Skip to main content
Erschienen in: Experimental Brain Research 3/2009

01.08.2009 | Research Article

Early nerve ending rescue from oxidative damage and energy failure by l-carnitine as post-treatment in two neurotoxic models in rat: recovery of antioxidant and reductive capacities

verfasst von: Diana Elinos-Calderón, Yolanda Robledo-Arratia, Verónica Pérez-De La Cruz, José Pedraza-Chaverrí, Syed F. Ali, Abel Santamaría

Erschienen in: Experimental Brain Research | Ausgabe 3/2009

Einloggen, um Zugang zu erhalten

Abstract

Cell rescue is a primary need during acute and chronic insults to the central nervous system. Functional preservation during the early stages of toxicity in a given degenerative event may represent a significant amelioration of detrimental processes linked to neuronal cell loss. Excitotoxicity and depleted cellular energy are toxic events leading to cell death in several neurodegenerative disorders. In this work, the effects of the well-known antioxidant and energy precursor, l-carnitine (l-CAR), were tested as a post-treatment in two neurotoxic models under in vitro and in vivo conditions. The experimental models tested included: (1) a typical excitotoxic and pro-oxidant inducer, quinolinic acid (QUIN); and (2) a mitochondrial energy inhibitor, 3-nitropropionic acid (3-NP). For in vitro studies, increasing concentrations of l-CAR (10–1,000 μM) were added to the isolated brain synaptosomes at different times (1, 3 and 6 h) after the incubation with toxins (100 μM QUIN and 1 mM 3-NP), and 30 min later, lipid peroxidation (LP) and mitochondrial dysfunction (MD) were evaluated. For in vivo purposes, l-CAR (100 mg/kg, i.p.) was given to rats either as a single administration 120 min after the intrastriatal infusion of QUIN (240 nmol/μl) or 3-NP (500 nmol/μl), or for 7 consecutive days (starting 120 min post-lesion). LP and MD were evaluated 4 h and 7 days post-lesions in isolated striatal synaptosomes. Our results show that, despite some variations depending on the toxic model tested, the time of exposure, or the biomarker evaluated, nerve ending protection can be mostly achieved by l-CAR within the first hours after the toxic insults started, suggesting that targeting the ongoing oxidative damage and/or energy depletion during the first stages of neurotoxic events is essential to rescue nerve endings.
Literatur
Zurück zum Zitat Alexi T, Hughes PE, Faul RL, Williams CE (1998) 3-Nitropropionic acid’s lethal triplet: cooperative pathways of neurodegeneration. Neuroreport 9:R57–R64PubMedCrossRef Alexi T, Hughes PE, Faul RL, Williams CE (1998) 3-Nitropropionic acid’s lethal triplet: cooperative pathways of neurodegeneration. Neuroreport 9:R57–R64PubMedCrossRef
Zurück zum Zitat Alves E, Binienda Z, Carvalho F, Alves CJ, Fernandes E, de Lourdes Bastos M, Tavares MA, Summavielle T (2009) Acetyl l-carnitine provides effective in vivo neuroprotection over 3, 4-methylenedioximethamphetamine-induced mitochondrial neurotoxicity in the adolescent rat brain. Neuroscience 158:514–523PubMedCrossRef Alves E, Binienda Z, Carvalho F, Alves CJ, Fernandes E, de Lourdes Bastos M, Tavares MA, Summavielle T (2009) Acetyl l-carnitine provides effective in vivo neuroprotection over 3, 4-methylenedioximethamphetamine-induced mitochondrial neurotoxicity in the adolescent rat brain. Neuroscience 158:514–523PubMedCrossRef
Zurück zum Zitat Beal MF (2004) Mitochondrial dysfunction and oxidative damage in Alzheimer’s and Parkinson’s diseases and coenzyme Q10 as a potential treatment. J Bioenerg Biomembr 36:381–386PubMedCrossRef Beal MF (2004) Mitochondrial dysfunction and oxidative damage in Alzheimer’s and Parkinson’s diseases and coenzyme Q10 as a potential treatment. J Bioenerg Biomembr 36:381–386PubMedCrossRef
Zurück zum Zitat Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321:168–171PubMedCrossRef Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321:168–171PubMedCrossRef
