Skip to main content
Erschienen in: BMC Oral Health 1/2020

Open Access 01.12.2020 | Research article

Effect of bisphosphonate treatment of titanium surfaces on alkaline phosphatase activity in osteoblasts: a systematic review and meta-analysis

verfasst von: Christian Wehner, Stefan Lettner, Andreas Moritz, Oleh Andrukhov, Xiaohui Rausch-Fan

Erschienen in: BMC Oral Health | Ausgabe 1/2020

Abstract

Background

Bisphosphonate coating of dental implants is a promising tool for surface modification aiming to improve the osseointegration process and clinical outcome. The biological effects of bisphosphonates are thought to be mainly associated with osteoclasts inhibition, whereas their effects on osteoblast function are unclear. A potential of bisphosphonate coated surfaces to stimulate osteoblast differentiation was investigated by several in vitro studies with contradictory results. The purpose of this systematic review and meta-analysis was to evaluate the effect of bisphosphonate coated implant surfaces on alkaline phosphatase activity in osteoblasts.

Methods

In vitro studies that assessed alkaline phosphatase activity in osteoblasts following cell culture on bisphosphonate coated titanium surfaces were searched in electronic databases PubMed/MEDLINE, Scopus and ISI Web of Science. Animal studies and clinical trials were excluded. The literature search was restricted to articles written in English and published up to August 2019. Publication bias was assessed by the construction of funnel plots.

Results

Eleven studies met the inclusion criteria. Meta-analysis showed that coating of titanium surfaces with bisphosphonates increases alkaline phosphatase activity in osteoblasts after 3 days (n = 1), 7 (n = 7), 14 (n = 6) and 21 (n = 3) days. (7 days beta coefficient = 1.363, p-value = 0.001; 14 days beta coefficient = 1.325, p-value < 0.001; 21 days beta coefficient = 1.152, p-value = 0.159).

Conclusions

The meta-analysis suggests that bisphosphonate coatings of titanium implant surfaces may have beneficial effects on osteogenic behaviour of osteoblasts grown on titanium surfaces in vitro. Further studies are required to assess to which extent bisphosphonates coating might improve osseointegration in clinical situations.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12903-020-01089-4.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ALP
Alkaline phosphatase
BIC
Bone to implant contact
DLC
Diamond-like carbon
HA
Hydroxyapatite
MSCs
Mesenchymal stem cells
OC
Osteocalcin
ONJ
Osteonecrosis of the jaw
Ra
Roughness profile
Rq
Root mean square roughness
Rt
Maximum height of the profile
Runx2
Runt-related transcription factor 2

Background

Nowadays, titanium dental implants demonstrate high long-term success rates and have become a standard treatment option for teeth replacement and prostheses support [1, 2]. An essential requirement for stable implant anchoring is the osseointegration process, which was first described by Brånemark et al. in the late 1960s and is defined as a direct functional and structural connection between the implant surface and living bone [3]. About one decade later, the concept of dental implant surface properties as a paramount element in osseointegration was introduced by Albrektsson [4]. Earlier research efforts were mainly focused on dental implant geometry intending to improve clinical outcome and long-term success. Later the focus of interest was shifted towards topographical and chemical modifications of implant surfaces. These modifications aimed to improve osseointegration through enhancement of the underlying biological processes [5, 6]. Surface characteristics like roughness or hydrophilicity affect proteins adsorption, cell adherence, proliferation, and differentiation, which are essential factors influencing the physiological processes during osseointegration [7, 8]. Titanium still is considered as a golden standard nowadays; however, alternative materials such as zirconia have raised interest due to almost similar osseointegration ability and hypothetically lower risk of peri-implantitis [9, 10]. Besides topographical characteristics and hydrophilicity, surface coating with drugs, proteins, growth factors or specific agents is now extensively investigated as a future tool in implantology [11, 12].
Bisphosphonates are antiresorptive drugs that influence bone metabolism mainly via inhibition of osteoclast recruitment, differentiation, and bone resorption activity [13]. Frequent indications of bisphosphonates include osteoporosis, Paget’s disease, skeletal metastases or osteogenesis imperfecta [14]. Members of the bisphosphonate family that are in common clinical use comprise alendronate, zoledronate, risedronate, ibandronate, and pamidronate [15]. After cellular uptake, bisphosphonates block the farnesyl pyrophosphate synthase, a key enzyme of the mevalonate pathway that is critical for osteoclast function [16]. Besides their inhibitory effect on osteoclasts and bone resorption, bisphosphonates may promote the processes of bone formation and enhance osteogenic differentiation of mesenchymal stem cells (MSCs) [17]. Bisphosphonates have been shown to support osseous wound healing and bone formation in the animal model [18, 19]. Dental implant bisphosphonate coatings are successfully applied as local drug delivery systems, demonstrating higher bone to implant contact (BIC) and peri-implant bone mineralization in the animal model [20, 21]. Bisphosphonate coated implants exhibit an increase in mechanical fixation in the human bone when compared to non-coated control [22]. Therefore, bisphosphonate coatings of titanium surfaces might also be beneficial for dental implant healing and osseointegration.
The formation of new bone around the dental implants is a complex process driven by osteoblasts and MSCs and precisely orchestrated by different cytokines and growth factors [23]. Alkaline phosphatase (ALP) is a widely used marker for early osteoblast differentiation in vitro and is crucial for bone formation [24, 25]. ALP increases the local concentration of inorganic phosphate and thus promotes mineralization processes [26]. Currently, literature investigating the impact of bisphosphonates on ALP in osteoblasts is contradictory, demonstrating either stimulating [27, 28] or inhibitory [29, 30] effects. The aim of this systematic review and meta-analysis was to assess the available in vitro evidence on the effect of bisphosphonate coated titanium surfaces on osteoblasts derived ALP activity. The significance of the effect of bisphosphonates coating on ALP activity was further tested by meta-analysis.

Methods

This systematic review and meta-analysis were performed following the PRISMA statement (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) [31] and Cochrane handbook [32]. A PICO (Population, Intervention, Comparison, Outcome) strategy was defined to evaluate scientific evidence. Studies were considered eligible under the following criteria: In vitro evaluation of titanium surfaces (excluding animal studies and clinical studies) (P) that were coated with bisphosphonates (excluding studies adding bisphosphonates as a substrate during cell culture) (I), compared to non-treated control (C), regarding ALP activity in osteoblasts that have been cultured on the surfaces (O).

