Skip to main content
Erschienen in: Clinical and Translational Oncology 9/2020

13.02.2020 | Research Article

DT-13 inhibits breast cancer cell migration via non-muscle myosin II-A regulation in tumor microenvironment synchronized adaptations

verfasst von: Y. Gao, G. J. Khan, X. Wei, K.-F. Zhai, L. Sun, S. Yuan

Erschienen in: Clinical and Translational Oncology | Ausgabe 9/2020

Einloggen, um Zugang zu erhalten

Abstract

Background

Tumor metastasis is a terrifying characteristic of cancer. Numerous studies have been conducted to overcome metastasis by targeting tumor microenvironment (TME). However, due to complexity of tumor microenvironment, it remained difficult for accurate targeting. Dwarf-lillytruf tuber monomer-13 (DT-13) possess good potential against TME.

Objective

As TME is supportive for tumor metastasis, alternatively it is a challenging for therapeutic intervention. In our present study, we explored molecular mechanism through which TME induced cell migration and how DT-13 interferes in this mechanism.

Methods

We used a novel model of co-culture system which is eventually developed in our lab. Tumor cells were co-cultured with hypoxia induced cancer-associated fibroblasts (CAF) or with chemically induced cancer-associated adipocytes (CAA). The effect of hypoxia in conditioned medium for CAF was assessed through expression of α-SMA and HIF by western blotting while oil red staining was done to assess the successful chemical induction for adipocytes (CAA), the effect of TME through conditioned medium on cell migration was analyzed by trans-well cell migration, and cell motility (wound healing) analyses. The expression changes in cellular proteins were assessed through western blotting and immunofluorescent studies.

