Skip to main content
Erschienen in: Reviews in Endocrine and Metabolic Disorders 4/2013

01.12.2013

Disruption of neurogenesis by hypothalamic inflammation in obesity or aging

verfasst von: Sudarshana Purkayastha, Dongsheng Cai

Erschienen in: Reviews in Endocrine and Metabolic Disorders | Ausgabe 4/2013

Einloggen, um Zugang zu erhalten

Abstract

Adult neural stem cells contribute to neurogenesis and plasticity of the brain which is essential for central regulation of systemic homeostasis. Damage to these homeostatic components, depending on locations in the brain, poses threat to impaired neurogenesis, neurodegeneration, cognitive loss and energy imbalance. Recent research has identified brain metabolic inflammation via proinflammatory IκB kinase-β (IKKβ) and its downstream nuclear transcription factor NF-κB pathway as a non-classical linker of metabolic and neurodegenerative disorders. Chronic activation of the pathway results in impairment of energy balance and nutrient metabolism, impediment of neurogenesis, neural stem cell proliferation and differentiation, collectively converging on metabolic and cognitive decline. Hypothalamic IKKβ/NF-κB via inflammatory crosstalk between microglia and neurons has been discovered to direct systemic aging by inhibiting the production of gonadotropin-releasing hormone (GnRH) and inhibition of inflammation or GnRH therapy could revert aging related degenerative symptoms at least in part. This article reviews the crucial role of hypothalamic inflammation in affecting neural stem cells which mediates the neurodegenerative mechanisms of causing metabolic derangements as well as aging-associated disorders or diseases.
Literatur
1.
Zurück zum Zitat Altman J, Das GD. Post-natal origin of microneurones in the rat brain. Nature. 1965;207:953–6.PubMedCrossRef Altman J, Das GD. Post-natal origin of microneurones in the rat brain. Nature. 1965;207:953–6.PubMedCrossRef
2.
3.
Zurück zum Zitat Cameron HA et al. Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience. 1993;56:337–44.PubMedCrossRef Cameron HA et al. Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience. 1993;56:337–44.PubMedCrossRef
4.
Zurück zum Zitat Gould E et al. Adrenal hormones suppress cell division in the adult rat dentate gyrus. J Neurosci. 1992;12:3642–50.PubMed Gould E et al. Adrenal hormones suppress cell division in the adult rat dentate gyrus. J Neurosci. 1992;12:3642–50.PubMed
5.
Zurück zum Zitat Kuhn HG et al. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996;16:2027–33.PubMed Kuhn HG et al. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996;16:2027–33.PubMed
6.
Zurück zum Zitat Okano HJ et al. RB and Cdc2 expression in brain: correlations with 3H-thymidine incorporation and neurogenesis. J Neurosci. 1993;13:2930–8.PubMed Okano HJ et al. RB and Cdc2 expression in brain: correlations with 3H-thymidine incorporation and neurogenesis. J Neurosci. 1993;13:2930–8.PubMed
8.
9.
Zurück zum Zitat Bernier PJ et al. Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci U S A. 2002;99:11464–9.PubMedCrossRef Bernier PJ et al. Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci U S A. 2002;99:11464–9.PubMedCrossRef
10.
Zurück zum Zitat Gould E et al. Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc Natl Acad Sci U S A. 2001;98:10910–7.PubMedCrossRef Gould E et al. Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc Natl Acad Sci U S A. 2001;98:10910–7.PubMedCrossRef
11.
Zurück zum Zitat Curtis MA et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science. 2007;315:1243–9.PubMedCrossRef Curtis MA et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science. 2007;315:1243–9.PubMedCrossRef
12.
Zurück zum Zitat Zhao C et al. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci. 2006;26:3–11.PubMedCrossRef Zhao C et al. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci. 2006;26:3–11.PubMedCrossRef
13.
Zurück zum Zitat Bedard A et al. Chemical characterization of newly generated neurons in the striatum of adult primates. Exp Brain Res. 2006;170:501–12.PubMedCrossRef Bedard A et al. Chemical characterization of newly generated neurons in the striatum of adult primates. Exp Brain Res. 2006;170:501–12.PubMedCrossRef
14.