Search strategy

A systematic literature search without time restriction was performed by two independent researchers using three electronic databases: PubMed/MEDLINE, Scopus, and ISI web of science. The language was limited to English. The following medical subject headings (MeSH) terms and keywords were used for search strategies in MEDLINE via PubMed: ((((((((bisphosphonate [MeSH Terms] OR bisphosphonate coating) OR phosphonate) OR alendronate) OR zoledronate) OR zoledronic acid) OR risedronate) OR ibandronate) OR pamidronate) AND (titanium OR titanium surface) AND ((alkaline phosphatase [MeSH Terms] OR alkaline phosphatase activity) OR ALP) AND (osteoblast [MeSH Terms] OR osteoblast-like cell). For ISI Web of Science and Scopus, the following search terms were used: (“bisphosphonate” OR “bisphosphonate coating” OR “alendronate” OR “zoledronate” OR “zoledronic acid” OR “risedronate” OR “ibandronate” OR “pamidronate”) AND (“titanium” OR “titanium surface”) AND (“alkaline phosphatase” OR “alkaline phosphatase activity” OR “ALP”) AND (“osteoblast” OR “osteoblast-like cell”).

Inclusion criteria

Studies were included if they met the following criteria:
1.
In vitro studies evaluating ALP activity in osteoblasts growing on titanium surfaces that were coated by bisphosphonates.
 
2.
Studies written in English were included up until August 2019.
 
3.
Sufficient data provided to perform calculations for the meta-analysis. In case data were not presented in the paper, the corresponding author was asked via e-mail to provide missing data. If there was no reply, measurement of the graphs by available online tools (GetData Graph Digitizer) that have been recommended by the Cochrane Handbook for Systematic Reviews of Interventions [33] was performed.
 

Data extraction

Data extraction was carried out independently by two researchers (CW and OA). Each study was first checked regarding title, followed by screening of the abstracts and the full text. If the inclusion criteria were met, the following data were extracted for conduction of the meta-analysis: First author’s name, year of publication, sample size per experiment, time of ALP activity measurement, cell type used for experiments, measure of variability, type of bisphosphonate used for coating, amount or concentration of bisphosphonate on titanium surface, alkaline phosphatase activity, coating specification. To ensure data quality, studies were checked for description of methodology and a clearly focused research question. Furthermore, the presence of the following parameters was reviewed in each study to perform quality assessment: stability of bisphosphonate coating, quality of ALP activity assessment, description of coating procedure, availability of original data, surface roughness parameters, contact angle measurement, appropriate statistical analysis, and performance of at least three repetitions. If the required information was stated within the paper, the study received one point on that specific parameter. Study quality was assessed according to the sum of points achieved: 1–3 = high, 4–5 = medium, 6–8 = low quality. Any disagreements regarding study eligibility were discussed and solved by consulting a third researcher (XR).

Statistical analysis

For the meta-analysis, synthesis of the studies was carried out using the response ratio [34], which was calculated as the ratio of ALP activity value measured in the treatment group to those measured in the control group. This was done to avoid the effect of the variability of the absolute ALP activity values between the studies, which might depend on the used protocol and cell type. Calculations were done using the log of this ratio, but for the presentation, the results were back-transformed using the exponential function. Random-effects models were used to account for the high heterogeneity in the included studies. Additionally, multilevel models were necessary to account for including several groups of the same study in the analysis. Thus, meta-analytic multilevel random-effects models [35] were used, including a random effect for the studies. Tests and confidence intervals from these models presented are based on Wald statistics.

Risk of publication bias

Funnel plots on the log response ratio scale, as well as forest plots, were prepared. Publication bias was assessed by visually inspecting funnel plots and calculating Egger’s test egger [36] and Kendall’s tau [37] according to the suggestion of The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses [38]. Heterogenity was quantified using I2 as defined by Higgins & Thompson 2002 [39]. All computations were done using R version 3.5.1.(R: A language and environment for statistical computing).
No further risk of bias was assessed as no validated bias risk assessment tool was available for in vitro studies.

Results

Screening process and study selection

The flowchart of the screening process is presented in Fig.1. The literature reviewing process revealed 42 studies: 14 from MEDLINE (PubMed), 16 from ISI Web of Science, 13 from Scopus electronic database. Twenty-two studies remained after duplicates removal. Of those, 11 studies had to be excluded as they did not match the following PICO criteria: P (n = 2), I (n = 6), O (n = 3). Finally, 11 studies were enrolled for meta-analytic calculations.

Descriptive analysis

Table 1 shows the characteristics of the included studies for meta-analysis. All 11 studies were published between 2000 and 2019. In five studies experiments were performed with MG-63 human osteoblast-like cells [40, 41, 43, 45, 46], in three studies with MC3T3-E1 mouse osteoblast cells [44, 47, 50], in two studies with osteoblasts from rat calvaria [48, 49], and in one study with osteoblasts derived from primary human stem cells [42]. The sample size per experiment was ranging between 3 and 6. ALP activity was measured after 3, 4, 7, 10, 14, 18 or 21 days of cell culture; most studies (n = 7) performing experiments after 1 week. Nine studies used alendronate as coating, one study zoledronate, and one pamidronate.
Table 1
Study characteristics of the included studies. ALP activity: alkaline phosphatase activity, SrHA: strontium hydroxyapatite, and ZOLHA (zoledronate hydroxyapatite), BMP-2: bone morphogenetic protein 2
Study ID
Year
Sample size per experiment
Time point of measurement
Cell type
Type of bisphosphonate
Amount / concentration
ALP activity (3 days)
ALP activity (4 days)
ALP activity (7 days)
ALP activity (10 days)
ALP activity (14 days)
ALP activity (18 days)
ALP activity (21 days)
Coating specificaiton
Bigi et al. [40]
2009
3
7, 14 days
MG-63 osteoblast like cells
Control
  
2.17 ± 1.21
 
4.81 ± 0.27
  
Hydroxyapatite
Bigi et al. [40]
2009
3
7, 14 days
MG-63 osteoblast like cells
Alendronate
7 mM
  
2.12 ± 0.20
 
4.72 ± 0.08
  
Hydroxyapatite
Bigi et al. [40]
2009
3
7, 14 days
MG-63 osteoblast like cells
Alendronate
28 mM
  
2.29 ± 0.45
 
5.23 ± 0.14
  
Hydroxyapatite
Boanini et al. [41]
2015
6
10, 21 days
MG-63 osteoblast like cells
Control
   
0.82 ± 0.12
  
0.99 ± 0.12
Strontium-substituted hydroxyapatite (SrHA)
Boanini et al. [41]
2015
6
10, 21 days
MG-63 osteoblast like cells
Zoledronat
Gradient composition C2 (SrHA and ZOLHA)
   
1 ± 0.15
  
1.09 ± 0.08
Strontium-substituted hydroxyapatite (SrHA)
Boanini et al. [41]
2015
6
10, 21 days
MG-63 osteoblast like cells
Zoledronat
Gradient composition C3 (SrHA and ZOLHA)
   