Results and conclusion

Our results showed that tumor microenvironment has a direct role in promoting breast cancer cell migration by stromal cells; moreover, we found that DT-13 restricts this TME regulated cell migration via targeting stromal cells in vitro. Additionally we also found that DT-13 targets NMII-A for its effect on breast cancer cell migration for the regulation of stromal cells in TME.
Literatur
1.
Zurück zum Zitat Khan GJ, et al. Understanding and responsiveness level about cervical cancer and its avoidance among young women of Pakistan. Asian Pac J Cancer Prev. 2014;15(12):4877–83.PubMed Khan GJ, et al. Understanding and responsiveness level about cervical cancer and its avoidance among young women of Pakistan. Asian Pac J Cancer Prev. 2014;15(12):4877–83.PubMed
2.
Zurück zum Zitat Subramani R, et al. Role of growth hormone in breast cancer. Endocrinology. 2017;158(6):1543–55.PubMed Subramani R, et al. Role of growth hormone in breast cancer. Endocrinology. 2017;158(6):1543–55.PubMed
3.
Zurück zum Zitat Hanahan D, Awada A. The hallmarks of cancer revisited. Ann Oncol. 2012;100(1):57–70. Hanahan D, Awada A. The hallmarks of cancer revisited. Ann Oncol. 2012;100(1):57–70.
4.
Zurück zum Zitat Wan L, Pantel K, Kang Y. Tumor metastasis: moving new biological insights into the clinic. Nat Med. 2013;19(11):1450.PubMed Wan L, Pantel K, Kang Y. Tumor metastasis: moving new biological insights into the clinic. Nat Med. 2013;19(11):1450.PubMed
5.
Zurück zum Zitat Wang X et al. interdependent and independent multidimensional role of tumor microenvironment on hepatocellular carcinoma. Cytokine. 2018;103:150–9. Wang X et al. interdependent and independent multidimensional role of tumor microenvironment on hepatocellular carcinoma. Cytokine. 2018;103:150–9.
6.
Zurück zum Zitat Yang T, et al. Bile acid homeostasis paradigm and its connotation with cholestatic liver diseases. Drug Discov Today. 2019;24(1):112–28.PubMed Yang T, et al. Bile acid homeostasis paradigm and its connotation with cholestatic liver diseases. Drug Discov Today. 2019;24(1):112–28.PubMed
7.
Zurück zum Zitat Michiels C, C Tellier, O Feron. Cycling hypoxia: a key feature of the tumor microenvironment. Biochim Biophys Acta (BBA) Rev Cancer. 2016; 1866(1):76–86. Michiels C, C Tellier, O Feron. Cycling hypoxia: a key feature of the tumor microenvironment. Biochim Biophys Acta (BBA) Rev Cancer. 2016; 1866(1):76–86.
8.
Zurück zum Zitat Huyen CTT, et al. Chemical constituents from Cimicifuga dahurica and their anti-proliferative effects on MCF-7 breast cancer cells. Molecules. 2018;23(5):1083.PubMedCentral Huyen CTT, et al. Chemical constituents from Cimicifuga dahurica and their anti-proliferative effects on MCF-7 breast cancer cells. Molecules. 2018;23(5):1083.PubMedCentral
9.
Zurück zum Zitat Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423.PubMedPubMedCentral Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423.PubMedPubMedCentral
10.
Zurück zum Zitat Orimo A, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48.PubMed Orimo A, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48.PubMed
11.
Zurück zum Zitat Park J, Euhus DM, Scherer PE. Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocr Rev. 2011;32(4):550–70.PubMedPubMedCentral Park J, Euhus DM, Scherer PE. Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocr Rev. 2011;32(4):550–70.PubMedPubMedCentral
13.
Zurück zum Zitat Kuzet SE, Gaggioli C. Fibroblast activation in cancer: when seed fertilizes soil. Cell Tissue Res. 2016;365(3):607–19.PubMed Kuzet SE, Gaggioli C. Fibroblast activation in cancer: when seed fertilizes soil. Cell Tissue Res. 2016;365(3):607–19.PubMed
14.
Zurück zum Zitat Hugo HJ, et al. Contribution of fibroblast and mast cell (afferent) and tumor (efferent) il-6 effects within the tumor microenvironment. Cancer Microenviron. 2012;5(1):83–93.PubMedPubMedCentral Hugo HJ, et al. Contribution of fibroblast and mast cell (afferent) and tumor (efferent) il-6 effects within the tumor microenvironment. Cancer Microenviron. 2012;5(1):83–93.PubMedPubMedCentral
15.
Zurück zum Zitat Ghulam Jilany K, et al. Versatility of cancer associated fibroblasts: commendable targets for anti-tumor therapy. Curr Drug Targets. 2018;19(13):1573–88. Ghulam Jilany K, et al. Versatility of cancer associated fibroblasts: commendable targets for anti-tumor therapy. Curr Drug Targets. 2018;19(13):1573–88.
16.