Zurück zum Zitat Zhao M et al. Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A. 2003;100:7925–30.PubMedCrossRef Zhao M et al. Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A. 2003;100:7925–30.PubMedCrossRef
15.
Zurück zum Zitat Kokoeva MV et al. Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science. 2005;310:679–83.PubMedCrossRef Kokoeva MV et al. Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science. 2005;310:679–83.PubMedCrossRef
16.
Zurück zum Zitat Li J et al. IKKbeta/NF-kappaB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol. 2012;14:999–1012.PubMedCrossRef Li J et al. IKKbeta/NF-kappaB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol. 2012;14:999–1012.PubMedCrossRef
17.
Zurück zum Zitat Cai D, Liu T. Hypothalamic inflammation: a double-edged sword to nutritional diseases. Ann N Y Acad Sci. 2011;1243:E1–E39.PubMedCrossRef Cai D, Liu T. Hypothalamic inflammation: a double-edged sword to nutritional diseases. Ann N Y Acad Sci. 2011;1243:E1–E39.PubMedCrossRef
18.
Zurück zum Zitat Cai D. One step from prediabetes to diabetes: hypothalamic inflammation? Endocrinology. 2012;153:1010–3.PubMedCrossRef Cai D. One step from prediabetes to diabetes: hypothalamic inflammation? Endocrinology. 2012;153:1010–3.PubMedCrossRef
19.
Zurück zum Zitat Purkayastha S et al. Uncoupling the mechanisms of obesity and hypertension by targeting hypothalamic IKK-beta and NF-kappaB. Nat Med. 2011;17:883–7.PubMedCrossRef Purkayastha S et al. Uncoupling the mechanisms of obesity and hypertension by targeting hypothalamic IKK-beta and NF-kappaB. Nat Med. 2011;17:883–7.PubMedCrossRef
20.
Zurück zum Zitat Zhang X et al. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135:61–73.PubMedCrossRef Zhang X et al. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135:61–73.PubMedCrossRef
21.
Zurück zum Zitat Zhang G et al. Hypothalamic programming of systemic ageing involving IKK-beta, NF-kappaB and GnRH. Nature. 2013;497:211–6.PubMedCrossRef Zhang G et al. Hypothalamic programming of systemic ageing involving IKK-beta, NF-kappaB and GnRH. Nature. 2013;497:211–6.PubMedCrossRef
22.
Zurück zum Zitat Ekdahl CT et al. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A. 2003;100:13632–7.PubMedCrossRef Ekdahl CT et al. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A. 2003;100:13632–7.PubMedCrossRef
23.
Zurück zum Zitat Taupin P. Adult neurogenesis, neuroinflammation and therapeutic potential of adult neural stem cells. Int J Med Sci. 2008;5:127–32.PubMedCrossRef Taupin P. Adult neurogenesis, neuroinflammation and therapeutic potential of adult neural stem cells. Int J Med Sci. 2008;5:127–32.PubMedCrossRef
24.
Zurück zum Zitat Minghetti L. Role of inflammation in neurodegenerative diseases. Curr Opin Neurol. 2005;18:315–21.PubMedCrossRef Minghetti L. Role of inflammation in neurodegenerative diseases. Curr Opin Neurol. 2005;18:315–21.PubMedCrossRef
25.
Zurück zum Zitat Eikelenboom P et al. The significance of neuroinflammation in understanding Alzheimer’s disease. J Neural Transm. 2006;113:1685–95.PubMedCrossRef Eikelenboom P et al. The significance of neuroinflammation in understanding Alzheimer’s disease. J Neural Transm. 2006;113:1685–95.PubMedCrossRef
26.
Zurück zum Zitat Hensley K et al. On the relation of oxidative stress to neuroinflammation: lessons learned from the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Antioxid Redox Signal. 2006;8:2075–87.PubMedCrossRef Hensley K et al. On the relation of oxidative stress to neuroinflammation: lessons learned from the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Antioxid Redox Signal. 2006;8:2075–87.PubMedCrossRef
27.