0.79 ± 0.1
  
0.92 ± 0.08
Strontium-substituted hydroxyapatite (SrHA)
Boanini et al. [41]
2015
6
10, 21 days
MG-63 osteoblast like cells
Zoledronat
Gradient composition C4 (SrHA and ZOLHA)
   
0.75 ± 0,1
  
0.86 ± 0.16
Strontium-substituted hydroxyapatite (SrHA)
Boanini et al. [41]
2015
6
10, 21 days
MG-63 osteoblast like cells
Zoledronat
ZOLHA
   
0,80 ± 0.06
  
0.92 ± 0,15
Strontium-substituted hydroxyapatite (SrHA)
Boanini et al. [42]
2015
6
14 days
Osteoblast derived from stem cells
Control
    
10.6 ± 2.1
  
Octacalcium phosphate
Boanini et al. [42]
2015
6
14 days
Osteoblast derived from stem cells
Alendronate
8 mM
    
16.3 ± 2.6
  
Octacalcium phosphate
Boanini et al. [42]
2015
6
14 days
Osteoblast derived from stem cells
Alendronate
20 mM
    
9.63 ± 2.30
  
Octacalcium phosphate
Hu et al. [44]
2013
5
14 days
MC3T3-E1
Control
    
0.41 ± 0.02
  
Precoated hydroxyapatite (CaP) layer
Hu et al. [44]
2013
5
14 days
MC3T3-E1
Alendronate
0.2 mg/ml solution
    
0.57 ± 0.04
  
Precoated hydroxyapatite (CaP) layer
Hu et al. [44]
2013
5
14 days
MC3T3-E1
Alendronate
0.5 mg/ml solution
    
0.59 ± 0.04
  
Precoated hydroxyapatite (CaP) layer
Hu et al. [44]
2013
5
14 days
MC3T3-E1
Alendronate
1 mg/ml solution
    
0.59 ± 0.63
  
Precoated hydroxyapatite (CaP) layer
Jeon et al [43]
2019
5
3 days
MG-63 osteoblast like cells
Control
1.11 ± 0.09
      
UV treatment
Jeon et al [43]
2019
5
3 days
MG-63 osteoblast like cells
Alendronate
10−3 M
1.16 ± 0.17
      
UV treatment
Kim et al. [45]
2013
5
7, 14, 21 days
MG-63 osteoblast like cells
Control
  
1.12 ± 0.03
 
3.44 ± 0.14
 
4.01 ± 0.09
Heparin-coated
Kim et al. [45]
2013
5
7, 14, 21 days
MG-63 osteoblast like cells
Alendronate
1 mg/ml solution
  
1.19 ± 0.04
 
5.29 ± 0.06
 
4.41 ± 0.12
Heparin-coated
Kim et al. [45]
2013
5
7, 14, 21 days
MG-63 osteoblast like cells
Control
  
1.31 ± 0.05
 
5.86 ± 0.23
 
4.65 ± 0.13
BMP-2/Heparin-coated
Kim et al. [45]
2013
5
7, 14, 21 days
MG-63 osteoblast like cells
Alendronate
1 mg/ml solution
  
1.41 ± 0.04
 
6.65 ± 0.27
 
5.36 ± 0.13
BMP-2/Heparin-coated
Kim et al. [46]
2017
3
7 days
MG-63 osteoblast like cells
Control
  
1.49 ± 0.23
    
without UV treatment
Kim et al. [46]
2017
3
7 days
MG-63 osteoblast like cells
Alendronate
10−6 M
  
4.08 ± 0.23
    
without UV treatment
Kim et al. [46]
2017
3
7 days
MG-63 osteoblast like cells
Control
  
3.49 ± 0.34
    
with UV treatment
Kim et al. [46]
2017
3
7 days
MG-63 osteoblast like cells
Alendronate
10−6 M
  
6.22 ± 0.78
    
with UV treatment
Moon et al. [47]
2011
3
7, 14, 21 days
MC3T3-E1
Control
  
2.56 ± 0.17
 
3.60 ± 0.06
 
3.48 ± 0.13
Heparin-coated
Moon et al. [47]
2011
3
7, 14, 21 days
MC3T3-E1
Alendronate
1 mg
  
3.55 ± 0.10
 
5.35 ± 0.17
 
4.36 ± 0.11
Heparin-coated
Moon et al. [47]
2011
3
7, 14, 21 days
MC3T3-E1
Alendronate
5 mg
  
4.24 ± 0.29
 
7.80 ± 0.21
 
5.35 ± 0.15
Heparin-coated
Mu et al. [48]
2018
5
7 days
Osteoblasts from neonate rat calvaria
Control
  
0.53 ± 0.05
    
Hyaluronan
Mu et al. [48]
2018
5
7 days
Osteoblasts from neonate rat calvaria
Alendronate
500 mg
  
0.63 ± 0.06
    
Hyaluronan
Yoshinari et al. [49]
2000
6
7 days
Osteoblastic cells from calvariae of Sprague-Dawley rats
Control
  
51.7 ± 5.9
    
Hydroxyapatite
Yoshinari et al. [49]
2000
6
7 days
Osteoblastic cells from calvariae of Sprague-Dawley rats
Pamidronate disodium
10−2 M
  
65.4 ± 9.7
    
Hydroxyapatite
Zheng et al. [50]
2016
3
4,7,10,14,18 days
MC3T3-E1
Control
 
1.19 ± 0.15
1.81 ± 0.20
3.27 ± 0,38
3.30 ± 0.27
2.66 ± 0.25
 
Plasma treated titanium
Zheng et al. [50]
2016
3
4,7,10,14,18 days
MC3T3-E1
Alendronate
2.5 mg/ml solution
 
1.59 ± 0.13
2.36 ± 0.27
3.58 ± 0.20
3.66 ± 0.28
2.65 ± 0.25
 
Plasma treated titanium
Zheng et al. [50]
2016
3
4,7,10,14,18 days
MC3T3-E1
Control
 
1.20 ± 0.16
1.95 ± 0,26
3.26 ± 0.16
3,3 ± 0.13
2.62 ± 0.36
 
Plasma treated, silane-treated
Zheng et al. [50]
2016
3
4,7,10,14,18 days
MC3T3-E1
Alendronate
0.5 mg/ml solution
 
1.52 ± 0.16
2.66 ± 0,16
3.93 ± 0.26
4.32 ± 0.30
3.18 ± 0.24
 
Plasma treated, silane-treated
Zheng et al. [50]
2016
3
4,7,10,14,18 days
MC3T3-E1
Alendronate
1 mg/ml solution
 