Zurück zum Zitat Ammirante M, et al. Tissue injury and hypoxia promote malignant progression of prostate cancer by inducing CXCL13 expression in tumor myofibroblasts. Proc Natl Acad Sci USA. 2014;111(41):14776.PubMedPubMedCentral Ammirante M, et al. Tissue injury and hypoxia promote malignant progression of prostate cancer by inducing CXCL13 expression in tumor myofibroblasts. Proc Natl Acad Sci USA. 2014;111(41):14776.PubMedPubMedCentral
17.
Zurück zum Zitat Dirat B, et al. 495 Cancer-associated adipocytes exhibit an activated phenotype and contribute to early breast cancer invasion in vitro and in vivo. Eur J Cancer Suppl. 2010;8(5):126. Dirat B, et al. 495 Cancer-associated adipocytes exhibit an activated phenotype and contribute to early breast cancer invasion in vitro and in vivo. Eur J Cancer Suppl. 2010;8(5):126.
18.
Zurück zum Zitat Nieman KM, et al. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim Biophys Acta. 2013;1831(10):1533.PubMedPubMedCentral Nieman KM, et al. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim Biophys Acta. 2013;1831(10):1533.PubMedPubMedCentral
19.
Zurück zum Zitat Köhler S, Schaller V, Bausch AR. Collective dynamics of active cytoskeletal networks. PLoS ONE. 2011;6(8):e23798.PubMedPubMedCentral Köhler S, Schaller V, Bausch AR. Collective dynamics of active cytoskeletal networks. PLoS ONE. 2011;6(8):e23798.PubMedPubMedCentral
20.
Zurück zum Zitat Du H, et al. DT-13 inhibits cancer cell migration by regulating NMIIA indirectly in the tumor microenvironment. Oncol Rep. 2016;36(2):721–8.PubMed Du H, et al. DT-13 inhibits cancer cell migration by regulating NMIIA indirectly in the tumor microenvironment. Oncol Rep. 2016;36(2):721–8.PubMed
21.
Zurück zum Zitat Ghulam Jilany K, et al. TGF-β1 causes emt by regulating N-acetyl glucosaminyl transferases via downregulation of non muscle myosin II-A through jnk/p38/pi3k pathway in lung cancer. Curr Cancer Drug Targets. 2017;17:1–11. Ghulam Jilany K, et al. TGF-β1 causes emt by regulating N-acetyl glucosaminyl transferases via downregulation of non muscle myosin II-A through jnk/p38/pi3k pathway in lung cancer. Curr Cancer Drug Targets. 2017;17:1–11.
22.
Zurück zum Zitat Ghulam Jilany K, et al. In-vitro pre-treatment of cancer cells with Tgf-β1: a novel approach of tail vein lung cancer metastasis mouse model for anti-metastatic studies. Curr Mol Pharmacol. 2019;12(4):249–60. Ghulam Jilany K, et al. In-vitro pre-treatment of cancer cells with Tgf-β1: a novel approach of tail vein lung cancer metastasis mouse model for anti-metastatic studies. Curr Mol Pharmacol. 2019;12(4):249–60.
23.
Zurück zum Zitat Wei XH, et al. DT-13 attenuates human lung cancer metastasis via regulating NMIIA activity under hypoxia condition. Oncol Rep. 2016;36(2):991–9.PubMed Wei XH, et al. DT-13 attenuates human lung cancer metastasis via regulating NMIIA activity under hypoxia condition. Oncol Rep. 2016;36(2):991–9.PubMed
24.
Zurück zum Zitat Evenram S, et al. Myosin IIA regulates cell motility and actomyosin–microtubule crosstalk. Nat Cell Biol. 2007;9(3):299–309. Evenram S, et al. Myosin IIA regulates cell motility and actomyosin–microtubule crosstalk. Nat Cell Biol. 2007;9(3):299–309.
25.
Zurück zum Zitat Zhang Y, et al. DT-13 suppresses MDA-MB-435 cell adhesion and invasion by inhibiting MMP-2/9 via the p38 MAPK pathway. Mol Med Rep. 2012;6(5):1121.PubMed Zhang Y, et al. DT-13 suppresses MDA-MB-435 cell adhesion and invasion by inhibiting MMP-2/9 via the p38 MAPK pathway. Mol Med Rep. 2012;6(5):1121.PubMed
26.
Zurück zum Zitat Sen-Sen L, et al. The saponin DT-13 inhibits gastric cancer cell migration through down-regulation of CCR5-CCL5 axis. Chin J Nat Med. 2014;12(11):833. Sen-Sen L, et al. The saponin DT-13 inhibits gastric cancer cell migration through down-regulation of CCR5-CCL5 axis. Chin J Nat Med. 2014;12(11):833.
28.
Zurück zum Zitat Khan GJ, et al. Pharmacological effects and potential therapeutic targets of DT-13. Biomed Pharmacother. 2018;97:255–63.PubMed Khan GJ, et al. Pharmacological effects and potential therapeutic targets of DT-13. Biomed Pharmacother. 2018;97:255–63.PubMed
29.
Zurück zum Zitat Af S, et al. Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science. 2003;299(5613):1743–7. Af S, et al. Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science. 2003;299(5613):1743–7.
30.
Zurück zum Zitat Le CC, Carlier MF. Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev. 2008;88(2):489. Le CC, Carlier MF. Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev. 2008;88(2):489.
31.
