Skip to main content
Erschienen in: Diabetologia 7/2014

01.07.2014 | Article

Doc2b enrichment enhances glucose homeostasis in mice via potentiation of insulin secretion and peripheral insulin sensitivity

verfasst von: Latha Ramalingam, Eunjin Oh, Debbie C. Thurmond

Erschienen in: Diabetologia | Ausgabe 7/2014

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Insulin secretion from pancreatic beta cells and insulin-stimulated glucose uptake into skeletal muscle are processes regulated by similar isoforms of the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) and mammalian homologue of unc-18 (Munc18) protein families. Double C2 domain β (Doc2b), a SNARE- and Munc18-interacting protein, is implicated as a crucial effector of glycaemic control. However, whether Doc2b is naturally limiting for these processes, and whether Doc2b enrichment might exert a beneficial effect upon glycaemia in vivo, remains undetermined.

Methods

Tetracycline-repressible transgenic (Tg) mice engineered to overexpress Doc2b simultaneously in the pancreas, skeletal muscle and adipose tissues were compared with wild-type (Wt) littermate mice regarding glucose and insulin tolerance, islet function in vivo and ex vivo, and skeletal muscle GLUT4 accumulation in transverse tubule/sarcolemmal surface membranes. SNARE complex formation was further assessed using Doc2b overexpressing L6-GLUT4-myc myoblasts to derive mechanisms relatable to physiological in vivo analyses.

Results

Doc2b Tg mice cleared glucose substantially faster than Wt mice, correlated with enhancements in both phases of insulin secretion and peripheral insulin sensitivity. Heightened peripheral insulin sensitivity correlated with elevated insulin-stimulated GLUT4 vesicle accumulation in cell surface membranes of Doc2b Tg mouse skeletal muscle. Mechanistic studies demonstrated Doc2b enrichment to enhance syntaxin-4–SNARE complex formation in skeletal muscle cells.