Zurück zum Zitat Behan WM, McDonald M, Darlington LG, Stone TW (1999) Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl. Br J Pharmacol 128:1754–1760PubMedCrossRef Behan WM, McDonald M, Darlington LG, Stone TW (1999) Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl. Br J Pharmacol 128:1754–1760PubMedCrossRef
Zurück zum Zitat Binienda ZK, Ali SF (2001) Neuroprotective role of l-carnitine in the 3-nitropropionic acid induced neurotoxicity. Toxicol Lett 125:67–73PubMedCrossRef Binienda ZK, Ali SF (2001) Neuroprotective role of l-carnitine in the 3-nitropropionic acid induced neurotoxicity. Toxicol Lett 125:67–73PubMedCrossRef
Zurück zum Zitat Binienda Z, Virmani A (2003) The mitochondriotropic effects of l-carnitine and its esters in the central nervous system. Curr Med Chem Cent Nerv Syst Agents 3:275–282CrossRef Binienda Z, Virmani A (2003) The mitochondriotropic effects of l-carnitine and its esters in the central nervous system. Curr Med Chem Cent Nerv Syst Agents 3:275–282CrossRef
Zurück zum Zitat Binienda Z, Virmani A, Przybyla-Zawislak B, Schmued L (2004) Neuroprotective effect of l-carnitine in the 3-nitropropionic acid (3-NPA)-evoked neurotoxicity in rats. Neurosci Lett 367:264–267PubMedCrossRef Binienda Z, Virmani A, Przybyla-Zawislak B, Schmued L (2004) Neuroprotective effect of l-carnitine in the 3-nitropropionic acid (3-NPA)-evoked neurotoxicity in rats. Neurosci Lett 367:264–267PubMedCrossRef
Zurück zum Zitat Brouillet E, Jenkins BG, Hyman BT, Ferrante RJ, Kowall NW, Srivastava R, Roy DS, Rosen BR, Beal MF (1993) Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J Neurochem 60:356–359PubMedCrossRef Brouillet E, Jenkins BG, Hyman BT, Ferrante RJ, Kowall NW, Srivastava R, Roy DS, Rosen BR, Beal MF (1993) Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J Neurochem 60:356–359PubMedCrossRef
Zurück zum Zitat Brouillet E, Condé F, Beal MF, Hantraye P (1999) Replicating Huntington’s disease phenotype in experimental animals. Prog Neurobiol 59:427–468PubMedCrossRef Brouillet E, Condé F, Beal MF, Hantraye P (1999) Replicating Huntington’s disease phenotype in experimental animals. Prog Neurobiol 59:427–468PubMedCrossRef
Zurück zum Zitat Choi DW (1990) Cerebral hypoxia: some new approaches and unanswered questions. J Neurosci 10:2493–2501PubMed Choi DW (1990) Cerebral hypoxia: some new approaches and unanswered questions. J Neurosci 10:2493–2501PubMed
Zurück zum Zitat Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695PubMedCrossRef Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695PubMedCrossRef
Zurück zum Zitat Gülçin I (2006) Antioxidant and antiradical activities of l-carnitine. Life Sci 78:803–811PubMedCrossRef Gülçin I (2006) Antioxidant and antiradical activities of l-carnitine. Life Sci 78:803–811PubMedCrossRef
Zurück zum Zitat Hagen TM, Moreau R, Suh JH, Visioli F (2002) Mitochondrial decay in the aging rat heart: evidence for improvement by dietary supplementation with acetyl-l-carnitine and/or lipoic acid. Ann NY Acad Sci 959:491–507PubMed Hagen TM, Moreau R, Suh JH, Visioli F (2002) Mitochondrial decay in the aging rat heart: evidence for improvement by dietary supplementation with acetyl-l-carnitine and/or lipoic acid. Ann NY Acad Sci 959:491–507PubMed
Zurück zum Zitat Herrera-Mundo MN, Silva-Adaya D, Maldonado PD, Galván-Arzate S, Andrés-Martínez L, Pérez-De La Cruz V, Pedraza-Chaverrí J, Santamaría A (2006) S-Allylcysteine prevents the rat from 3-nitropropionic acid-induced hyperactivity, early markers of oxidative stress and mitochondrial dysfunction. Neurosci Res 56:39–44PubMedCrossRef Herrera-Mundo MN, Silva-Adaya D, Maldonado PD, Galván-Arzate S, Andrés-Martínez L, Pérez-De La Cruz V, Pedraza-Chaverrí J, Santamaría A (2006) S-Allylcysteine prevents the rat from 3-nitropropionic acid-induced hyperactivity, early markers of oxidative stress and mitochondrial dysfunction. Neurosci Res 56:39–44PubMedCrossRef