1.62 ± 0.12
3.39 ± 0,23
4.99 ± 0.28
3.70 ± 0.13
3.05 ± 0.14
 
Plasma treated, silane-treated
Study quality assessment is presented in Table 2. According to the criteria applied, 8 studies were classified as medium quality, and 3 studies with low quality, respectively. Quantitative data required for the analysis were provided in one out of 11 studies [46], four authors provided data upon e-mail request [4042, 48]. In the remaining six studies [44, 45, 47, 49, 50], measurement of the graphs by available online software was performed because there was no response after e-mail request.
Table 2
Study quality assessment. 1) stability of bisphosphonate coating, 2) ALP measurement quality, 3) description of coating procedure, 4) availability of original data, 5) surface roughness parameters, 6) contact angle measurement, 7) appropriate statistical analysis, 8) performance of at least three repetitions per experiment
 
1
2
3
4
5
6
7
8
Study quality
Bigi et al. [40]
No
No
Yes
Yes
Yes
No
Yes
Yes
Medium
Boanini et al. [41]
No
No
Yes
Yes
Yes
No
Yes
No
Medium
Boanini et al. [42]
Yes
No
Yes
Yes
Yes
No
Yes
No
Medium
Hu et al. [44]
Yes
Yes
Yes
No
No
Yes
Yes
Yes
Low
Jeon et al. [43]
No
Yes
Yes
No
No
No
Yes
Yes
Medium
Kim et al. [45]
Yes
Yes
Yes
No
No
No
Yes
Yes
Medium
Kim et al. [46]
No
Yes
Yes
Yes
No
No
Yes
No
Medium
Moon et al. [47]
Yes
Yes
Yes
No
No
Yes
Yes
Yes
Low
Mu et al. [48]
Yes
Yes
Yes
Yes
Yes
No
No
No
Medium
Yoshinari et al. [49]
No
Yes
Yes
No
Yes
No
Yes
No
Medium
Zheng et al. [50]
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Low

Meta-analysis

The results of the meta-analysis at days 7, 14, and 21 days are presented in Figs. 2, 3, and 4. At day 7, meta-analysis revealed a 36.3% higher ALP activity in osteoblasts following cell culture on bisphosphonate-coated titanium surfaces compared to control (T vs C: beta coefficient = 1.363, 95%-CI from 1.128 to 1.648, p-value = 0.001; Fig. 2). Significant effect was still observed after 14 days of cell culture, exhibiting 32.5% higher ALP activity in bisphosphonate-coated groups vs. non-treated titanium surfaces (T vs. C: beta coefficient = 1.325, 95%-CI from 1.128 to 1.557, p-value < 0.001; Fig. 3). The 21-day model showed an about 15% higher ALP activity, but the effect was not statistically significant (T vs. C: beta coefficient = 1.152, 95%-CI from 0.946 to 1.401, p-value = 0.159; Fig. 4).
The forest plots performed in the subgroups depending on the bisphosphonate type, coating, and cells are presented as additional files.

Bias assessment

Figure 5 shows the funnel plot referring to 7th day. This plot exhibited no asymmetry (Kendall’s tau is 0.23, p-value 0.306. p-value from Egger’s test is 0.412. I2 is 96.52). No further indication of relevant publication bias was found. The Funnel plots for days 14 and 21 exhibited a similar distribution (data not shown due to the low number of studies for these time points).

Discussion

Biological effects of bisphosphonates are mainly related to inhibition of osteoclasts activity, whereas their impact on osteoblasts is less obvious. According to current literature, in vitro data on the effect of bisphosphonates on ALP activity in osteoblasts are inconsistent [27, 29]. Similarly, some discrepancy exists among the studies investigating osteoblasts growing on bisphosphonate coated titanium surfaces: many studies indicate a significant increase in ALP activity following osteoblast culture, but some reports show no significant effect [40, 45, 48]. Our meta-analysis showed that bisphosphonate coatings significantly improve ALP activity suggesting that the biological effects of bisphosphonates might also be partially contributed by promoting osteoblasts function. These findings are further supported by a pre-clinical study demonstrating an enhancement of peri-implant bone density and an increased mechanical fixation of bisphosphonate-coated dental implants in the rat model [51]. Moreover, our results are also in agreement with clinical studies that report an improvement of osseointegration parameters, better implant stability, and reduced peri-implant bone loss after local bisphosphonates application [52, 53]. According to the present findings, studies included for meta-analysis that investigated alendronate or pamidronate coating of titanium surfaces increased ALP activity in osteoblasts. Interestingly, one study utilizing zoledronate as coating showed lower ALP activity results compared to untreated control [41]. This however might be explained by the fact that zoledronic acid might exert toxic effects on osteoblasts at higher concentrations.
Osseointegration is a complex process involving a plethora of different cells and mechanisms (36) and can only be partially reflected in in vitro settings. Alkaline phosphatase is an early marker of osteoblast differentiation and bone formation [54]. Further indicators for osteoblast differentiation comprise osteocalcin (OC), type I collagen, or runt-related transcription factor 2 (Runx2) expression [25, 55]. However, the ALP activity was the most frequently investigated parameter in studies evaluating the osteogenic potential of titanium surface coatings with bisphosphonates. Among the studies included for meta-analysis, the expression of OC reflecting late osteogenic differentiation [56] was assessed in only four papers [40, 45, 47, 50], type I collagen expression was determined in three studies [4042], whereas none of the studies performed evaluation of Runx2. Bisphosphonates coated implants demonstrated an increase in the expression of OC or type I collagen compared to control in all studies investigating these parameters and thus support our conclusion about a beneficial effect of bisphosphonate coating on osteogenic differentiation in vitro.
