanization prospects the 2011 revision. United Nations, Department of Economic and Social Affairs (DESA), Population Division, Population Estimates and Projections Section, New York Heilig GK (2012)World urbanization prospects the 2011 revision. United Nations, Department of Economic and Social Affairs (DESA), Population Division, Population Estimates and Projections Section, New York
27.
Zurück zum Zitat Muula AS, Rudatsikira E, Siziya S, Mataya RH (2007) Estimated financial and human resources requirements for the treatment of malaria in Malawi. Malar J 6:168PubMedCentralPubMedCrossRef Muula AS, Rudatsikira E, Siziya S, Mataya RH (2007) Estimated financial and human resources requirements for the treatment of malaria in Malawi. Malar J 6:168PubMedCentralPubMedCrossRef
28.
Zurück zum Zitat Chavasse D, Kolwicz C, Smith B (2001) Preventing malaria in Malawi. Essential Drugs Monitor 30:1–3 Chavasse D, Kolwicz C, Smith B (2001) Preventing malaria in Malawi. Essential Drugs Monitor 30:1–3
29.
Zurück zum Zitat Guerra CA, Gikandi PW, Tatem AJ, Noor AM, Smith DL, Hay SI et al (2008) The limits and intensity of Plasmodium falciparum transmission: implications for malaria control and elimination worldwide. PLoS Med 5:e38PubMedCentralPubMedCrossRef Guerra CA, Gikandi PW, Tatem AJ, Noor AM, Smith DL, Hay SI et al (2008) The limits and intensity of Plasmodium falciparum transmission: implications for malaria control and elimination worldwide. PLoS Med 5:e38PubMedCentralPubMedCrossRef
30.
Zurück zum Zitat Feachem RG, Phillips AA, Hwang J, Cotter C, Wielgosz B, Greenwood BM et al (2010) Shrinking the malaria map: progress and prospects. Lancet 376:1566–1578PubMedCentralPubMedCrossRef Feachem RG, Phillips AA, Hwang J, Cotter C, Wielgosz B, Greenwood BM et al (2010) Shrinking the malaria map: progress and prospects. Lancet 376:1566–1578PubMedCentralPubMedCrossRef
32.
Zurück zum Zitat Carneiro I, Roca-Feltrer A, Griffin JT, Smith L, Tanner M, Schellenberg JA et al (2010) Age-patterns of malaria vary with severity, transmission intensity and seasonality in sub-Saharan Africa: a systematic review and pooled analysis. PLoS One 5:e8988PubMedCentralPubMedCrossRef Carneiro I, Roca-Feltrer A, Griffin JT, Smith L, Tanner M, Schellenberg JA et al (2010) Age-patterns of malaria vary with severity, transmission intensity and seasonality in sub-Saharan Africa: a systematic review and pooled analysis. PLoS One 5:e8988PubMedCentralPubMedCrossRef
33.
Zurück zum Zitat Griffin JT, Hollingsworth TD, Okell LC, Churcher TS, White M, Hinsley W et al (2010) Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med 7:e1000324PubMedCentralPubMedCrossRef Griffin JT, Hollingsworth TD, Okell LC, Churcher TS, White M, Hinsley W et al (2010) Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med 7:e1000324PubMedCentralPubMedCrossRef
34.
Zurück zum Zitat Metanat M (2015) Malaria in children. Int J Infect 2:e20984 Metanat M (2015) Malaria in children. Int J Infect 2:e20984
36.
Zurück zum Zitat Musenge E, Chirwa TF, Kahn K, Vounatsou P (2013) Bayesian analysis of zero inflated spatiotemporal HIV/TB child mortality data through the INLA and SPDE approaches: Applied to data observed between 1992 and 2010 in rural North East South Africa. Int J Appl Earth Obs Geoinf 22:86–98PubMedCentralPubMedCrossRef Musenge E, Chirwa TF, Kahn K, Vounatsou P (2013) Bayesian analysis of zero inflated spatiotemporal HIV/TB child mortality data through the INLA and SPDE approaches: Applied to data observed between 1992 and 2010 in rural North East South Africa. Int J Appl Earth Obs Geoinf 22:86–98PubMedCentralPubMedCrossRef
37.
Zurück zum Zitat Austin PC (2011) An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar Behav Res 46:399–424CrossRef Austin PC (2011) An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar Behav Res 46:399–424CrossRef
38.
Zurück zum Zitat Sarna A, Luchters S, Musenge E, Okal J, Chersich M, Tun W et al (2013) Effectiveness of a community-based positive prevention intervention for people living with HIV who are not receiving antiretroviral treatment: a prospective cohort study. Glob Health Sci Pract 1:52–67PubMedCentralPubMedCrossRef Sarna A, Luchters S, Musenge E, Okal J, Chersich M, Tun W et al (2013) Effectiveness of a community-based positive prevention intervention for people living with HIV who are not receiving antiretroviral treatment: a prospective cohort study. Glob Health Sci Pract 1:52–67PubMedCentralPubMedCrossRef
39.
Zurück zum Zitat Rubin DB, Thomas N (1996) Matching using estimated propensity scores: relating theory to practice. Biometrics 52:249–264PubMedCrossRef Rubin DB, Thomas N (1996) Matching using estimated propensity scores: relating theory to practice. Biometrics 52:249–264PubMedCrossRef
40.