Zurück zum Zitat Dahan I, et al. The tumor suppressor Lgl1 regulates NMII-A cellular distribution and focal adhesion morphology to optimize cell migration. Mol Biol Cell. 2012;23(4):591.PubMedPubMedCentral Dahan I, et al. The tumor suppressor Lgl1 regulates NMII-A cellular distribution and focal adhesion morphology to optimize cell migration. Mol Biol Cell. 2012;23(4):591.PubMedPubMedCentral
32.
Zurück zum Zitat Tang DD, Gerlach BD. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respir Res. 2017;18(1):54.PubMedPubMedCentral Tang DD, Gerlach BD. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respir Res. 2017;18(1):54.PubMedPubMedCentral
33.
Zurück zum Zitat Stricker J, Falzone T, Gardel ML. Mechanics of the F-actin cytoskeleton. J Biomech. 2010;43(1):9–14.PubMed Stricker J, Falzone T, Gardel ML. Mechanics of the F-actin cytoskeleton. J Biomech. 2010;43(1):9–14.PubMed
34.
Zurück zum Zitat Peng X, et al. Vinculin regulates cell-surface E-cadherin expression by binding to beta-catenin. J Cell Sci. 2010;123(4):567–77.PubMedPubMedCentral Peng X, et al. Vinculin regulates cell-surface E-cadherin expression by binding to beta-catenin. J Cell Sci. 2010;123(4):567–77.PubMedPubMedCentral
35.
Zurück zum Zitat Small JV, et al. How do microtubules guide migrating cells? Nat Rev Mol Cell Biol. 2002;3(12):957.PubMed Small JV, et al. How do microtubules guide migrating cells? Nat Rev Mol Cell Biol. 2002;3(12):957.PubMed
36.
Zurück zum Zitat Jannie KM, et al. Vinculin-dependent actin bundling regulates cell migration and traction forces. Biochem J. 2015;465(3):383–93.PubMed Jannie KM, et al. Vinculin-dependent actin bundling regulates cell migration and traction forces. Biochem J. 2015;465(3):383–93.PubMed
37.
Zurück zum Zitat Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. J Cell Sci. 2004;117(20):4619.PubMed Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. J Cell Sci. 2004;117(20):4619.PubMed
38.
Zurück zum Zitat Kolch W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol. 2005;6(11):827–37.PubMed Kolch W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol. 2005;6(11):827–37.PubMed
39.
Zurück zum Zitat Sun L, et al. The saponin monomer of dwarf lilyturf tuber, DT-13, reduces human breast cancer cell adhesion and migration during hypoxia via regulation of tissue factor. Biol Pharm Bull. 2010;33(7):1192.PubMed Sun L, et al. The saponin monomer of dwarf lilyturf tuber, DT-13, reduces human breast cancer cell adhesion and migration during hypoxia via regulation of tissue factor. Biol Pharm Bull. 2010;33(7):1192.PubMed
40.
Zurück zum Zitat Lin SS, et al. The saponin DT-13 inhibits gastric cancer cell migration through down-regulation of CCR5-CCL5 axis. Chin J Nat Med. 2014;12(11):833.PubMed Lin SS, et al. The saponin DT-13 inhibits gastric cancer cell migration through down-regulation of CCR5-CCL5 axis. Chin J Nat Med. 2014;12(11):833.PubMed
41.
Zurück zum Zitat Yu XW, et al. Synergistic combination of DT-13 and topotecan inhibits human gastric cancer via myosin IIA-induced endocytosis of EGF receptorin vitro and in vivo. Oncotarget. 2016;7(22):32990.PubMedPubMedCentral Yu XW, et al. Synergistic combination of DT-13 and topotecan inhibits human gastric cancer via myosin IIA-induced endocytosis of EGF receptorin vitro and in vivo. Oncotarget. 2016;7(22):32990.PubMedPubMedCentral
42.
Zurück zum Zitat Li H, et al. DT-13, a saponin monomer of dwarf lilyturf tuber, induces autophagy and potentiates anti-cancer effect of nutrient deprivation. Eur J Pharmacol. 2016;781:164–72.PubMed Li H, et al. DT-13, a saponin monomer of dwarf lilyturf tuber, induces autophagy and potentiates anti-cancer effect of nutrient deprivation. Eur J Pharmacol. 2016;781:164–72.PubMed
43.
Zurück zum Zitat Raval RR, et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol. 2005;25(13):5675.PubMedPubMedCentral Raval RR, et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol. 2005;25(13):5675.PubMedPubMedCentral
44.
Zurück zum Zitat Gordan JD, et al. HIF-α effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell. 2008;14(6):435.PubMedPubMedCentral Gordan JD, et al. HIF-α effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell. 2008;14(6):435.PubMedPubMedCentral
45.
Zurück zum Zitat Muz B, et al. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia. 2015;3:83.PubMedPubMedCentral Muz B, et al. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia. 2015;3:83.PubMedPubMedCentral
46.
