Skip to main content
Erschienen in: Drugs & Aging 8/2011

01.08.2011 | Leading Article

Disease Modification in Parkinson’s Disease

verfasst von: Claire Henchcliffe, M.D., D.Phil., W. Lawrence Severt

Erschienen in: Drugs & Aging | Ausgabe 8/2011

Einloggen, um Zugang zu erhalten

Abstract

Parkinson’s disease (PD) is an age-related, progressive, multisystem neurodegenerative disorder resulting in significant morbidity and mortality, as well as a growing social and financial burden in an aging population. The hallmark of PD is loss of dopaminergic neurons of the substantia nigra pars compacta, leading to bradykinesia, rigidity and tremor. Current pharmacological treatment is therefore centred upon dopamine replacement to alleviate symptoms. However, two major problems complicate this approach: (i) motor symptoms continue to progress, requiring increasing doses of medication, which result in both short-term adverse effects and intermediate- to long-term motor complications; (ii) dopamine replacement does little to treat non-dopaminergic motor and non-motor symptoms, which are an important source of morbidity, including dementia, sleep disturbances, depression, orthostatic hypotension, and postural instability leading to falls. It is critical, therefore, to develop a broader and more fundamental therapeutic approach to PD, and major research efforts have focused upon developing neuroprotective interventions.
Despite many encouraging preclinical data suggesting the possibility of addressing the underlying pathophysiology by slowing cell loss, efforts to translate this into the clinical realm have largely proved disappointing in the past. Barriers to finding neuroprotective or disease-modifying drugs in PD include a lack of validated biomarkers of progression, which hampers clinical trial design and interpretation; difficulties separating symptomatic and neuroprotective effects of candidate neuroprotective therapies; and possibly fundamental flaws in some of the basic preclinical models and testing.
However, three recent clinical trials have used a novel delayed-start design in an attempt to overcome some of these roadblocks. While not examining markers of cell loss and function, which would determine neuroprotective effects, this trial design pragmatically tests whether earlier versus later intervention is beneficial. If positive (i.e. if an earlier intervention proves more effective), this demonstrates disease modification, which could result from neuroprotection or from other mechanisms. This strategy therefore provides a first step towards supporting neuroprotection in PD. Of the three delayed-start design clinical trials, two have investigated early versus later start of rasagiline, a specific irreversible monoamine oxidase B inhibitor. Each trial has supported, although not proven, disease-modifying effects. A third delayed-start-design clinical trial examining potential disease-modifying effects of pramipexole has unfortunately reportedly been negative according to preliminary presentations. The suggestion that rasagiline is disease modifying is made all the more compelling by in vitro and PD animal-model studies in which rasagiline was shown to have neuroprotective effects.
In this review, we examine efforts to demonstrate neuroprotection in PD to date, describe ongoing neuroprotection trials, and critically discuss the results of the most recent delayed-start clinical trials that test possible disease-modifying activities of rasagiline and pramipexole in PD.
Literatur
1.
Zurück zum Zitat Fahn S, Elton RL, UPDRS program members. Unified Parkinson’s Disease Rating Scale. Florham Park (NJ): Macmillan Healthcare Information, 1987 Fahn S, Elton RL, UPDRS program members. Unified Parkinson’s Disease Rating Scale. Florham Park (NJ): Macmillan Healthcare Information, 1987
2.
Zurück zum Zitat Fahn S, Oakes D, Shoulson I, et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med 2004; 351: 2498–508PubMedCrossRef Fahn S, Oakes D, Shoulson I, et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med 2004; 351: 2498–508PubMedCrossRef
3.
Zurück zum Zitat Goetz CG, Tilley BC, Shaftman SR, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 2008; 23: 2129–70PubMedCrossRef Goetz CG, Tilley BC, Shaftman SR, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 2008; 23: 2129–70PubMedCrossRef
4.