Zurück zum Zitat Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795PubMedCrossRef Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795PubMedCrossRef
Zurück zum Zitat Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMed Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMed
Zurück zum Zitat Ludolph AC, He F, Spencer PS, Hammerstad J, Sabri M (1991) 3-Nitropropionic acid-exogenous animal neurotoxin and possible human striatal toxin. Can J Neurol Sci 18:492–498PubMed Ludolph AC, He F, Spencer PS, Hammerstad J, Sabri M (1991) 3-Nitropropionic acid-exogenous animal neurotoxin and possible human striatal toxin. Can J Neurol Sci 18:492–498PubMed
Zurück zum Zitat Mansour HH (2006) Protective role of carnitine ester against radiation-induced oxidative stress in rats. Pharmacol Res 54:165–171PubMedCrossRef Mansour HH (2006) Protective role of carnitine ester against radiation-induced oxidative stress in rats. Pharmacol Res 54:165–171PubMedCrossRef
Zurück zum Zitat Martin RL, Lloyd HG, Cowan AI (1994) The early events of oxygen and glucose deprivation: setting the scene for neuronal death? Trends Neurosci 17:251–257PubMedCrossRef Martin RL, Lloyd HG, Cowan AI (1994) The early events of oxygen and glucose deprivation: setting the scene for neuronal death? Trends Neurosci 17:251–257PubMedCrossRef
Zurück zum Zitat Miller OO (1996) Minerals. In: Fennema OR (ed) Food chemistry, 38 edn. Marcel Dekker, New York, pp 618–649 Miller OO (1996) Minerals. In: Fennema OR (ed) Food chemistry, 38 edn. Marcel Dekker, New York, pp 618–649
Zurück zum Zitat Muthuswamy AD, Vedagiri K, Ganesan M, Chinnakannu P (2006) Oxidative stress-mediated macromolecular damage and dwindle in antioxidant status in aged rat brain regions: role of l-carnitine and DL-α-lipoic acid. Clin Chim Acta 368:84–92PubMedCrossRef Muthuswamy AD, Vedagiri K, Ganesan M, Chinnakannu P (2006) Oxidative stress-mediated macromolecular damage and dwindle in antioxidant status in aged rat brain regions: role of l-carnitine and DL-α-lipoic acid. Clin Chim Acta 368:84–92PubMedCrossRef
Zurück zum Zitat Nalecz KA, Nalecz MJ (1996) Carnitine: a known compound, a novel function in neural cells. Acta Neurobiol Exp (Wars) 56:597–609 Nalecz KA, Nalecz MJ (1996) Carnitine: a known compound, a novel function in neural cells. Acta Neurobiol Exp (Wars) 56:597–609
Zurück zum Zitat Nicholls DG, Johnson-Cadwell L, Vesce S, Jekabsons M, Yadava N (2007) Bioenergetics of mitochondria in cultured neurons and their role in glutamate excitotoxicity. J Neurosci Res 85:3206–3212PubMedCrossRef Nicholls DG, Johnson-Cadwell L, Vesce S, Jekabsons M, Yadava N (2007) Bioenergetics of mitochondria in cultured neurons and their role in glutamate excitotoxicity. J Neurosci Res 85:3206–3212PubMedCrossRef
Zurück zum Zitat Pang Z, Geddes JW (1997) Mechanisms of cell death induced by the mitochondrial toxin 3-nitropropionic acid: acute excitotoxic necrosis and delayed apoptosis. J Neurosci 17:3064–3073PubMed Pang Z, Geddes JW (1997) Mechanisms of cell death induced by the mitochondrial toxin 3-nitropropionic acid: acute excitotoxic necrosis and delayed apoptosis. J Neurosci 17:3064–3073PubMed
Zurück zum Zitat Paradies G, Petrosillo G, Gadaleta MN, Ruggiero FM (1999) The effect of aging and acetyl-l-carnitine on the piruvate transport and oxidation in rat heart mitochondria. FEBS Lett 454:207–209PubMedCrossRef Paradies G, Petrosillo G, Gadaleta MN, Ruggiero FM (1999) The effect of aging and acetyl-l-carnitine on the piruvate transport and oxidation in rat heart mitochondria. FEBS Lett 454:207–209PubMedCrossRef
Zurück zum Zitat Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego
Zurück zum Zitat Pérez-De La Cruz V, González-Cortés C, Galván-Arzate S, Medina-Campos ON, Pérez-Severiano F, Ali SF, Pedraza-Chaverrí J, Santamaría A (2005) Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington’s disease in rats: protective role of iron porphyrinate 5, 10, 15, 20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III). Neuroscience 135:463–474PubMedCrossRef Pérez-De La Cruz V, González-Cortés C, Galván-Arzate S, Medina-Campos ON, Pérez-Severiano F, Ali SF, Pedraza-Chaverrí J, Santamaría A (2005) Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington’s disease in rats: protective role of iron porphyrinate 5, 10, 15, 20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III). Neuroscience 135:463–474PubMedCrossRef