Zurück zum Zitat Leszczynska KB, et al. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT. J Clin Invest. 2015;125(6):2385–98.PubMedPubMedCentral Leszczynska KB, et al. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT. J Clin Invest. 2015;125(6):2385–98.PubMedPubMedCentral
47.
Zurück zum Zitat Lim H, Moon A. Inflammatory fibroblasts in cancer. Arch Pharmacal Res. 2016;39(8):1–11. Lim H, Moon A. Inflammatory fibroblasts in cancer. Arch Pharmacal Res. 2016;39(8):1–11.
48.
Zurück zum Zitat Rio MC, Dali-Youcef N, Tomasetto C. Local adipocyte cancer cell paracrine loop: can “sick fat” be more detrimental? Horm Mol Biol Clin Investig. 2015;21(1):43–56.PubMed Rio MC, Dali-Youcef N, Tomasetto C. Local adipocyte cancer cell paracrine loop: can “sick fat” be more detrimental? Horm Mol Biol Clin Investig. 2015;21(1):43–56.PubMed
49.
Zurück zum Zitat Zhao B, et al. Hypoxia drives the transition of human dermal fibroblasts to a myofibroblast-like phenotype via the TGF-β1/Smad3 pathway. Int J Mol Med. 2016;39(1):153–9.PubMedPubMedCentral Zhao B, et al. Hypoxia drives the transition of human dermal fibroblasts to a myofibroblast-like phenotype via the TGF-β1/Smad3 pathway. Int J Mol Med. 2016;39(1):153–9.PubMedPubMedCentral
50.
Zurück zum Zitat Ghulam Jilany K, et al. TGF-β1 causes EMT by regulating N-Acetyl Glucosaminyl transferases via downregulation of non muscle myosin II-A through JNK/P38/PI3K pathway in lung cancer. Curr Cancer Drug Targets. 2018;18(2):209–19. Ghulam Jilany K, et al. TGF-β1 causes EMT by regulating N-Acetyl Glucosaminyl transferases via downregulation of non muscle myosin II-A through JNK/P38/PI3K pathway in lung cancer. Curr Cancer Drug Targets. 2018;18(2):209–19.
51.
Zurück zum Zitat Yaoborengasser A, et al. Adipocyte hypoxia promotes epithelial-mesenchymal transition-related gene expression and estrogen receptor-negative phenotype in breast cancer cells. Oncol Rep. 2015;33(6):2689–94. Yaoborengasser A, et al. Adipocyte hypoxia promotes epithelial-mesenchymal transition-related gene expression and estrogen receptor-negative phenotype in breast cancer cells. Oncol Rep. 2015;33(6):2689–94.
52.
Zurück zum Zitat Betapudi V, Licate LS, Egelhoff TT. Distinct roles of nonmuscle myosin II isoforms in the regulation of MDA-MB-231 breast cancer cell spreading and migration. Cancer Res. 2006;66(9):4725–33.PubMed Betapudi V, Licate LS, Egelhoff TT. Distinct roles of nonmuscle myosin II isoforms in the regulation of MDA-MB-231 breast cancer cell spreading and migration. Cancer Res. 2006;66(9):4725–33.PubMed
53.
Zurück zum Zitat Jacobelli J, et al. Confinement-optimized three-dimensional T cell amoeboid motility is modulated via myosin IIA-regulated adhesions. Nat Immunol. 2010;11(10):953.PubMedPubMedCentral Jacobelli J, et al. Confinement-optimized three-dimensional T cell amoeboid motility is modulated via myosin IIA-regulated adhesions. Nat Immunol. 2010;11(10):953.PubMedPubMedCentral
54.
Zurück zum Zitat Morin NA, et al. Nonmuscle myosin heavy chain IIA mediates integrin LFA-1 de-adhesion during T lymphocyte migration. J Exp Med. 2008;205(1):195.PubMedPubMedCentral Morin NA, et al. Nonmuscle myosin heavy chain IIA mediates integrin LFA-1 de-adhesion during T lymphocyte migration. J Exp Med. 2008;205(1):195.PubMedPubMedCentral
55.
Zurück zum Zitat Tanaka C, et al. GADD34 suppresses wound healing by upregulating expression of myosin IIA. Transgenic Res. 2010;19(4):637–45.PubMed Tanaka C, et al. GADD34 suppresses wound healing by upregulating expression of myosin IIA. Transgenic Res. 2010;19(4):637–45.PubMed
56.
Zurück zum Zitat Babbin BA, Koch S, Bachar M, Conti MA, Parkos CA, Adelstein RS, Nusrat A, Ivanov AI. Non-muscle myosin IIA differentially regulates intestinal epithelial cell restitution and matrix invasion. Am J Pathol. 2009;174(2):436.PubMedPubMedCentral Babbin BA, Koch S, Bachar M, Conti MA, Parkos CA, Adelstein RS, Nusrat A, Ivanov AI. Non-muscle myosin IIA differentially regulates intestinal epithelial cell restitution and matrix invasion. Am J Pathol. 2009;174(2):436.PubMedPubMedCentral
Metadaten
Titel
DT-13 inhibits breast cancer cell migration via non-muscle myosin II-A regulation in tumor microenvironment synchronized adaptations
verfasst von
Y. Gao
G. J. Khan
X. Wei
K.-F. Zhai
L. Sun
S. Yuan
Publikationsdatum
13.02.2020
Verlag
Springer International Publishing
Erschienen in
Clinical and Translational Oncology / Ausgabe 9/2020
Print ISSN: 1699-048X
Elektronische ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-020-02303-z