To assess publication bias, Egger’s test, as well as Kendall’s tau, were applied to evaluate funnel plot asymmetry. No funnel plot asymmetry was detected. To the best of the authors’ knowledge, there is no validated bias risk assessment tool available for in vitro studies. However, it has to be considered that also other factors, such as differences in study quality or study heterogeneity, could lead to asymmetry in funnel plots.
One possible heterogeneity source is the use of four different cell types by the included studies. Some studies used MG-63 human osteosarcoma cells as osteoblasts model [40, 41, 43, 46, 57]. These cells largely reflect many properties of primary osteoblasts [58]. Other studies used the murine calvarial pre-osteoblast cell line MC3T3-E1 [44, 47, 50]. Although these cells are widely used in material research, a recent study suggests that the performance of these cells might be different in the different subclones [59]. Two studies used primary cells isolated from rat calvaria [48, 49], and one study used mesenchymal stem cells derived osteoblasts [42]. Although the primary cells most adequately reflect the physiological situation, their performance might depend on the donor and the isolation method [60].
There is no standardized, validated tool for the risk of bias assessment for in vitro studies, and therefore we could not perform bias assessment by the traditional algorithm. Instead, we focused on the question if and how some crucial parameters were controlled in the included studies. In eight out of 11 papers, the water contact angle measurements have not been performed [4043, 45, 46, 48, 49]. We considered this parameter for study quality assessment because it reflects the hydrophilicity of titanium surfaces, which enhances the alkaline phosphatase expression of osteoblasts [61, 62]. Three studies demonstrated a significant decrease in contact angle after bisphosphonate coating procedure [44, 48, 50], which might contribute to the improved osteoblasts differentiation.
Titanium surface microscale roughness is a further important parameter influencing osteoblast response and ALP activity [8, 63]. Coating procedures utilizing diamond-like carbon (DLC) may alter titanium surface properties and influence surface topography and roughness parameters [64]. Five out of 11 included studies investigated the effect of bisphosphonate coating. They found no significant changes in roughness parameters, including an arithmetic average of the roughness profile (Ra) and further parameters such as root mean square roughness (Rq) or maximum height of the profile (Rt) upon coating procedure [4042, 48, 50].
In nine studies [4042, 44, 4650] titanium surface coating was done in combination with other components, such as hydroxyapatite (HA). Since HA is known to promote ALP activity in osteoblasts [65, 66], we did not consider pristine titanium but surfaces that were coated with the respective components as control. In terms of quality of ALP activity measurement, we regarded a normalisation of ALP data to cell number or protein amount as correct, instead of indicating absolute value. Such normalization of ALP activity measurement was performed in 8 studies [4450].
It has to be also considered that coatings may exert biological effects only within a limited time period, as long as the drug or substance remains attached to the surface [67]. The assessment of the bisphosphonate coating stability in vitro was performed only by 6 out of 11 studies included in meta-analysis. The quantity of bisphosphonate released ranged from almost no measurable amounts [44] up to 40% of the initially immobilized substance [50]. The instability of coating could partially underlie the fact that its effect on the ALP activity was not significant after 21 days. Furthermore, also the bisphosphonate concentrations used for the coatings varied among the different studies, which could affect alkaline phosphatase activity to an unequal extent. It has to be taken into account that bisphosphonates at higher concentrations may also have cytotoxic effects on osteoblasts in vitro inhibit their viability [68, 69]. One study observed concentration-dependent inhibition of osteoblasts viability on bisphosphonate coated surfaces [41]. In contrast, other studies showed beneficial effects of bisphosphonates on osteoblast proliferation/viability [40, 46].
An increased risk of developing osteonecrosis of the jaw (ONJ) is an undesirable side effect of systemic bisphosphonates therapy. Invasive surgical procedures like tooth extraction or dental implant placement have been demonstrated to increase the risk of ONJ development. The prevalence of ONJ induced by systemic bisphosphonates application depends on the bisphosphonates type, dosage and treatments duration [70]. However, the risk of ONJ upon local application of bisphosphonates coated surface needs to be further assessed. Local delivery might require lower amount of bisphosphonates compared to the systemic therapy and therefore be associated with the lower risk of ONJ.
A possible limitation of our study is that the search for grey literature was not included, as we considered quality assessment achieved by the peer-review process indispensable. This process assesses the experimental protocol, which is essential especially for in vitro studies. As another study limitation, it has to be taken into account that restriction to literature in English might bias the outcome of the meta-analysis. However, publications in English have undergone an international peer-review process, thus possibly meeting higher quality standards than reviewing on the national level. A further limitation of the present study is that its review protocol was not published in any platform, which could be considered less transparent compared to studies with published protocols.