Zurück zum Zitat Cai D. Neuroinflammation in overnutrition-induced diseases2597. Vitam Horm. 2013;91:195–218.PubMedCrossRef Cai D. Neuroinflammation in overnutrition-induced diseases2597. Vitam Horm. 2013;91:195–218.PubMedCrossRef
28.
Zurück zum Zitat Posey KA et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab. 2009;296:E1003–12.PubMedCrossRef Posey KA et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab. 2009;296:E1003–12.PubMedCrossRef
29.
Zurück zum Zitat Kleinridders A et al. MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab. 2009;10:249–59.PubMedCrossRef Kleinridders A et al. MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab. 2009;10:249–59.PubMedCrossRef
30.
Zurück zum Zitat Meng Q, Cai D. Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IkappaB kinase beta (IKKbeta)/NF-kappaB pathway. J Biol Chem. 2011;286:32324–32.PubMedCrossRef Meng Q, Cai D. Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IkappaB kinase beta (IKKbeta)/NF-kappaB pathway. J Biol Chem. 2011;286:32324–32.PubMedCrossRef
31.
Zurück zum Zitat Milanski M et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci. 2009;29:359–70.PubMedCrossRef Milanski M et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci. 2009;29:359–70.PubMedCrossRef
32.
Zurück zum Zitat Oh I et al. Central administration of interleukin-4 exacerbates hypothalamic inflammation and weight gain during high-fat feeding. Am J Physiol Endocrinol Metab. 2010;299:E47–53.CrossRef Oh I et al. Central administration of interleukin-4 exacerbates hypothalamic inflammation and weight gain during high-fat feeding. Am J Physiol Endocrinol Metab. 2010;299:E47–53.CrossRef
33.
Zurück zum Zitat Purkayastha S et al. Neural dysregulation of peripheral insulin action and blood pressure by brain endoplasmic reticulum stress. Proc Natl Acad Sci U S A. 2011;108:2939–44.PubMedCrossRef Purkayastha S et al. Neural dysregulation of peripheral insulin action and blood pressure by brain endoplasmic reticulum stress. Proc Natl Acad Sci U S A. 2011;108:2939–44.PubMedCrossRef
35.
Zurück zum Zitat Beydoun MA et al. Obesity and central obesity as risk factors for incident dementia and its subtypes: a systematic review and meta-analysis. Obes Rev. 2008;9:204–18.PubMedCrossRef Beydoun MA et al. Obesity and central obesity as risk factors for incident dementia and its subtypes: a systematic review and meta-analysis. Obes Rev. 2008;9:204–18.PubMedCrossRef
36.
Zurück zum Zitat Hamer M, Chida Y. Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychol Med. 2009;39:3–11.PubMedCrossRef Hamer M, Chida Y. Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychol Med. 2009;39:3–11.PubMedCrossRef
38.
Zurück zum Zitat Lu FP et al. Diabetes and the risk of multi-system aging phenotypes: a systematic review and meta-analysis. PLoS One. 2009;4:e4144.PubMedCrossRef Lu FP et al. Diabetes and the risk of multi-system aging phenotypes: a systematic review and meta-analysis. PLoS One. 2009;4:e4144.PubMedCrossRef
39.
Zurück zum Zitat Kornack DR, Rakic P. Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci U S A. 1999;96:5768–73.PubMedCrossRef Kornack DR, Rakic P. Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci U S A. 1999;96:5768–73.PubMedCrossRef
40.
Zurück zum Zitat Gould E et al. Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci U S A. 1999;96:5263–7.PubMedCrossRef Gould E et al. Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci U S A. 1999;96:5263–7.PubMedCrossRef
41.
Zurück zum Zitat Cameron HA, McKay R. Stem cells and neurogenesis in the adult brain. Curr Opin Neurobiol. 1998;8:677–80.PubMedCrossRef Cameron HA, McKay R. Stem cells and neurogenesis in the adult brain. Curr Opin Neurobiol. 1998;8:677–80.PubMedCrossRef
43.
Zurück zum Zitat Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255:1707–10.PubMedCrossRef Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255:1707–10.PubMedCrossRef
44.