Conclusions/interpretation

Doc2b is a limiting factor in SNARE exocytosis events pertinent to glycaemic regulation in vivo. Doc2b enrichment may provide a novel means to simultaneously boost islet and skeletal muscle function in vivo in the treatment and/or prevention of diabetes.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ohara-Imaizumi M, Fujiwara T, Nakamichi Y et al (2007) Imaging analysis reveals mechanistic differences between first- and second-phase insulin exocytosis. J Cell Biol 177:695–705PubMedCentralPubMedCrossRef Ohara-Imaizumi M, Fujiwara T, Nakamichi Y et al (2007) Imaging analysis reveals mechanistic differences between first- and second-phase insulin exocytosis. J Cell Biol 177:695–705PubMedCentralPubMedCrossRef
2.
Zurück zum Zitat Zhu D, Koo E, Kwan E et al (2013) Syntaxin-3 regulates newcomer insulin granule exocytosis and compound fusion in pancreatic beta cells. Diabetologia 56:359–369PubMedCrossRef Zhu D, Koo E, Kwan E et al (2013) Syntaxin-3 regulates newcomer insulin granule exocytosis and compound fusion in pancreatic beta cells. Diabetologia 56:359–369PubMedCrossRef
3.
Zurück zum Zitat Spurlin BA, Thurmond DC (2006) Syntaxin 4 facilitates biphasic glucose-stimulated insulin secretion from pancreatic beta-cells. Mol Endocrinol 20:183–193PubMedCrossRef Spurlin BA, Thurmond DC (2006) Syntaxin 4 facilitates biphasic glucose-stimulated insulin secretion from pancreatic beta-cells. Mol Endocrinol 20:183–193PubMedCrossRef
4.
Zurück zum Zitat Regazzi R, Wollheim CB, Lang J et al (1995) VAMP-2 and cellubrevin are expressed in pancreatic beta-cells and are essential for Ca(2+)-but not for GTP gamma S-induced insulin secretion. EMBO J 14:2723–2730PubMedCentralPubMed Regazzi R, Wollheim CB, Lang J et al (1995) VAMP-2 and cellubrevin are expressed in pancreatic beta-cells and are essential for Ca(2+)-but not for GTP gamma S-induced insulin secretion. EMBO J 14:2723–2730PubMedCentralPubMed
5.
Zurück zum Zitat Sadoul K, Berger A, Niemann H et al (1997) SNAP-23 is not cleaved by botulinum neurotoxin E and can replace SNAP-25 in the process of insulin secretion. J Biol Chem 272:33023–33027PubMedCrossRef Sadoul K, Berger A, Niemann H et al (1997) SNAP-23 is not cleaved by botulinum neurotoxin E and can replace SNAP-25 in the process of insulin secretion. J Biol Chem 272:33023–33027PubMedCrossRef
6.
Zurück zum Zitat Zhu D, Zhang Y, Lam PP et al (2012) Dual role of VAMP8 in regulating insulin exocytosis and islet beta cell growth. Cell Metab 16:238–249PubMedCrossRef Zhu D, Zhang Y, Lam PP et al (2012) Dual role of VAMP8 in regulating insulin exocytosis and islet beta cell growth. Cell Metab 16:238–249PubMedCrossRef
7.
Zurück zum Zitat Klip A (2009) The many ways to regulate glucose transporter 4. Appl Physiol Nutr Metab 34:481–487PubMedCrossRef Klip A (2009) The many ways to regulate glucose transporter 4. Appl Physiol Nutr Metab 34:481–487PubMedCrossRef
8.
9.
Zurück zum Zitat Cheatham B, Volchuk A, Kahn CR, Wang L, Rhodes CJ, Klip A (1996) Insulin-stimulated translocation of GLUT4 glucose transporters requires SNARE-complex proteins. Proc Natl Acad Sci U S A 93:15169–15173PubMedCentralPubMedCrossRef Cheatham B, Volchuk A, Kahn CR, Wang L, Rhodes CJ, Klip A (1996) Insulin-stimulated translocation of GLUT4 glucose transporters requires SNARE-complex proteins. Proc Natl Acad Sci U S A 93:15169–15173PubMedCentralPubMedCrossRef
10.
Zurück zum Zitat Kawanishi M, Tamori Y, Okazawa H, Araki S, Shinoda H, Kasuga M (2000) Role of SNAP23 in insulin-induced translocation of GLUT4 in 3 T3-L1 adipocytes. Mediation of complex formation between syntaxin4 and VAMP2. J Biol Chem 275:8240–8247PubMedCrossRef Kawanishi M, Tamori Y, Okazawa H, Araki S, Shinoda H, Kasuga M (2000) Role of SNAP23 in insulin-induced translocation of GLUT4 in 3 T3-L1 adipocytes. Mediation of complex formation between syntaxin4 and VAMP2. J Biol Chem 275:8240–8247PubMedCrossRef
11.