Conclusion

In conclusion, our systematic review and meta-analysis showed that bisphosphonate coating of titanium surfaces exerts beneficial effects on osteogenic parameters in osteoblasts in vitro. Further studies are required to elucidate the underlying biological mechanisms that are initiated by bisphosphonate coatings of dental implants during the process of osseointegration and validate their clinical application in dental implantology.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12903-020-01089-4.

Acknowledgements

Not applicable.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Karoussis IK, Brägger U, Salvi GE, Bürgin W, Lang NP. Effect of implant design on survival and success rates of titanium oral implants: a 10-year prospective cohort study of the ITI dental implant system. Clin Oral Implants Res. 2004;15(1):8–17.PubMedCrossRef Karoussis IK, Brägger U, Salvi GE, Bürgin W, Lang NP. Effect of implant design on survival and success rates of titanium oral implants: a 10-year prospective cohort study of the ITI dental implant system. Clin Oral Implants Res. 2004;15(1):8–17.PubMedCrossRef
2.
Zurück zum Zitat Blanes RJ, Bernard JP, Blanes ZM, Belser UC. A 10-year prospective study of ITI dental implants placed in the posterior region. I: clinical and radiographic results. Clin Oral Implants Res. 2007;18(6):699–706.PubMedCrossRef Blanes RJ, Bernard JP, Blanes ZM, Belser UC. A 10-year prospective study of ITI dental implants placed in the posterior region. I: clinical and radiographic results. Clin Oral Implants Res. 2007;18(6):699–706.PubMedCrossRef
3.
Zurück zum Zitat Brånemark PI, Adell R, Breine U, Hansson BO, Lindström J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg. 1969;3(2):81–100.PubMedCrossRef Brånemark PI, Adell R, Breine U, Hansson BO, Lindström J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg. 1969;3(2):81–100.PubMedCrossRef
4.
Zurück zum Zitat Albrektsson T, Brånemark PI, Hansson HA, Lindström J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand. 1981;52(2):155–70.PubMedCrossRef Albrektsson T, Brånemark PI, Hansson HA, Lindström J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand. 1981;52(2):155–70.PubMedCrossRef
5.
Zurück zum Zitat Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C, Kloss F, Gröbe A, Heiland M, Ebker T. Impact of dental implant surface modifications on Osseointegration. Biomed Res Int. 2016;2016:6285620.PubMedPubMedCentralCrossRef Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C, Kloss F, Gröbe A, Heiland M, Ebker T. Impact of dental implant surface modifications on Osseointegration. Biomed Res Int. 2016;2016:6285620.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Rupp F, Liang L, Geis-Gerstorfer J, Scheideler L, Huttig F. Surface characteristics of dental implants: a review. Dent Mater. 2018;34(1):40–57.PubMedCrossRef Rupp F, Liang L, Geis-Gerstorfer J, Scheideler L, Huttig F. Surface characteristics of dental implants: a review. Dent Mater. 2018;34(1):40–57.PubMedCrossRef
7.
Zurück zum Zitat Blatt S, Pabst AM, Schiegnitz E, Hosang M, Ziebart T, Walter C, Al-Nawas B, Klein MO. Early cell response of osteogenic cells on differently modified implant surfaces: sequences of cell proliferation, adherence and differentiation. J Craniomaxillofac Surg. 2018;46(3):453–60.PubMedCrossRef Blatt S, Pabst AM, Schiegnitz E, Hosang M, Ziebart T, Walter C, Al-Nawas B, Klein MO. Early cell response of osteogenic cells on differently modified implant surfaces: sequences of cell proliferation, adherence and differentiation. J Craniomaxillofac Surg. 2018;46(3):453–60.PubMedCrossRef
8.
Zurück zum Zitat Andrukhov O, Huber R, Shi B, Berner S, Rausch-Fan X, Moritz A, Spencer ND, Schedle A. Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness. Dent Mater. 2016;32(11):1374–84.PubMedCrossRef Andrukhov O, Huber R, Shi B, Berner S, Rausch-Fan X, Moritz A, Spencer ND, Schedle A. Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness. Dent Mater. 2016;32(11):1374–84.PubMedCrossRef
9.
Zurück zum Zitat Kohal RJ, Bächle M, Att W, Chaar S, Altmann B, Renz A, Butz F. Osteoblast and bone tissue response to surface modified zirconia and titanium implant materials. Dent Mater. 2013;29(7):763–76.PubMedCrossRef Kohal RJ, Bächle M, Att W, Chaar S, Altmann B, Renz A, Butz F. Osteoblast and bone tissue response to surface modified zirconia and titanium implant materials. Dent Mater. 2013;29(7):763–76.PubMedCrossRef
10.
Zurück zum Zitat Rezaei NM, Hasegawa M, Ishijima M, Nakhaei K, Okubo T, Taniyama T, Ghassemi A, Tahsili T, Park W, Hirota M, et al. Biological and osseointegration capabilities of hierarchically (meso−/micro−/nano-scale) roughened zirconia. Int J Nanomedicine. 2018;13:3381–95.PubMedPubMedCentralCrossRef Rezaei NM, Hasegawa M, Ishijima M, Nakhaei K, Okubo T, Taniyama T, Ghassemi A, Tahsili T, Park W, Hirota M, et al. Biological and osseointegration capabilities of hierarchically (meso−/micro−/nano-scale) roughened zirconia. Int J Nanomedicine. 2018;13:3381–95.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Coelho PG, Jimbo R, Tovar N, Bonfante EA. Osseointegration: hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales. Dent Mater. 2015;31(1):37–52.PubMedCrossRef Coelho PG, Jimbo R, Tovar N, Bonfante EA. Osseointegration: hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales. Dent Mater. 2015;31(1):37–52.PubMedCrossRef
12.
Zurück zum Zitat Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23(7):844–54.PubMedCrossRef Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23(7):844–54.PubMedCrossRef
13.
Zurück zum Zitat Russell RG, Rogers MJ. Bisphosphonates: from the laboratory to the clinic and back again. Bone. 1999;25(1):97–106.PubMedCrossRef Russell RG, Rogers MJ. Bisphosphonates: from the laboratory to the clinic and back again. Bone. 1999;25(1):97–106.PubMedCrossRef
14.
Zurück zum Zitat Licata AA. Discovery, clinical development, and therapeutic uses of bisphosphonates. Ann Pharmacother. 2005;39(4):668–77.PubMedCrossRef Licata AA. Discovery, clinical development, and therapeutic uses of bisphosphonates. Ann Pharmacother. 2005;39(4):668–77.PubMedCrossRef
15.
Zurück zum Zitat Watts NB. Long-term risks of bisphosphonate therapy. Arq Bras Endocrinol Metabol. 2014;58(5):523–9.PubMedCrossRef Watts NB. Long-term risks of bisphosphonate therapy. Arq Bras Endocrinol Metabol. 2014;58(5):523–9.PubMedCrossRef
16.
Zurück zum Zitat Rogers MJ, Crockett JC, Coxon FP, Mönkkönen J. Biochemical and molecular mechanisms of action of bisphosphonates. Bone. 2011;49(1):34–41.PubMedCrossRef Rogers MJ, Crockett JC, Coxon FP, Mönkkönen J. Biochemical and molecular mechanisms of action of bisphosphonates. Bone. 2011;49(1):34–41.PubMedCrossRef
17.