Zurück zum Zitat Varez-Buylla A, Lim DA. For the long run: maintaining germinal niches in the adult brain. Neuron. 2004;41:683–6.CrossRef Varez-Buylla A, Lim DA. For the long run: maintaining germinal niches in the adult brain. Neuron. 2004;41:683–6.CrossRef
45.
Zurück zum Zitat Emsley JG et al. Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol. 2005;75:321–41.PubMedCrossRef Emsley JG et al. Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol. 2005;75:321–41.PubMedCrossRef
46.
47.
Zurück zum Zitat van Praaq H et al. Functional neurogenesis in the adult hippocampus. Nature. 2002;415:1030–4.CrossRef van Praaq H et al. Functional neurogenesis in the adult hippocampus. Nature. 2002;415:1030–4.CrossRef
48.
Zurück zum Zitat Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol. 2001;435:406–17.PubMedCrossRef Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol. 2001;435:406–17.PubMedCrossRef
49.
Zurück zum Zitat Bedard A, Parent A. Evidence of newly generated neurons in the human olfactory bulb. Brain Res Dev Brain Res. 2004;151:159–68.PubMedCrossRef Bedard A, Parent A. Evidence of newly generated neurons in the human olfactory bulb. Brain Res Dev Brain Res. 2004;151:159–68.PubMedCrossRef
50.
Zurück zum Zitat Kokoeva MV et al. Evidence for constitutive neural cell proliferation in the adult murine hypothalamus. J Comp Neurol. 2007;505:209–20.PubMedCrossRef Kokoeva MV et al. Evidence for constitutive neural cell proliferation in the adult murine hypothalamus. J Comp Neurol. 2007;505:209–20.PubMedCrossRef
51.
Zurück zum Zitat Pierce AA, Xu AW. De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci. 2010;30:723–30.PubMedCrossRef Pierce AA, Xu AW. De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci. 2010;30:723–30.PubMedCrossRef
52.
Zurück zum Zitat Xu Y et al. Neurogenesis in the ependymal layer of the adult rat 3rd ventricle. Exp Neurol. 2005;192:251–64.PubMedCrossRef Xu Y et al. Neurogenesis in the ependymal layer of the adult rat 3rd ventricle. Exp Neurol. 2005;192:251–64.PubMedCrossRef
53.
Zurück zum Zitat Bolborea M, Dale N. Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends Neurosci. 2013;36:91–100.PubMedCrossRef Bolborea M, Dale N. Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends Neurosci. 2013;36:91–100.PubMedCrossRef
54.
Zurück zum Zitat Lee DA et al. Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci. 2012;15:700–2.PubMedCrossRef Lee DA et al. Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci. 2012;15:700–2.PubMedCrossRef
55.
Zurück zum Zitat Dietrich MO, Horvath TL. Fat incites tanycytes to neurogenesis. Nat Neurosci. 2012;15:651–3.PubMedCrossRef Dietrich MO, Horvath TL. Fat incites tanycytes to neurogenesis. Nat Neurosci. 2012;15:651–3.PubMedCrossRef
56.
Zurück zum Zitat Grote HE, Hannan AJ. Regulators of adult neurogenesis in the healthy and diseased brain. Clin Exp Pharmacol Physiol. 2007;34:533–45.PubMedCrossRef Grote HE, Hannan AJ. Regulators of adult neurogenesis in the healthy and diseased brain. Clin Exp Pharmacol Physiol. 2007;34:533–45.PubMedCrossRef
57.
Zurück zum Zitat Monje ML et al. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003;302:1760–5.PubMedCrossRef Monje ML et al. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003;302:1760–5.PubMedCrossRef
58.
Zurück zum Zitat Vallieres L et al. Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci. 2002;22:486–92.PubMed Vallieres L et al. Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci. 2002;22:486–92.PubMed
59.
Zurück zum Zitat Packer MA et al. Nitric oxide negatively regulates mammalian adult neurogenesis. Proc Natl Acad Sci U S A. 2003;100:9566–71.PubMedCrossRef Packer MA et al. Nitric oxide negatively regulates mammalian adult neurogenesis. Proc Natl Acad Sci U S A. 2003;100:9566–71.PubMedCrossRef
60.