Zurück zum Zitat Pérez-De La Cruz V, Konigsberg M, Pedraza-Chaverrí J, Herrera-Mundo N, Díaz-Muñoz M, Morán J, Fortoul-van der Goes T, Rondán-Zárate A, Maldonado PD, Ali SF, Santamaría A (2008) Cytoplasmic calcium mediates oxidative damage in an excitotoxic/energetic deficit synergic model in rats. Eur J NeuroSci 27:1075–1085PubMedCrossRef Pérez-De La Cruz V, Konigsberg M, Pedraza-Chaverrí J, Herrera-Mundo N, Díaz-Muñoz M, Morán J, Fortoul-van der Goes T, Rondán-Zárate A, Maldonado PD, Ali SF, Santamaría A (2008) Cytoplasmic calcium mediates oxidative damage in an excitotoxic/energetic deficit synergic model in rats. Eur J NeuroSci 27:1075–1085PubMedCrossRef
Zurück zum Zitat Petrosillo G, Fattoretti P, Matera M, Ruggiero FM, Bertoni-Freddari C, Paradies G (2008) Melatonin prevents age-related mitochondrial dysfunction in rat brain via cardiolipin protection. Rejuvenation Res 11:935–943PubMedCrossRef Petrosillo G, Fattoretti P, Matera M, Ruggiero FM, Bertoni-Freddari C, Paradies G (2008) Melatonin prevents age-related mitochondrial dysfunction in rat brain via cardiolipin protection. Rejuvenation Res 11:935–943PubMedCrossRef
Zurück zum Zitat Rani PJ, Panneerselvam C (2001) Protective efficacy of L-carnitine on acetylcholinesterase activity in aged rat brain. J Gerontol A Biol Sci Med Sci 56:B140–B141PubMed Rani PJ, Panneerselvam C (2001) Protective efficacy of L-carnitine on acetylcholinesterase activity in aged rat brain. J Gerontol A Biol Sci Med Sci 56:B140–B141PubMed
Zurück zum Zitat Roe CR, Hoppel CL, Stacey TE, Chalmers RA, Tracey BM, Millington DS (1983) Metabolic response to carnitine in methylmalonic aciduria: an effective strategy for elimination of propionyl groups. Arch Dis Child 58:916–920PubMedCrossRef Roe CR, Hoppel CL, Stacey TE, Chalmers RA, Tracey BM, Millington DS (1983) Metabolic response to carnitine in methylmalonic aciduria: an effective strategy for elimination of propionyl groups. Arch Dis Child 58:916–920PubMedCrossRef
Zurück zum Zitat Roe CR, Millington DS, Maltby DA, Bohan TP, Hoppel CL (1984) l-Carnitine enhances excretion of propionyl coenzyme A as propionylcarnitine in propionic acidemia. J Clin Invest 73:1785–1788PubMedCrossRef Roe CR, Millington DS, Maltby DA, Bohan TP, Hoppel CL (1984) l-Carnitine enhances excretion of propionyl coenzyme A as propionylcarnitine in propionic acidemia. J Clin Invest 73:1785–1788PubMedCrossRef
Zurück zum Zitat Rossato JI, Ketzer LA, Centurião FB, Silva SJ, Lüdtke DS, Zeni G, Braga AL, Rubin MA, Rocha JB (2002) Antioxidant properties of new chalcogenides against lipid peroxidation in rat brain. Neurochem Res 27:297–303PubMedCrossRef Rossato JI, Ketzer LA, Centurião FB, Silva SJ, Lüdtke DS, Zeni G, Braga AL, Rubin MA, Rocha JB (2002) Antioxidant properties of new chalcogenides against lipid peroxidation in rat brain. Neurochem Res 27:297–303PubMedCrossRef
Zurück zum Zitat Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19:105–111PubMedCrossRef Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19:105–111PubMedCrossRef
Zurück zum Zitat Santamaría A, Jiménez ME (2005) Oxidative/nitrosative stress, a common factor in different neurotoxic paradigms: an overview. Curr Topics Neurochem 4:1–20 Santamaría A, Jiménez ME (2005) Oxidative/nitrosative stress, a common factor in different neurotoxic paradigms: an overview. Curr Topics Neurochem 4:1–20
Zurück zum Zitat Santamaría A, Ríos C (1993) MK-801, an N-methyl-d-aspartate receptor antagonist, blocks quinolinic acid-induced lipid peroxidation in rat corpus striatum. Neurosci Lett 159:51–54PubMedCrossRef Santamaría A, Ríos C (1993) MK-801, an N-methyl-d-aspartate receptor antagonist, blocks quinolinic acid-induced lipid peroxidation in rat corpus striatum. Neurosci Lett 159:51–54PubMedCrossRef