Zurück zum Zitat Inoue Y, Hisa I, Seino S, Kaji H. Alendronate induces mineralization in mouse osteoblastic MC3T3-E1 cells: regulation of mineralization-related genes. Exp Clin Endocrinol Diabetes. 2010;118(10):719–23.PubMedCrossRef Inoue Y, Hisa I, Seino S, Kaji H. Alendronate induces mineralization in mouse osteoblastic MC3T3-E1 cells: regulation of mineralization-related genes. Exp Clin Endocrinol Diabetes. 2010;118(10):719–23.PubMedCrossRef
18.
Zurück zum Zitat Toker H, Ozdemir H, Ozer H, Eren K. Alendronate enhances osseous healing in a rat calvarial defect model. Arch Oral Biol. 2012;57(11):1545–50.PubMedCrossRef Toker H, Ozdemir H, Ozer H, Eren K. Alendronate enhances osseous healing in a rat calvarial defect model. Arch Oral Biol. 2012;57(11):1545–50.PubMedCrossRef
19.
Zurück zum Zitat Alp YE, Taskaldiran A, Onder ME, Karahan S, Kocyigit ID, Atil F, Tekin U. Effects of local low-dose alendronate injections into the distraction gap on new bone formation and distraction rate on distraction Osteogenesis. J Craniofac Surg. 2017;28(8):2174–8.PubMedCrossRef Alp YE, Taskaldiran A, Onder ME, Karahan S, Kocyigit ID, Atil F, Tekin U. Effects of local low-dose alendronate injections into the distraction gap on new bone formation and distraction rate on distraction Osteogenesis. J Craniofac Surg. 2017;28(8):2174–8.PubMedCrossRef
20.
Zurück zum Zitat Alenezi A, Chrcanovic B, Wennerberg A. Effects of local drug and chemical compound delivery on bone regeneration around dental implants in animal models: a systematic review and meta-analysis. Int J Oral Maxillofac Implants. 2018;33(1):e1–e18.PubMedCrossRef Alenezi A, Chrcanovic B, Wennerberg A. Effects of local drug and chemical compound delivery on bone regeneration around dental implants in animal models: a systematic review and meta-analysis. Int J Oral Maxillofac Implants. 2018;33(1):e1–e18.PubMedCrossRef
21.
Zurück zum Zitat Karlsson J, Martinelli A, Fathali HM, Bielecki J, Andersson M. The effect of alendronate on biomineralization at the bone/implant interface. J Biomed Mater Res A. 2016;104(3):620–9.PubMedCrossRef Karlsson J, Martinelli A, Fathali HM, Bielecki J, Andersson M. The effect of alendronate on biomineralization at the bone/implant interface. J Biomed Mater Res A. 2016;104(3):620–9.PubMedCrossRef
22.
Zurück zum Zitat Abtahi J, Tengvall P, Aspenberg P. A bisphosphonate-coating improves the fixation of metal implants in human bone. A randomized trial of dental implants. Bone. 2012;50(5):1148–51.PubMedCrossRef Abtahi J, Tengvall P, Aspenberg P. A bisphosphonate-coating improves the fixation of metal implants in human bone. A randomized trial of dental implants. Bone. 2012;50(5):1148–51.PubMedCrossRef
23.
Zurück zum Zitat Lotz EM, Berger MB, Schwartz Z, Boyan BD. Regulation of osteoclasts by osteoblast lineage cells depends on titanium implant surface properties. Acta Biomater. 2018;68:296–307.PubMedCrossRef Lotz EM, Berger MB, Schwartz Z, Boyan BD. Regulation of osteoclasts by osteoblast lineage cells depends on titanium implant surface properties. Acta Biomater. 2018;68:296–307.PubMedCrossRef
24.
Zurück zum Zitat Christenson RH. Biochemical markers of bone metabolism: an overview. Clin Biochem. 1997;30(8):573–93.PubMedCrossRef Christenson RH. Biochemical markers of bone metabolism: an overview. Clin Biochem. 1997;30(8):573–93.PubMedCrossRef
25.
Zurück zum Zitat Aubin JE, Liu F, Malaval L, Gupta AK. Osteoblast and chondroblast differentiation. Bone. 1995;17(2 Suppl):77S–83S.PubMedCrossRef Aubin JE, Liu F, Malaval L, Gupta AK. Osteoblast and chondroblast differentiation. Bone. 1995;17(2 Suppl):77S–83S.PubMedCrossRef
26.
Zurück zum Zitat Orimo H. The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J Nippon Med Sch. 2010;77(1):4–12.PubMedCrossRef Orimo H. The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J Nippon Med Sch. 2010;77(1):4–12.PubMedCrossRef
27.
Zurück zum Zitat Corrado A, Neve A, Maruotti N, Gaudio A, Marucci A, Cantatore FP. Dose-dependent metabolic effect of zoledronate on primary human osteoblastic cell cultures. Clin Exp Rheumatol. 2010;28(6):873–9.PubMed Corrado A, Neve A, Maruotti N, Gaudio A, Marucci A, Cantatore FP. Dose-dependent metabolic effect of zoledronate on primary human osteoblastic cell cultures. Clin Exp Rheumatol. 2010;28(6):873–9.PubMed
28.
Zurück zum Zitat Ma X, Xu Z, Ding S, Yi G, Wang Q. Alendronate promotes osteoblast differentiation and bone formation in ovariectomy-induced osteoporosis through interferon-β/signal transducer and activator of transcription 1 pathway. Exp Ther Med. 2018;15(1):182–90.PubMed Ma X, Xu Z, Ding S, Yi G, Wang Q. Alendronate promotes osteoblast differentiation and bone formation in ovariectomy-induced osteoporosis through interferon-β/signal transducer and activator of transcription 1 pathway. Exp Ther Med. 2018;15(1):182–90.PubMed
29.
Zurück zum Zitat Marolt D, Cozin M, Vunjak-Novakovic G, Cremers S, Landesberg R. Effects of pamidronate on human alveolar osteoblasts in vitro. J Oral Maxillofac Surg. 2012;70(5):1081–92.PubMedPubMedCentralCrossRef Marolt D, Cozin M, Vunjak-Novakovic G, Cremers S, Landesberg R. Effects of pamidronate on human alveolar osteoblasts in vitro. J Oral Maxillofac Surg. 2012;70(5):1081–92.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Huang X, Huang S, Guo F, Xu F, Cheng P, Ye Y, Dong Y, Xiang W, Chen A. Dose-dependent inhibitory effects of zoledronic acid on osteoblast viability and function in vitro. Mol Med Rep. 2016;13(1):613–22.PubMedCrossRef Huang X, Huang S, Guo F, Xu F, Cheng P, Ye Y, Dong Y, Xiang W, Chen A. Dose-dependent inhibitory effects of zoledronic acid on osteoblast viability and function in vitro. Mol Med Rep. 2016;13(1):613–22.PubMedCrossRef
31.
Zurück zum Zitat Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, Group P-P. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1.PubMedPubMedCentralCrossRef Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, Group P-P. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat JPT H, S G: Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. In.: The Cochrane Collaboration; 2011. JPT H, S G: Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. In.: The Cochrane Collaboration; 2011.
33.
Zurück zum Zitat Higgins JPT, Thomas J: Cochrane Handbook for Systematic Reviews of Interventions: Edition 2. In.; 2019: 728. Higgins JPT, Thomas J: Cochrane Handbook for Systematic Reviews of Interventions: Edition 2. In.; 2019: 728.
34.
Zurück zum Zitat Borenstein M, Hedges LV, Higgins JPT, Rothstein HR: Introduction to Meta-Analysis; 2009. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR: Introduction to Meta-Analysis; 2009.
35.
Zurück zum Zitat Wolfgang V. Conducting meta-analyses in R withthe metafor package. J Stat Softw. 2011;363:1–48. Wolfgang V. Conducting meta-analyses in R withthe metafor package. J Stat Softw. 2011;363:1–48.
36.