Weitere Artikel der Ausgabe 9/2020

Clinical and Translational Oncology 9/2020 Zur Ausgabe

Erhöhte Mortalität bei postpartalem Brustkrebs

07.05.2024 Mammakarzinom Nachrichten

Auch für Trägerinnen von BRCA-Varianten gilt: Erkranken sie fünf bis zehn Jahre nach der letzten Schwangerschaft an Brustkrebs, ist das Sterberisiko besonders hoch.

Hypertherme Chemotherapie bietet Chance auf Blasenerhalt

07.05.2024 Harnblasenkarzinom Nachrichten

Eine hypertherme intravesikale Chemotherapie mit Mitomycin kann für Patienten mit hochriskantem nicht muskelinvasivem Blasenkrebs eine Alternative zur radikalen Zystektomie darstellen. Kölner Urologen berichten über ihre Erfahrungen.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Bessere Prognose mit links- statt rechtsseitigem Kolon-Ca.

06.05.2024 Kolonkarzinom Nachrichten

Menschen mit linksseitigem Kolonkarzinom leben im Mittel zweieinhalb Jahre länger als solche mit rechtsseitigem Tumor. Auch aktuell ist das Sterberisiko bei linksseitigen Tumoren US-Daten zufolge etwa um 11% geringer als bei rechtsseitigen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.