Zurück zum Zitat Donnelly DJ, Popovich PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol. 2008;209:378–88.PubMedCrossRef Donnelly DJ, Popovich PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol. 2008;209:378–88.PubMedCrossRef
61.
Zurück zum Zitat Bonifati DM, Kishore U. Role of complement in neurodegeneration and neuroinflammation. Mol Immunol. 2007;44:999–1010.PubMedCrossRef Bonifati DM, Kishore U. Role of complement in neurodegeneration and neuroinflammation. Mol Immunol. 2007;44:999–1010.PubMedCrossRef
62.
Zurück zum Zitat McNay DE et al. Remodeling of the arcuate nucleus energy-balance circuit is inhibited in obese mice. J Clin Invest. 2012;122:142–52.PubMedCrossRef McNay DE et al. Remodeling of the arcuate nucleus energy-balance circuit is inhibited in obese mice. J Clin Invest. 2012;122:142–52.PubMedCrossRef
63.
Zurück zum Zitat Gould E et al. Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci. 1999;2:260–5.PubMedCrossRef Gould E et al. Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci. 1999;2:260–5.PubMedCrossRef
64.
Zurück zum Zitat Drapeau E et al. Learning-induced survival of new neurons depends on the cognitive status of aged rats. J Neurosci. 2007;27:6037–44.PubMedCrossRef Drapeau E et al. Learning-induced survival of new neurons depends on the cognitive status of aged rats. J Neurosci. 2007;27:6037–44.PubMedCrossRef
65.
Zurück zum Zitat Shors TJ et al. Neurogenesis in the adult is involved in the formation of trace memories. Nature. 2001;410:372–6.PubMedCrossRef Shors TJ et al. Neurogenesis in the adult is involved in the formation of trace memories. Nature. 2001;410:372–6.PubMedCrossRef
66.
Zurück zum Zitat Cai D. Neuroinflammation and neurodegeneration in overnutrition-induced diseases2250. Trends Endocrinol Metab. 2013;24:40–7.PubMedCrossRef Cai D. Neuroinflammation and neurodegeneration in overnutrition-induced diseases2250. Trends Endocrinol Metab. 2013;24:40–7.PubMedCrossRef
67.
Zurück zum Zitat Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med. 2004;10(Suppl):S18–25.PubMedCrossRef Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med. 2004;10(Suppl):S18–25.PubMedCrossRef
68.
Zurück zum Zitat Craft JM et al. Neuroinflammation: a potential therapeutic target. Expert Opin Ther Targets. 2005;9:887–900.PubMedCrossRef Craft JM et al. Neuroinflammation: a potential therapeutic target. Expert Opin Ther Targets. 2005;9:887–900.PubMedCrossRef
69.
Zurück zum Zitat Dickson DW et al. Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia. 1993;7:75–83.PubMedCrossRef Dickson DW et al. Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia. 1993;7:75–83.PubMedCrossRef
70.
Zurück zum Zitat Hoozemans JJ et al. Always around, never the same: pathways of amyloid beta induced neurodegeneration throughout the pathogenic cascade of Alzheimer’s diseaseRadhika Muzumdar. Curr Med Chem. 2006;13:2599–605.PubMedCrossRef Hoozemans JJ et al. Always around, never the same: pathways of amyloid beta induced neurodegeneration throughout the pathogenic cascade of Alzheimer’s diseaseRadhika Muzumdar. Curr Med Chem. 2006;13:2599–605.PubMedCrossRef
71.
Zurück zum Zitat McGeer PL et al. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology. 1988;38:1285–91.PubMedCrossRef McGeer PL et al. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology. 1988;38:1285–91.PubMedCrossRef
72.
Zurück zum Zitat Minghetti L et al. Microglial activation in chronic neurodegenerative diseases: roles of apoptotic neurons and chronic stimulation. Brain Res Brain Res Rev. 2005;48:251–6.PubMedCrossRef Minghetti L et al. Microglial activation in chronic neurodegenerative diseases: roles of apoptotic neurons and chronic stimulation. Brain Res Brain Res Rev. 2005;48:251–6.PubMedCrossRef
73.