Zurück zum Zitat Hart RG, Pearce LA, Ravina BM, et al. Neuroprotection trials in Parkinson’s disease: systematic review. Mov Disord 2009; 24: 647–54PubMedCrossRef Hart RG, Pearce LA, Ravina BM, et al. Neuroprotection trials in Parkinson’s disease: systematic review. Mov Disord 2009; 24: 647–54PubMedCrossRef
5.
Zurück zum Zitat Shults CW, Oakes D, Kieburtz K, et al. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol 2002; 59: 1541–50PubMedCrossRef Shults CW, Oakes D, Kieburtz K, et al. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol 2002; 59: 1541–50PubMedCrossRef
6.
Zurück zum Zitat Castagnoli K, Palmer S, Castagnoli Jr N. Neuroprotection by (R)-deprenyl and 7-nitroindazole in the MPTP C57BL/6 mouse model of neurotoxicity. Neurobiology (Bp) 1999; 7: 135–49 Castagnoli K, Palmer S, Castagnoli Jr N. Neuroprotection by (R)-deprenyl and 7-nitroindazole in the MPTP C57BL/6 mouse model of neurotoxicity. Neurobiology (Bp) 1999; 7: 135–49
7.
Zurück zum Zitat Muralikrishnan D, Samantaray S, Mohanakumar KP. D-deprenyl protects nigrostriatal neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity. Synapse 2003; 50: 7–13PubMedCrossRef Muralikrishnan D, Samantaray S, Mohanakumar KP. D-deprenyl protects nigrostriatal neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity. Synapse 2003; 50: 7–13PubMedCrossRef
8.
Zurück zum Zitat Miyake Y, Fukushima W, Tanaka K, et al. Dietary intake of antioxidant vitamins and risk of Parkinson’s disease: a case-control study in Japan. Eur J Neurol 2011; 18: 106–13PubMedCrossRef Miyake Y, Fukushima W, Tanaka K, et al. Dietary intake of antioxidant vitamins and risk of Parkinson’s disease: a case-control study in Japan. Eur J Neurol 2011; 18: 106–13PubMedCrossRef
9.
Zurück zum Zitat Etminan M, Gill SS, Samii A. Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson’s disease: a meta-analysis. Lancet Neurol 2005; 4: 362–5PubMedCrossRef Etminan M, Gill SS, Samii A. Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson’s disease: a meta-analysis. Lancet Neurol 2005; 4: 362–5PubMedCrossRef
10.
Zurück zum Zitat Birkmayer W, Knoll J, Riederer P, et al. Increased life expectancy resulting from addition of L-deprenyl to Mado-par treatment in Parkinson’s disease: a long term study. J Neural Transm 1985; 64: 113–27PubMedCrossRef Birkmayer W, Knoll J, Riederer P, et al. Increased life expectancy resulting from addition of L-deprenyl to Mado-par treatment in Parkinson’s disease: a long term study. J Neural Transm 1985; 64: 113–27PubMedCrossRef
11.
Zurück zum Zitat Tetrud JW, Langston JW. The effect of deprenyl (selegiline) on the natural history of Parkinson’s disease. Science 1989; 245: 519–22PubMedCrossRef Tetrud JW, Langston JW. The effect of deprenyl (selegiline) on the natural history of Parkinson’s disease. Science 1989; 245: 519–22PubMedCrossRef
12.
Zurück zum Zitat Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. The Parkinson Study Group. N Engl J Med 1993; 328: 176–83 Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. The Parkinson Study Group. N Engl J Med 1993; 328: 176–83
13.
Zurück zum Zitat Shoulson I, Oakes D, Fahn S, et al. Impact of sustained deprenyl (selegiline) in levodopa-treated Parkinson’s disease: a randomized placebo-controlled extension of the deprenyl and tocopherol antioxidative therapy of parkin-sonism trial. Ann Neurol 2002; 51: 604–12PubMedCrossRef Shoulson I, Oakes D, Fahn S, et al. Impact of sustained deprenyl (selegiline) in levodopa-treated Parkinson’s disease: a randomized placebo-controlled extension of the deprenyl and tocopherol antioxidative therapy of parkin-sonism trial. Ann Neurol 2002; 51: 604–12PubMedCrossRef
14.