Zurück zum Zitat Spurlin BA, Park SY, Nevins AK, Kim JK, Thurmond DC (2004) Syntaxin 4 transgenic mice exhibit enhanced insulin-mediated glucose uptake in skeletal muscle. Diabetes 53:2223–2231PubMedCrossRef Spurlin BA, Park SY, Nevins AK, Kim JK, Thurmond DC (2004) Syntaxin 4 transgenic mice exhibit enhanced insulin-mediated glucose uptake in skeletal muscle. Diabetes 53:2223–2231PubMedCrossRef
12.
Zurück zum Zitat Lam PP, Ohno M, Dolai S et al (2013) Munc18b is a major mediator of insulin exocytosis in rat pancreatic beta-cells. Diabetes 62:2416–2428PubMedCrossRef Lam PP, Ohno M, Dolai S et al (2013) Munc18b is a major mediator of insulin exocytosis in rat pancreatic beta-cells. Diabetes 62:2416–2428PubMedCrossRef
13.
Zurück zum Zitat Oh E, Kalwat MA, Kim MJ, Verhage M, Thurmond DC (2012) Munc18-1 regulates first-phase insulin release by promoting granule docking to multiple syntaxin isoforms. J Biol Chem 287:25821–25833PubMedCentralPubMedCrossRef Oh E, Kalwat MA, Kim MJ, Verhage M, Thurmond DC (2012) Munc18-1 regulates first-phase insulin release by promoting granule docking to multiple syntaxin isoforms. J Biol Chem 287:25821–25833PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat Khan AH, Thurmond DC, Yang C, Ceresa BP, Sigmund CD, Pessin JE (2001) Munc18c regulates insulin-stimulated glut4 translocation to the transverse tubules in skeletal muscle. J Biol Chem 276:4063–4069PubMedCrossRef Khan AH, Thurmond DC, Yang C, Ceresa BP, Sigmund CD, Pessin JE (2001) Munc18c regulates insulin-stimulated glut4 translocation to the transverse tubules in skeletal muscle. J Biol Chem 276:4063–4069PubMedCrossRef
16.
Zurück zum Zitat Tamori Y, Kawanishi M, Niki T et al (1998) Inhibition of insulin-induced GLUT4 translocation by Munc18c through interaction with syntaxin4 in 3 T3-L1 adipocytes. J Biol Chem 273:19740–19746PubMedCrossRef Tamori Y, Kawanishi M, Niki T et al (1998) Inhibition of insulin-induced GLUT4 translocation by Munc18c through interaction with syntaxin4 in 3 T3-L1 adipocytes. J Biol Chem 273:19740–19746PubMedCrossRef
17.
Zurück zum Zitat Thurmond DC, Ceresa BP, Okada S, Elmendorf JS, Coker K, Pessin JE (1998) Regulation of insulin-stimulated GLUT4 translocation by munc18c in 3T3L1 adipocytes. J Biol Chem 273:33876–33883PubMedCrossRef Thurmond DC, Ceresa BP, Okada S, Elmendorf JS, Coker K, Pessin JE (1998) Regulation of insulin-stimulated GLUT4 translocation by munc18c in 3T3L1 adipocytes. J Biol Chem 273:33876–33883PubMedCrossRef
18.
Zurück zum Zitat Tellam JT, Macaulay SL, McIntosh S, Hewish DR, Ward CW, James DE (1997) Characterization of Munc-18c and syntaxin-4 in 3 T3-L1 adipocytes. Putative role in insulin-dependent movement of GLUT-4. J Biol Chem 272:6179–6186PubMedCrossRef Tellam JT, Macaulay SL, McIntosh S, Hewish DR, Ward CW, James DE (1997) Characterization of Munc-18c and syntaxin-4 in 3 T3-L1 adipocytes. Putative role in insulin-dependent movement of GLUT-4. J Biol Chem 272:6179–6186PubMedCrossRef
19.
20.
Zurück zum Zitat Umahara M, Okada S, Yamada E et al (2008) Tyrosine phosphorylation of Munc18c regulates platelet-derived growth factor-stimulated glucose transporter 4 translocation in 3T3L1 adipocytes. Endocrinology 149:40–49PubMedCrossRef Umahara M, Okada S, Yamada E et al (2008) Tyrosine phosphorylation of Munc18c regulates platelet-derived growth factor-stimulated glucose transporter 4 translocation in 3T3L1 adipocytes. Endocrinology 149:40–49PubMedCrossRef
21.
Zurück zum Zitat Jewell JL, Oh E, Ramalingam L et al (2011) Munc18c phosphorylation by the insulin receptor links cell signaling directly to SNARE exocytosis. J Cell Biol 193:185–199PubMedCentralPubMedCrossRef Jewell JL, Oh E, Ramalingam L et al (2011) Munc18c phosphorylation by the insulin receptor links cell signaling directly to SNARE exocytosis. J Cell Biol 193:185–199PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Bakke J, Bettaieb A, Nagata N, Matsuo K, Haj FG (2013) Regulation of the SNARE-interacting protein Munc18c tyrosine phosphorylation in adipocytes by protein-tyrosine phosphatase 1B. Cell Commun Signal 11:57PubMedCentralPubMedCrossRef Bakke J, Bettaieb A, Nagata N, Matsuo K, Haj FG (2013) Regulation of the SNARE-interacting protein Munc18c tyrosine phosphorylation in adipocytes by protein-tyrosine phosphatase 1B. Cell Commun Signal 11:57PubMedCentralPubMedCrossRef