Zurück zum Zitat Messina JP, Taylor SM, Meshnick SR, Linke AM, Tshefu AK, Atua B et al (2011) Population, behavioural and environmental drivers of malaria prevalence in the Democratic Republic of Congo. Malar J 10:161PubMedCentralPubMedCrossRef Messina JP, Taylor SM, Meshnick SR, Linke AM, Tshefu AK, Atua B et al (2011) Population, behavioural and environmental drivers of malaria prevalence in the Democratic Republic of Congo. Malar J 10:161PubMedCentralPubMedCrossRef
41.
Zurück zum Zitat Akazili J, Aikins M, Binka FN (2008) Malaria treatment in Northern Ghana: what is the treatment cost per case to households? Afr J Health Sci 14:70–79 Akazili J, Aikins M, Binka FN (2008) Malaria treatment in Northern Ghana: what is the treatment cost per case to households? Afr J Health Sci 14:70–79
42.
44.
Zurück zum Zitat Okenu DM (1999) An integrated approach for malaria control in Africa. Malar Infect Dis Afr 10:4–13 Okenu DM (1999) An integrated approach for malaria control in Africa. Malar Infect Dis Afr 10:4–13
45.
Zurück zum Zitat Caulfield LE, Richard SA, Black RE (2004) Undernutrition as an underlying cause of malaria morbidity and mortality in children less than 5 years old. Am J Trop Med Hyg 71:55–63PubMed Caulfield LE, Richard SA, Black RE (2004) Undernutrition as an underlying cause of malaria morbidity and mortality in children less than 5 years old. Am J Trop Med Hyg 71:55–63PubMed
46.
Zurück zum Zitat Stratton L, O’Neill MS, Kruk ME, Bell ML (2008) The persistent problem of malaria: Addressing the fundamental causes of a global killer. Soc Sci Med 67:854–862PubMedCrossRef Stratton L, O’Neill MS, Kruk ME, Bell ML (2008) The persistent problem of malaria: Addressing the fundamental causes of a global killer. Soc Sci Med 67:854–862PubMedCrossRef
47.
Zurück zum Zitat Drakeley C, Corran P, Coleman P, Tongren J, McDonald S, Carneiro I et al (2005) Estimating medium-and long-term trends in malaria transmission by using serological markers of malaria exposure. Proc Natl Acad Sci USA 102:5108–5113PubMedCentralPubMedCrossRef Drakeley C, Corran P, Coleman P, Tongren J, McDonald S, Carneiro I et al (2005) Estimating medium-and long-term trends in malaria transmission by using serological markers of malaria exposure. Proc Natl Acad Sci USA 102:5108–5113PubMedCentralPubMedCrossRef
48.
Zurück zum Zitat Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW (2004) The global distribution and population at risk of malaria: past, present, and future. Lancet Infect Dis 4:327–336PubMedCentralPubMedCrossRef Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW (2004) The global distribution and population at risk of malaria: past, present, and future. Lancet Infect Dis 4:327–336PubMedCentralPubMedCrossRef
49.
Zurück zum Zitat Lindsay S, Martens W (1998) Malaria in the African highlands: past, present and future. Bull World Health Organ 76:33PubMedCentralPubMed Lindsay S, Martens W (1998) Malaria in the African highlands: past, present and future. Bull World Health Organ 76:33PubMedCentralPubMed
50.
Zurück zum Zitat Cibulskis RE, Aregawi M, Williams R, Otten M, Dye C (2011) Worldwide incidence of malaria in 2009: estimates, time trends, and a critique of methods. PLoS Med 8:e1001142PubMedCentralPubMedCrossRef Cibulskis RE, Aregawi M, Williams R, Otten M, Dye C (2011) Worldwide incidence of malaria in 2009: estimates, time trends, and a critique of methods. PLoS Med 8:e1001142PubMedCentralPubMedCrossRef
52.
Zurück zum Zitat Oladeinde B, Omoregie R, Olley M, Anunibe J, Onifade A, Oladeinde O (2012) Malaria and anemia among children in a low resource setting in Nigeria. Iran J Parasitol 7:31PubMedCentralPubMed Oladeinde B, Omoregie R, Olley M, Anunibe J, Onifade A, Oladeinde O (2012) Malaria and anemia among children in a low resource setting in Nigeria. Iran J Parasitol 7:31PubMedCentralPubMed
54.
Zurück zum Zitat Carneiro IA, Smith T, Lusingu JP, Malima R, Utzinger J, Drakeley CJ (2006) Modeling the relationship between the population prevalence of Plasmodium falciparum malaria and anemia. Am J Trop Med Hyg 75:82–89PubMed Carneiro IA, Smith T, Lusingu JP, Malima R, Utzinger J, Drakeley CJ (2006) Modeling the relationship between the population prevalence of Plasmodium falciparum malaria and anemia. Am J Trop Med Hyg 75:82–89PubMed
Metadaten
Titel
Direct and indirect determinants of childhood malaria morbidity in Malawi: a survey cross-sectional analysis based on malaria indicator survey data for 2012
verfasst von
Simangaliso Chitunhu
Eustasius Musenge
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
Malaria Journal / Ausgabe 1/2015
Elektronische ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0777-1

Weitere Artikel der Ausgabe 1/2015

Malaria Journal 1/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.