Zurück zum Zitat Palhagen S, Heinonen EH, Hagglund J, et al. Selegiline delays the onset of disability in de novo parkinsonian patients. Swedish Parkinson Study Group. Neurology 1998; 51: 520–5PubMedCrossRef Palhagen S, Heinonen EH, Hagglund J, et al. Selegiline delays the onset of disability in de novo parkinsonian patients. Swedish Parkinson Study Group. Neurology 1998; 51: 520–5PubMedCrossRef
15.
Zurück zum Zitat Pramipexole vs levodopa as initial treatment for Parkinson disease: a randomized controlled trial. Parkinson Study Group. JAMA 2000; 284: 1931–8 Pramipexole vs levodopa as initial treatment for Parkinson disease: a randomized controlled trial. Parkinson Study Group. JAMA 2000; 284: 1931–8
16.
Zurück zum Zitat Long-term effect of initiating pramipexole vs levodopa in early Parkinson disease. Parkinson Study Group CALM Cohort Investigators. Arch Neurol 2009; 66: 563–70 Long-term effect of initiating pramipexole vs levodopa in early Parkinson disease. Parkinson Study Group CALM Cohort Investigators. Arch Neurol 2009; 66: 563–70
17.
Zurück zum Zitat Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. Parkinson Study Group. JAMA 2002; 287: 1653–61 Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. Parkinson Study Group. JAMA 2002; 287: 1653–61
18.
Zurück zum Zitat Albrecht S, Buerger E. Potential neuroprotection mechanisms in PD: focus on dopamine agonist pramipexole. Curr Med Res Opin 2009; 25: 2977–87PubMedCrossRef Albrecht S, Buerger E. Potential neuroprotection mechanisms in PD: focus on dopamine agonist pramipexole. Curr Med Res Opin 2009; 25: 2977–87PubMedCrossRef
19.
Zurück zum Zitat Li C, Guo Y, Xie W, et al. Neuroprotection of pramipexole in UPS impairment induced animal model of Parkinson’s disease. Neurochem Res 2010; 35: 1546–56PubMedCrossRef Li C, Guo Y, Xie W, et al. Neuroprotection of pramipexole in UPS impairment induced animal model of Parkinson’s disease. Neurochem Res 2010; 35: 1546–56PubMedCrossRef
20.
Zurück zum Zitat Du F, Li R, Huang Y, et al. Dopamine D3 receptor-preferring agonists induce neurotrophic effects on mesencephalic dop-amine neurons. Eur J Neurosci 2005; 22: 2422–30PubMedCrossRef Du F, Li R, Huang Y, et al. Dopamine D3 receptor-preferring agonists induce neurotrophic effects on mesencephalic dop-amine neurons. Eur J Neurosci 2005; 22: 2422–30PubMedCrossRef
21.
Zurück zum Zitat Ling ZD, Robie HC, Tong CW, et al. Both the antioxidant and D3 agonist actions of pramipexole mediate its neuroprotective actions in mesencephalic cultures. J Pharmacol Exp Ther 1999; 289: 202–10PubMed Ling ZD, Robie HC, Tong CW, et al. Both the antioxidant and D3 agonist actions of pramipexole mediate its neuroprotective actions in mesencephalic cultures. J Pharmacol Exp Ther 1999; 289: 202–10PubMed
22.
Zurück zum Zitat Iida M, Miyazaki I, Tanaka K, et al. Dopamine D2 receptor-mediated antioxidant and neuroprotective effects of ropinirole, a dopamine agonist. Brain Res 1999; 838: 51–9PubMedCrossRef Iida M, Miyazaki I, Tanaka K, et al. Dopamine D2 receptor-mediated antioxidant and neuroprotective effects of ropinirole, a dopamine agonist. Brain Res 1999; 838: 51–9PubMedCrossRef
23.