Zurück zum Zitat Sherman MP et al. Nitric oxide-mediated neuronal injury in multiple sclerosis. Med Hypotheses. 1992;39:143–6.PubMedCrossRef Sherman MP et al. Nitric oxide-mediated neuronal injury in multiple sclerosis. Med Hypotheses. 1992;39:143–6.PubMedCrossRef
74.
Zurück zum Zitat Lucas SM et al. The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006;147 Suppl 1:S232–40.PubMed Lucas SM et al. The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006;147 Suppl 1:S232–40.PubMed
75.
Zurück zum Zitat Gao HM, Hong JS. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol. 2008;29:357–65.PubMedCrossRef Gao HM, Hong JS. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol. 2008;29:357–65.PubMedCrossRef
76.
Zurück zum Zitat Whitton PS. Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol. 2007;150:963–76.PubMedCrossRef Whitton PS. Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol. 2007;150:963–76.PubMedCrossRef
77.
Zurück zum Zitat Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol. 2005;76:77–98.PubMedCrossRef Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol. 2005;76:77–98.PubMedCrossRef
78.
Zurück zum Zitat Cui L et al. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell. 2006;127:59–69.PubMedCrossRef Cui L et al. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell. 2006;127:59–69.PubMedCrossRef
79.
Zurück zum Zitat Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson’s disease. Science. 2003;302:819–22.PubMedCrossRef Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson’s disease. Science. 2003;302:819–22.PubMedCrossRef
80.
Zurück zum Zitat DiMauro S, Schon EA. Mitochondrial disorders in the nervous system. Annu Rev Neurosci. 2008;31:91–123.PubMedCrossRef DiMauro S, Schon EA. Mitochondrial disorders in the nervous system. Annu Rev Neurosci. 2008;31:91–123.PubMedCrossRef
81.
Zurück zum Zitat Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–95.PubMedCrossRef Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–95.PubMedCrossRef
82.
Zurück zum Zitat Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 2011;13:184–90.PubMedCrossRef Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 2011;13:184–90.PubMedCrossRef
83.
Zurück zum Zitat Uehara T et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature. 2006;441:513–7.PubMedCrossRef Uehara T et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature. 2006;441:513–7.PubMedCrossRef
84.
Zurück zum Zitat Komatsu M et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441:880–4.PubMedCrossRef Komatsu M et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441:880–4.PubMedCrossRef
85.
Zurück zum Zitat Lee JA, Gao FB. Inhibition of autophagy induction delays neuronal cell loss caused by dysfunctional ESCRT-III in frontotemporal dementia. J Neurosci. 2009;29:8506–11.PubMedCrossRef Lee JA, Gao FB. Inhibition of autophagy induction delays neuronal cell loss caused by dysfunctional ESCRT-III in frontotemporal dementia. J Neurosci. 2009;29:8506–11.PubMedCrossRef
86.
Zurück zum Zitat Martinez-Vicente M, Cuervo AM. Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol. 2007;6:352–61.PubMedCrossRef Martinez-Vicente M, Cuervo AM. Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol. 2007;6:352–61.PubMedCrossRef
87.
Zurück zum Zitat Naidoo N. The endoplasmic reticulum stress response and aging. Rev Neurosci. 2009;20:23–37.PubMed Naidoo N. The endoplasmic reticulum stress response and aging. Rev Neurosci. 2009;20:23–37.PubMed
88.
Zurück zum Zitat Bazan NG et al. Hypoxia signaling to genes: significance in Alzheimer’s disease. Mol Neurobiol. 2002;26:283–98.PubMedCrossRef Bazan NG et al. Hypoxia signaling to genes: significance in Alzheimer’s disease. Mol Neurobiol. 2002;26:283–98.PubMedCrossRef
89.
Zurück zum Zitat Braun RJ, Zischka H. Mechanisms of Cdc48/VCP-mediated cell death: from yeast apoptosis to human disease. Biochim Biophys Acta. 2008;1783:1418–35.PubMedCrossRef Braun RJ, Zischka H. Mechanisms of Cdc48/VCP-mediated cell death: from yeast apoptosis to human disease. Biochim Biophys Acta. 2008;1783:1418–35.PubMedCrossRef
90.