Zurück zum Zitat Sas K, Robotka H, Toldi J, Vécsei L (2007) Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 257:221–239PubMedCrossRef Sas K, Robotka H, Toldi J, Vécsei L (2007) Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 257:221–239PubMedCrossRef
Zurück zum Zitat Schwarcz R, Whetsell WO Jr, Mangano RM (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219:316–318PubMedCrossRef Schwarcz R, Whetsell WO Jr, Mangano RM (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219:316–318PubMedCrossRef
Zurück zum Zitat Schwarcz R, Foster AC, French ED, Whetsell WO Jr, Köhler C (1984) Excitotoxic models for neurodegenerative disorders. Life Sci 35:19–32PubMedCrossRef Schwarcz R, Foster AC, French ED, Whetsell WO Jr, Köhler C (1984) Excitotoxic models for neurodegenerative disorders. Life Sci 35:19–32PubMedCrossRef
Zurück zum Zitat Shug AL, Schmidt MJ, Golden GT, Fariello RT (1982) The distribution and role of carnitine in the mammalian brain. Life Sci 31:2839–2874CrossRef Shug AL, Schmidt MJ, Golden GT, Fariello RT (1982) The distribution and role of carnitine in the mammalian brain. Life Sci 31:2839–2874CrossRef
Zurück zum Zitat Silva-Adaya D, Pérez-De La Cruz V, Herrera-Mundo MN, Mendoza-Macedo K, Villeda-Hernández J, Binienda Z, Ali SF, Santamaría A (2008) Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of l-carnitine. J Neurochem 105:677–689PubMedCrossRef Silva-Adaya D, Pérez-De La Cruz V, Herrera-Mundo MN, Mendoza-Macedo K, Villeda-Hernández J, Binienda Z, Ali SF, Santamaría A (2008) Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of l-carnitine. J Neurochem 105:677–689PubMedCrossRef
Zurück zum Zitat Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45:309–379PubMed Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45:309–379PubMed
Zurück zum Zitat Túnez I, Montilla P, Del Carmen-Muñoz M, Feijóo M, Salcedo M (2004) Protective effect of melatonin on 3-nitropropionic acid-induced oxidative stress in synaptosomes in an animal model of Huntington’s disease. J Pineal Res 37:252–256PubMedCrossRef Túnez I, Montilla P, Del Carmen-Muñoz M, Feijóo M, Salcedo M (2004) Protective effect of melatonin on 3-nitropropionic acid-induced oxidative stress in synaptosomes in an animal model of Huntington’s disease. J Pineal Res 37:252–256PubMedCrossRef
Zurück zum Zitat Wüllner U, Young AB, Penney JB, Beal MF (1994) 3-Nitropropionic acid toxicity in the striatum. J Neurochem 63:1772–1781PubMedCrossRef Wüllner U, Young AB, Penney JB, Beal MF (1994) 3-Nitropropionic acid toxicity in the striatum. J Neurochem 63:1772–1781PubMedCrossRef
Zurück zum Zitat Zeevalk GD, Derr-Yellin E, Nicklas WJ (1995) Relative vulnerability of dopamine and GABA neurons in mesencephalic culture to inhibition of succinate dehydrogenase by malonate and 3-nitropropionic acid and protection by NMDA receptor blockade. J Pharmacol Exp Ther 275:1124–1130PubMed Zeevalk GD, Derr-Yellin E, Nicklas WJ (1995) Relative vulnerability of dopamine and GABA neurons in mesencephalic culture to inhibition of succinate dehydrogenase by malonate and 3-nitropropionic acid and protection by NMDA receptor blockade. J Pharmacol Exp Ther 275:1124–1130PubMed
Metadaten
Titel
Early nerve ending rescue from oxidative damage and energy failure by l-carnitine as post-treatment in two neurotoxic models in rat: recovery of antioxidant and reductive capacities
verfasst von
Diana Elinos-Calderón
Yolanda Robledo-Arratia
Verónica Pérez-De La Cruz
José Pedraza-Chaverrí
Syed F. Ali
Abel Santamaría
Publikationsdatum
01.08.2009
Verlag
Springer-Verlag
Erschienen in
Experimental Brain Research / Ausgabe 3/2009
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-009-1913-3

Weitere Artikel der Ausgabe 3/2009

Experimental Brain Research 3/2009 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.