Zurück zum Zitat Whone AL, Watts RL, Stoessl AJ, et al. Slower progression of Parkinson’s disease with ropinirole versus levodopa: The REAL-PET study. Ann Neurol 2003; 54: 93–101PubMedCrossRef Whone AL, Watts RL, Stoessl AJ, et al. Slower progression of Parkinson’s disease with ropinirole versus levodopa: The REAL-PET study. Ann Neurol 2003; 54: 93–101PubMedCrossRef
24.
Zurück zum Zitat Pavese N, Kiferle L, Piccini P. Neuroprotection and imaging studies in Parkinson’s disease. Parkinsonism Relat Disord 2009; 15Suppl. 4: S33–7PubMedCrossRef Pavese N, Kiferle L, Piccini P. Neuroprotection and imaging studies in Parkinson’s disease. Parkinsonism Relat Disord 2009; 15Suppl. 4: S33–7PubMedCrossRef
25.
Zurück zum Zitat Guttman M, Stewart D, Hussey D, et al. Influence of L-dopa and pramipexole on striatal dopamine transporter in early PD. Neurology 2001; 56: 1559–64PubMedCrossRef Guttman M, Stewart D, Hussey D, et al. Influence of L-dopa and pramipexole on striatal dopamine transporter in early PD. Neurology 2001; 56: 1559–64PubMedCrossRef
26.
Zurück zum Zitat Jennings DL, Tabama R, Seibyl JP, et al. Investigating the effect of short term treatment with pramipexole or levodopa on [123I]-beta-CIT-SPECT imaging. Mov Dis 2007; 22 Suppl.: S143 Jennings DL, Tabama R, Seibyl JP, et al. Investigating the effect of short term treatment with pramipexole or levodopa on [123I]-beta-CIT-SPECT imaging. Mov Dis 2007; 22 Suppl.: S143
27.
Zurück zum Zitat Fahn S. Parkinson disease, the effect of levodopa, and the ELLDOPA trial: earlier vs later L-DOPA. Arch Neurol 1999; 56: 529–35PubMedCrossRef Fahn S. Parkinson disease, the effect of levodopa, and the ELLDOPA trial: earlier vs later L-DOPA. Arch Neurol 1999; 56: 529–35PubMedCrossRef
28.
Zurück zum Zitat Fernagut PO, Li Q, Dovero S, et al. Dopamine transporter binding is unaffected by L-DOPA administration in normal and MPTP-treated monkeys. PLoS One 2010 Nov 22; 5(11): e14053PubMedCrossRef Fernagut PO, Li Q, Dovero S, et al. Dopamine transporter binding is unaffected by L-DOPA administration in normal and MPTP-treated monkeys. PLoS One 2010 Nov 22; 5(11): e14053PubMedCrossRef
29.
Zurück zum Zitat Olanow CW, Rascol O, Hauser R, et al. A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. N Engl J Med 2009; 361: 1268–78PubMedCrossRef Olanow CW, Rascol O, Hauser R, et al. A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. N Engl J Med 2009; 361: 1268–78PubMedCrossRef
30.
31.
Zurück zum Zitat Freedman NM, Mishani E, Krausz Y, et al. In vivo measurement of brain monoamine oxidase B occupancy by rasagiline, using(11)C-l-deprenyl and PET. JNucl Med 2005; 46:1618–24 Freedman NM, Mishani E, Krausz Y, et al. In vivo measurement of brain monoamine oxidase B occupancy by rasagiline, using(11)C-l-deprenyl and PET. JNucl Med 2005; 46:1618–24
32.