Zurück zum Zitat Giraud SN et al. Estradiol inhibits ongoing autoimmune neuroinflammation and NFkappaB-dependent CCL2 expression in reactive astrocytes. Proc Natl Acad Sci U S A. 2010;107:8416–21.PubMedCrossRef Giraud SN et al. Estradiol inhibits ongoing autoimmune neuroinflammation and NFkappaB-dependent CCL2 expression in reactive astrocytes. Proc Natl Acad Sci U S A. 2010;107:8416–21.PubMedCrossRef
91.
Zurück zum Zitat Lezoualc’h F, Behl C. Transcription factor NF-kappaB: friend or foe of neurons? Mol Psychiatry. 1998;3:15–20.PubMedCrossRef Lezoualc’h F, Behl C. Transcription factor NF-kappaB: friend or foe of neurons? Mol Psychiatry. 1998;3:15–20.PubMedCrossRef
92.
Zurück zum Zitat Lim KL, Lim GG. K63-linked ubiquitination and neurodegeneration. Neurobiol Dis. 2011;43:9–16.PubMedCrossRef Lim KL, Lim GG. K63-linked ubiquitination and neurodegeneration. Neurobiol Dis. 2011;43:9–16.PubMedCrossRef
93.
Zurück zum Zitat Steen E et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease–is this type 3 diabetes? J Alzheimers Dis. 2005;7:63–80.PubMed Steen E et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease–is this type 3 diabetes? J Alzheimers Dis. 2005;7:63–80.PubMed
94.
Zurück zum Zitat Thaler JP et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122:153–62.PubMedCrossRef Thaler JP et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122:153–62.PubMedCrossRef
95.
Zurück zum Zitat Hu LF et al. Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell. 2010;9:135–46.PubMedCrossRef Hu LF et al. Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell. 2010;9:135–46.PubMedCrossRef
96.
Zurück zum Zitat Kawamata J, Shimohama S. Stimulating nicotinic receptors trigger multiple pathways attenuating cytotoxicity in models of Alzheimer’s and Parkinson’s diseases. J Alzheimers Dis. 2011;24 Suppl 2:95–109.PubMed Kawamata J, Shimohama S. Stimulating nicotinic receptors trigger multiple pathways attenuating cytotoxicity in models of Alzheimer’s and Parkinson’s diseases. J Alzheimers Dis. 2011;24 Suppl 2:95–109.PubMed
97.
Zurück zum Zitat Zhu F, Qian C. Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1beta and inducible nitric oxide synthase in the rat model of Alzheimer’s disease. BMC Neurosci. 2006;7:78.PubMedCrossRef Zhu F, Qian C. Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1beta and inducible nitric oxide synthase in the rat model of Alzheimer’s disease. BMC Neurosci. 2006;7:78.PubMedCrossRef
98.
Zurück zum Zitat Choi SH et al. The distinct roles of cyclooxygenase-1 and −2 in neuroinflammation: implications for translational research. Trends Pharmacol Sci. 2009;30:174–81.PubMedCrossRef Choi SH et al. The distinct roles of cyclooxygenase-1 and −2 in neuroinflammation: implications for translational research. Trends Pharmacol Sci. 2009;30:174–81.PubMedCrossRef
99.
100.
Zurück zum Zitat Glass CK et al. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140:918–34.PubMedCrossRef Glass CK et al. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140:918–34.PubMedCrossRef
Metadaten
Titel
Disruption of neurogenesis by hypothalamic inflammation in obesity or aging
verfasst von
Sudarshana Purkayastha
Dongsheng Cai
Publikationsdatum
01.12.2013
Verlag
Springer US
Erschienen in
Reviews in Endocrine and Metabolic Disorders / Ausgabe 4/2013
Print ISSN: 1389-9155
Elektronische ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-013-9279-z

Weitere Artikel der Ausgabe 4/2013

Reviews in Endocrine and Metabolic Disorders 4/2013 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.