23.
Zurück zum Zitat Jewell JL, Oh E, Bennett SM, Meroueh SO, Thurmond DC (2008) The tyrosine phosphorylation of Munc18c induces a switch in binding specificity from syntaxin 4 to Doc2beta. J Biol Chem 283:21734–21746PubMedCentralPubMedCrossRef Jewell JL, Oh E, Bennett SM, Meroueh SO, Thurmond DC (2008) The tyrosine phosphorylation of Munc18c induces a switch in binding specificity from syntaxin 4 to Doc2beta. J Biol Chem 283:21734–21746PubMedCentralPubMedCrossRef
24.
Zurück zum Zitat Ramalingam L, Oh E, Yoder SM et al (2012) Doc2b is a key effector of insulin secretion and skeletal muscle insulin sensitivity. Diabetes 61:2424–2432PubMedCentralPubMedCrossRef Ramalingam L, Oh E, Yoder SM et al (2012) Doc2b is a key effector of insulin secretion and skeletal muscle insulin sensitivity. Diabetes 61:2424–2432PubMedCentralPubMedCrossRef
25.
Zurück zum Zitat Ke B, Oh E, Thurmond DC (2007) Doc2beta is a novel Munc18c-interacting partner and positive effector of syntaxin 4-mediated exocytosis. J Biol Chem 282:21786–21797PubMedCrossRef Ke B, Oh E, Thurmond DC (2007) Doc2beta is a novel Munc18c-interacting partner and positive effector of syntaxin 4-mediated exocytosis. J Biol Chem 282:21786–21797PubMedCrossRef
26.
Zurück zum Zitat Fukuda N, Emoto M, Nakamori Y et al (2009) DOC2B: a novel syntaxin-4 binding protein mediating insulin-regulated GLUT4 vesicle fusion in adipocytes. Diabetes 58:377–384PubMedCentralPubMedCrossRef Fukuda N, Emoto M, Nakamori Y et al (2009) DOC2B: a novel syntaxin-4 binding protein mediating insulin-regulated GLUT4 vesicle fusion in adipocytes. Diabetes 58:377–384PubMedCentralPubMedCrossRef
27.
Zurück zum Zitat Miyazaki M, Emoto M, Fukuda N et al (2009) DOC2b is a SNARE regulator of glucose-stimulated delayed insulin secretion. Biochem Biophys Res Commun 384:461–465PubMedCrossRef Miyazaki M, Emoto M, Fukuda N et al (2009) DOC2b is a SNARE regulator of glucose-stimulated delayed insulin secretion. Biochem Biophys Res Commun 384:461–465PubMedCrossRef
28.
Zurück zum Zitat Yu H, Rathore SS, Davis EM, Ouyang Y, Shen J (2013) Doc2b promotes GLUT4 exocytosis by activating the SNARE-mediated fusion reaction in a calcium- and membrane bending-dependent manner. Mol Biol Cell 24:1176–1184PubMedCentralPubMedCrossRef Yu H, Rathore SS, Davis EM, Ouyang Y, Shen J (2013) Doc2b promotes GLUT4 exocytosis by activating the SNARE-mediated fusion reaction in a calcium- and membrane bending-dependent manner. Mol Biol Cell 24:1176–1184PubMedCentralPubMedCrossRef
29.
Zurück zum Zitat Keller MP, Choi Y, Wang P et al (2008) A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility. Genome Res 18:706–716PubMedCentralPubMedCrossRef Keller MP, Choi Y, Wang P et al (2008) A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility. Genome Res 18:706–716PubMedCentralPubMedCrossRef
30.
Zurück zum Zitat Schultze N, Burki Y, Lang Y, Certa U, Bluethmann H (1996) Efficient control of gene expression by single step integration of the tetracycline system in transgenic mice. Nat Biotechnol 14:499–503PubMedCrossRef Schultze N, Burki Y, Lang Y, Certa U, Bluethmann H (1996) Efficient control of gene expression by single step integration of the tetracycline system in transgenic mice. Nat Biotechnol 14:499–503PubMedCrossRef
31.
Zurück zum Zitat Spurlin BA, Thomas RM, Nevins AK et al (2003) Insulin resistance in tetracycline-repressible Munc18c transgenic mice. Diabetes 52:1910–1917PubMedCrossRef Spurlin BA, Thomas RM, Nevins AK et al (2003) Insulin resistance in tetracycline-repressible Munc18c transgenic mice. Diabetes 52:1910–1917PubMedCrossRef
32.
Zurück zum Zitat Wiseman DA, Kalwat MA, Thurmond DC (2011) Stimulus-induced S-nitrosylation of syntaxin 4 impacts insulin granule exocytosis. J Biol Chem 286:16344–16354PubMedCentralPubMedCrossRef Wiseman DA, Kalwat MA, Thurmond DC (2011) Stimulus-induced S-nitrosylation of syntaxin 4 impacts insulin granule exocytosis. J Biol Chem 286:16344–16354PubMedCentralPubMedCrossRef
33.