Zurück zum Zitat Parkinson Study Group. A controlled trial of rasagiline in early Parkinson disease: the TEMPO Study. Arch Neurol 2002; 59: 1937–43CrossRef Parkinson Study Group. A controlled trial of rasagiline in early Parkinson disease: the TEMPO Study. Arch Neurol 2002; 59: 1937–43CrossRef
33.
Zurück zum Zitat Parkinson Study Group. A controlled, randomized, delayed-start study of rasagiline in early Parkinson disease. Arch Neurol 2004; 61: 561–6CrossRef Parkinson Study Group. A controlled, randomized, delayed-start study of rasagiline in early Parkinson disease. Arch Neurol 2004; 61: 561–6CrossRef
34.
Zurück zum Zitat Hauser RA, Lew MF, Hurtig HI, et al. Long-term outcome of early versus delayed rasagiline treatment in early Parkinson’s disease. Mov Disord 2009; 24: 564–73PubMedCrossRef Hauser RA, Lew MF, Hurtig HI, et al. Long-term outcome of early versus delayed rasagiline treatment in early Parkinson’s disease. Mov Disord 2009; 24: 564–73PubMedCrossRef
35.
Zurück zum Zitat Finberg JP, Takeshima T, Johnston JM, et al. Increased survival of dopaminergic neurons by rasagiline, a mono-amine oxidase B inhibitor. Neuroreport 1998; 9: 703–7PubMedCrossRef Finberg JP, Takeshima T, Johnston JM, et al. Increased survival of dopaminergic neurons by rasagiline, a mono-amine oxidase B inhibitor. Neuroreport 1998; 9: 703–7PubMedCrossRef
36.
Zurück zum Zitat Heikkila RE, Duvoisin RC, Finberg JP, et al. Prevention of MPTP-induced neurotoxicity by AGN-1133 and AGN-1135, selective inhibitors of monoamine oxidase-B. Eur J Pharmacol 1985; 116: 313–7PubMedCrossRef Heikkila RE, Duvoisin RC, Finberg JP, et al. Prevention of MPTP-induced neurotoxicity by AGN-1133 and AGN-1135, selective inhibitors of monoamine oxidase-B. Eur J Pharmacol 1985; 116: 313–7PubMedCrossRef
37.
Zurück zum Zitat Akao Y, Maruyama W, Yi H, et al. An anti-Parkinson’s disease drug, N-propargyl-1(R)-aminoindan (rasagiline), enhances expression of anti-apoptotic bc1-2 in human dopaminergic SH-SY5Y cells. Neurosci Lett 2002; 326: 105–8PubMedCrossRef Akao Y, Maruyama W, Yi H, et al. An anti-Parkinson’s disease drug, N-propargyl-1(R)-aminoindan (rasagiline), enhances expression of anti-apoptotic bc1-2 in human dopaminergic SH-SY5Y cells. Neurosci Lett 2002; 326: 105–8PubMedCrossRef
38.
Zurück zum Zitat Maruyama W, Akao Y, Carrillo MC, et al. Neuroprotection by propargylamines in Parkinson’s disease: suppression of apoptosis and induction of prosurvival genes. Neurotox-icol Teratol 2002; 24: 675–82CrossRef Maruyama W, Akao Y, Carrillo MC, et al. Neuroprotection by propargylamines in Parkinson’s disease: suppression of apoptosis and induction of prosurvival genes. Neurotox-icol Teratol 2002; 24: 675–82CrossRef
39.
Zurück zum Zitat Chau KY, Cooper JM, Schapira AH. Rasagiline protects against alpha-synuclein induced sensitivity to oxidative stress in dopaminergic cells. Neurochem Int 2010; 57: 525–9PubMedCrossRef Chau KY, Cooper JM, Schapira AH. Rasagiline protects against alpha-synuclein induced sensitivity to oxidative stress in dopaminergic cells. Neurochem Int 2010; 57: 525–9PubMedCrossRef
40.
Zurück zum Zitat Weinreb O, Amit T, Bar-Am O, et al. Rasagiline: a novel anti-Parkinsonian monoamine oxidase-B inhibitor with neuroprotective activity. Prog Neurobiol 2010; 92: 330–44PubMedCrossRef Weinreb O, Amit T, Bar-Am O, et al. Rasagiline: a novel anti-Parkinsonian monoamine oxidase-B inhibitor with neuroprotective activity. Prog Neurobiol 2010; 92: 330–44PubMedCrossRef
41.
Zurück zum Zitat Weinreb O, Amit T, Bar-Am O, et al. Induction of neuro-trophic factors GDNF and BDNF associated with the mechanism of neurorescue action of rasagiline and lados-tigil: new insights and implications for therapy. Ann N Y Acad Sci 2007; 1122: 155–68PubMedCrossRef Weinreb O, Amit T, Bar-Am O, et al. Induction of neuro-trophic factors GDNF and BDNF associated with the mechanism of neurorescue action of rasagiline and lados-tigil: new insights and implications for therapy. Ann N Y Acad Sci 2007; 1122: 155–68PubMedCrossRef
42.
Zurück zum Zitat Carrillo MC, Minami C, Kitani K, et al. Enhancing effect of rasagiline on superoxide dismutase and catalase activities in the dopaminergic system in the rat. Life Sci 2000; 67: 577–85PubMedCrossRef Carrillo MC, Minami C, Kitani K, et al. Enhancing effect of rasagiline on superoxide dismutase and catalase activities in the dopaminergic system in the rat. Life Sci 2000; 67: 577–85PubMedCrossRef
43.
Zurück zum Zitat Youdim MB, Wadia A, Tatton W, et al. The anti-Parkinson drug rasagiline and its cholinesterase inhibitor derivatives exert neuroprotection unrelated to MAO inhibition in cell culture and in vivo. Ann N Y Acad Sci 2001; 939: 450–8PubMedCrossRef Youdim MB, Wadia A, Tatton W, et al. The anti-Parkinson drug rasagiline and its cholinesterase inhibitor derivatives exert neuroprotection unrelated to MAO inhibition in cell culture and in vivo. Ann N Y Acad Sci 2001; 939: 450–8PubMedCrossRef
44.
Zurück zum Zitat Schapira AH, Barone P, Comella C, et al. Immediate vs. delayed-start pramipexole in early Parkinson’s disease: the PROUD study [abstract]. Parkinsonism Relat Disord 2009; 15: S81CrossRef Schapira AH, Barone P, Comella C, et al. Immediate vs. delayed-start pramipexole in early Parkinson’s disease: the PROUD study [abstract]. Parkinsonism Relat Disord 2009; 15: S81CrossRef
45.
Zurück zum Zitat Schapira AH, Albrecht S, Barone P, et al. Rationale for delayed-start study of pramipexole in Parkinson’s disease: The PROUD study. Mov Disord 2010; 25: 1627–32PubMedCrossRef Schapira AH, Albrecht S, Barone P, et al. Rationale for delayed-start study of pramipexole in Parkinson’s disease: The PROUD study. Mov Disord 2010; 25: 1627–32PubMedCrossRef
46.
Zurück zum Zitat A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. NINDS NET-PD Investigators. Neurology 2006; 66: 664–71 A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. NINDS NET-PD Investigators. Neurology 2006; 66: 664–71
47.
Zurück zum Zitat Surmeier DJ. Calcium, ageing, and neuronal vulnerability in Parkinson’s disease. Lancet Neurol 2007; 6: 933–8PubMedCrossRef Surmeier DJ. Calcium, ageing, and neuronal vulnerability in Parkinson’s disease. Lancet Neurol 2007; 6: 933–8PubMedCrossRef
48.
Zurück zum Zitat Weisskopf MG, O’Reilly E, Chen H, et al. Plasma urate and risk of Parkinson’s disease. Am J Epidemiol 2007; 166: 561–7PubMedCrossRef Weisskopf MG, O’Reilly E, Chen H, et al. Plasma urate and risk of Parkinson’s disease. Am J Epidemiol 2007; 166: 561–7PubMedCrossRef
49.