Zurück zum Zitat Stull ND, Breite A, McCarthy R, Tersey SA, Mirmira RG (2012) Mouse islet of Langerhans isolation using a combination of purified collagenase and neutral protease. J Vis Exp 67:e4137 Stull ND, Breite A, McCarthy R, Tersey SA, Mirmira RG (2012) Mouse islet of Langerhans isolation using a combination of purified collagenase and neutral protease. J Vis Exp 67:e4137
34.
Zurück zum Zitat Zhou M, Sevilla L, Vallega G et al (1998) Insulin-dependent protein trafficking in skeletal muscle cells. Am J Physiol 275:E187–E196PubMed Zhou M, Sevilla L, Vallega G et al (1998) Insulin-dependent protein trafficking in skeletal muscle cells. Am J Physiol 275:E187–E196PubMed
35.
Zurück zum Zitat Walker PS, Ramlal T, Sarabia V et al (1990) Glucose transport activity in L6 muscle cells is regulated by the coordinate control of subcellular glucose transporter distribution, biosynthesis, and mRNA transcription. J Biol Chem 265:1516–1523PubMed Walker PS, Ramlal T, Sarabia V et al (1990) Glucose transport activity in L6 muscle cells is regulated by the coordinate control of subcellular glucose transporter distribution, biosynthesis, and mRNA transcription. J Biol Chem 265:1516–1523PubMed
36.
Zurück zum Zitat Ferrannini E, Simonson DC, Katz LD et al (1988) The disposal of an oral glucose load in patients with non-insulin-dependent diabetes. Metab Clin Exp 37:79–85PubMedCrossRef Ferrannini E, Simonson DC, Katz LD et al (1988) The disposal of an oral glucose load in patients with non-insulin-dependent diabetes. Metab Clin Exp 37:79–85PubMedCrossRef
37.
Zurück zum Zitat Edgerton DS, Lautz M, Scott M et al (2006) Insulin’s direct effects on the liver dominate the control of hepatic glucose production. J Clin Invest 116:521–527PubMedCentralPubMedCrossRef Edgerton DS, Lautz M, Scott M et al (2006) Insulin’s direct effects on the liver dominate the control of hepatic glucose production. J Clin Invest 116:521–527PubMedCentralPubMedCrossRef
38.
Zurück zum Zitat Schmelzle K, Kane S, Gridley S, Lienhard GE, White FM (2006) Temporal dynamics of tyrosine phosphorylation in insulin signaling. Diabetes 55:2171–2179PubMedCrossRef Schmelzle K, Kane S, Gridley S, Lienhard GE, White FM (2006) Temporal dynamics of tyrosine phosphorylation in insulin signaling. Diabetes 55:2171–2179PubMedCrossRef
39.
Zurück zum Zitat Groffen AJ, Friedrich R, Brian EC, Ashery U, Verhage M (2006) DOC2A and DOC2B are sensors for neuronal activity with unique calcium-dependent and kinetic properties. J Neurochem 97:818–833PubMedCrossRef Groffen AJ, Friedrich R, Brian EC, Ashery U, Verhage M (2006) DOC2A and DOC2B are sensors for neuronal activity with unique calcium-dependent and kinetic properties. J Neurochem 97:818–833PubMedCrossRef
40.
Zurück zum Zitat Verhage M, de Vries KJ, Roshol H, Burbach JP, Gispen WH, Sudhof TC (1997) DOC2 proteins in rat brain: complementary distribution and proposed function as vesicular adapter proteins in early stages of secretion. Neuron 18:453–461PubMedCrossRef Verhage M, de Vries KJ, Roshol H, Burbach JP, Gispen WH, Sudhof TC (1997) DOC2 proteins in rat brain: complementary distribution and proposed function as vesicular adapter proteins in early stages of secretion. Neuron 18:453–461PubMedCrossRef
41.
Zurück zum Zitat Mandic SA, Skelin M, Johansson JU, Rupnik MS, Berggren PO, Bark C (2011) Munc18-1 and Munc18-2 proteins modulate beta-cell Ca2+ sensitivity and kinetics of insulin exocytosis differently. J Biol Chem 286:28026–28040PubMedCentralPubMedCrossRef Mandic SA, Skelin M, Johansson JU, Rupnik MS, Berggren PO, Bark C (2011) Munc18-1 and Munc18-2 proteins modulate beta-cell Ca2+ sensitivity and kinetics of insulin exocytosis differently. J Biol Chem 286:28026–28040PubMedCentralPubMedCrossRef
Metadaten
Titel
Doc2b enrichment enhances glucose homeostasis in mice via potentiation of insulin secretion and peripheral insulin sensitivity
verfasst von
Latha Ramalingam
Eunjin Oh
Debbie C. Thurmond
Publikationsdatum
01.07.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 7/2014
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-014-3227-7

Weitere Artikel der Ausgabe 7/2014

Diabetologia 7/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.