Zurück zum Zitat Ascherio A, LeWitt PA, Xu K, et al. Urate as a predictor of the rate of clinical decline in Parkinson disease. Arch Neurol 2009; 66: 1460–8PubMedCrossRef Ascherio A, LeWitt PA, Xu K, et al. Urate as a predictor of the rate of clinical decline in Parkinson disease. Arch Neurol 2009; 66: 1460–8PubMedCrossRef
50.
Zurück zum Zitat Peterson AL, Nutt JG. Treatment of Parkinson’s disease with trophic factors. Neurotherapeutics 2008; 5: 270–80PubMedCrossRef Peterson AL, Nutt JG. Treatment of Parkinson’s disease with trophic factors. Neurotherapeutics 2008; 5: 270–80PubMedCrossRef
51.
Zurück zum Zitat Kaplitt MG. Parkinson disease: another player in gene therapy for Parkinson disease. Nat Rev Neurol 2010; 6: 7–8PubMedCrossRef Kaplitt MG. Parkinson disease: another player in gene therapy for Parkinson disease. Nat Rev Neurol 2010; 6: 7–8PubMedCrossRef
52.
Zurück zum Zitat Ahlskog JE, Uitti RJ. Rasagiline, Parkinson neuroprotection, and delayed-start trials: still no satisfaction? Neurology 2010; 74: 1143–8PubMedCrossRef Ahlskog JE, Uitti RJ. Rasagiline, Parkinson neuroprotection, and delayed-start trials: still no satisfaction? Neurology 2010; 74: 1143–8PubMedCrossRef
53.
Zurück zum Zitat Olanow CW, Rascol O. The delayed-start study in Parkinson disease: can’t satisfy everyone. Neurology 2010; 74: 1149–50PubMedCrossRef Olanow CW, Rascol O. The delayed-start study in Parkinson disease: can’t satisfy everyone. Neurology 2010; 74: 1149–50PubMedCrossRef
54.
Zurück zum Zitat Clarke CE. Are delayed-start design trials to show neuroprotection in Parkinson’s disease fundamentally flawed? Mov Disord 2008; 23: 784–9PubMedCrossRef Clarke CE. Are delayed-start design trials to show neuroprotection in Parkinson’s disease fundamentally flawed? Mov Disord 2008; 23: 784–9PubMedCrossRef
55.
Zurück zum Zitat Schrag A, Sampaio C, Counsell N, et al. Minimal clinically important change on the Unified Parkinson’s Disease Rating Scale. Mov Disord 2006; 21: 1200–7PubMedCrossRef Schrag A, Sampaio C, Counsell N, et al. Minimal clinically important change on the Unified Parkinson’s Disease Rating Scale. Mov Disord 2006; 21: 1200–7PubMedCrossRef
56.
Zurück zum Zitat Schapira AH, Obeso J. Timing of treatment initiation in Parkinson’s disease: a need for reappraisal? Ann Neurol 2006; 59: 559–62PubMedCrossRef Schapira AH, Obeso J. Timing of treatment initiation in Parkinson’s disease: a need for reappraisal? Ann Neurol 2006; 59: 559–62PubMedCrossRef
Metadaten
Titel
Disease Modification in Parkinson’s Disease
verfasst von
Claire Henchcliffe, M.D., D.Phil.
W. Lawrence Severt
Publikationsdatum
01.08.2011
Verlag
Springer International Publishing
Erschienen in
Drugs & Aging / Ausgabe 8/2011
Print ISSN: 1170-229X
Elektronische ISSN: 1179-1969
DOI
https://doi.org/10.2165/11591320-000000000-00000

Weitere Artikel der Ausgabe 8/2011

Drugs & Aging 8/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.