Zurück zum Zitat Sterne JAC, Egger M: Regression methods to detect publication and other bias in meta-analysis. In: Publication bias in meta-analysis: Prevention, assessment, and adjustments. edn. Edited by R. RH, J. SA, M. B. Chichester, England; 2005: 99--110. Sterne JAC, Egger M: Regression methods to detect publication and other bias in meta-analysis. In: Publication bias in meta-analysis: Prevention, assessment, and adjustments. edn. Edited by R. RH, J. SA, M. B. Chichester, England; 2005: 99--110.
37.
Zurück zum Zitat Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.CrossRefPubMed Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.CrossRefPubMed
38.
Zurück zum Zitat Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100.PubMedPubMedCentralCrossRef Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.PubMedCrossRef Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.PubMedCrossRef
40.
Zurück zum Zitat Bigi A, Boanini E, Capuccini C, Fini M, Mihailescu IN, Ristoscu C, Sima F, Torricelli P. Biofunctional alendronate-hydroxyapatite thin films deposited by matrix assisted pulsed laser evaporation. Biomaterials. 2009;30(31):6168–77.PubMedCrossRef Bigi A, Boanini E, Capuccini C, Fini M, Mihailescu IN, Ristoscu C, Sima F, Torricelli P. Biofunctional alendronate-hydroxyapatite thin films deposited by matrix assisted pulsed laser evaporation. Biomaterials. 2009;30(31):6168–77.PubMedCrossRef
41.
Zurück zum Zitat Boanini E, Torricelli P, Sima F, Axente E, Fini M, Mihailescu IN, Bigi A. Strontium and zoledronate hydroxyapatites graded composite coatings for bone prostheses. J Colloid Interface Sci. 2015;448:1–7.PubMedCrossRef Boanini E, Torricelli P, Sima F, Axente E, Fini M, Mihailescu IN, Bigi A. Strontium and zoledronate hydroxyapatites graded composite coatings for bone prostheses. J Colloid Interface Sci. 2015;448:1–7.PubMedCrossRef
42.
Zurück zum Zitat Boanini E, Torricelli P, Forte L, Pagani S, Mihailescu N, Ristoscu C, Mihailescu IN, Bigi A. Antiresorption implant coatings based on calcium alendronate and octacalcium phosphate deposited by matrix assisted pulsed laser evaporation. Colloids Surf B Biointerfaces. 2015;136:449–56.PubMedCrossRef Boanini E, Torricelli P, Forte L, Pagani S, Mihailescu N, Ristoscu C, Mihailescu IN, Bigi A. Antiresorption implant coatings based on calcium alendronate and octacalcium phosphate deposited by matrix assisted pulsed laser evaporation. Colloids Surf B Biointerfaces. 2015;136:449–56.PubMedCrossRef
43.
Zurück zum Zitat Jeon C, Oh KC, Park KH, Moon HS. Effects of ultraviolet treatment and alendronate immersion on osteoblast-like cells and human gingival fibroblasts cultured on titanium surfaces. Sci Rep. 2019;9(1):2581.PubMedPubMedCentralCrossRef Jeon C, Oh KC, Park KH, Moon HS. Effects of ultraviolet treatment and alendronate immersion on osteoblast-like cells and human gingival fibroblasts cultured on titanium surfaces. Sci Rep. 2019;9(1):2581.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Hu X, Neoh KG, Shi Z, Kang ET, Wang W. An in vitro assessment of fibroblast and osteoblast response to alendronate-modified titanium and the potential for decreasing fibrous encapsulation. Tissue Eng Part A. 2013;19(17–18):1919–30.PubMedPubMedCentralCrossRef Hu X, Neoh KG, Shi Z, Kang ET, Wang W. An in vitro assessment of fibroblast and osteoblast response to alendronate-modified titanium and the potential for decreasing fibrous encapsulation. Tissue Eng Part A. 2013;19(17–18):1919–30.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Eun KS, Young-Pil Y, Kyeongsoon P, Hak-Jun K, Deok-Won L, Wook KJ, Hyeok YD, Hun SD. The Effects of Functionalized Titanium with Alendronate and Bone Morphogenic Protein-2 for Improving Osteoblast Activity. Tissue Eng Regen Med. 2013;10(6):353–61.CrossRef Eun KS, Young-Pil Y, Kyeongsoon P, Hak-Jun K, Deok-Won L, Wook KJ, Hyeok YD, Hun SD. The Effects of Functionalized Titanium with Alendronate and Bone Morphogenic Protein-2 for Improving Osteoblast Activity. Tissue Eng Regen Med. 2013;10(6):353–61.CrossRef
46.
Zurück zum Zitat Kim HS, Lee JI, Yang SS, Kim BS, Kim BC, Lee J. The effect of alendronate soaking and ultraviolet treatment on bone-implant interface. Clin Oral Implants Res. 2017;28(9):1164–72.PubMedCrossRef Kim HS, Lee JI, Yang SS, Kim BS, Kim BC, Lee J. The effect of alendronate soaking and ultraviolet treatment on bone-implant interface. Clin Oral Implants Res. 2017;28(9):1164–72.PubMedCrossRef
47.
Zurück zum Zitat Moon HJ, Yun YP, Han CW, Kim MS, Kim SE, Bae MS, Kim GT, Choi YS, Hwang EH, Lee JW, et al. Effect of heparin and alendronate coating on titanium surfaces on inhibition of osteoclast and enhancement of osteoblast function. Biochem Biophys Res Commun. 2011;413(2):194–200.PubMedCrossRef Moon HJ, Yun YP, Han CW, Kim MS, Kim SE, Bae MS, Kim GT, Choi YS, Hwang EH, Lee JW, et al. Effect of heparin and alendronate coating on titanium surfaces on inhibition of osteoclast and enhancement of osteoblast function. Biochem Biophys Res Commun. 2011;413(2):194–200.PubMedCrossRef
48.
Zurück zum Zitat Mu C, Hu Y, Huang L, Shen X, Li M, Li L, Gu H, Yu Y, Xia Z, Cai K. Sustained raloxifene release from hyaluronan-alendronate-functionalized titanium nanotube arrays capable of enhancing osseointegration in osteoporotic rabbits. Mater Sci Eng C Mater Biol Appl. 2018;82:345–53.PubMedCrossRef Mu C, Hu Y, Huang L, Shen X, Li M, Li L, Gu H, Yu Y, Xia Z, Cai K. Sustained raloxifene release from hyaluronan-alendronate-functionalized titanium nanotube arrays capable of enhancing osseointegration in osteoporotic rabbits. Mater Sci Eng C Mater Biol Appl. 2018;82:345–53.PubMedCrossRef
49.
Zurück zum Zitat Yoshinari M, Oda Y, Ueki H, Yokose S. Immobilization of bisphosphonates on surface modified titanium. Biomaterials. 2001;22(7):709–15.PubMedCrossRef Yoshinari M, Oda Y, Ueki H, Yokose S. Immobilization of bisphosphonates on surface modified titanium. Biomaterials. 2001;22(7):709–15.PubMedCrossRef
50.
Zurück zum Zitat Zheng D, Neoh KG, Kang ET. Immobilization of alendronate on titanium via its different functional groups and the subsequent effects on cell functions. J Colloid Interface Sci. 2017;487:1–11.PubMedCrossRef Zheng D, Neoh KG, Kang ET. Immobilization of alendronate on titanium via its different functional groups and the subsequent effects on cell functions. J Colloid Interface Sci. 2017;487:1–11.PubMedCrossRef
51.
Zurück zum Zitat Peter B, Pioletti DP, Laïb S, Bujoli B, Pilet P, Janvier P, Guicheux J, Zambelli PY, Bouler JM, Gauthier O. Calcium phosphate drug delivery system: influence of local zoledronate release on bone implant osteointegration. Bone. 2005;36(1):52–60.PubMedCrossRef Peter B, Pioletti DP, Laïb S, Bujoli B, Pilet P, Janvier P, Guicheux J, Zambelli PY, Bouler JM, Gauthier O. Calcium phosphate drug delivery system: influence of local zoledronate release on bone implant osteointegration. Bone. 2005;36(1):52–60.PubMedCrossRef
52.
Zurück zum Zitat Khamis AK, Elsharkawy S. The influence of local delivery of bisphosphonate on osseointegration of dental implants. Evid Based Dent. 2018;19(3):82–3.PubMedCrossRef Khamis AK, Elsharkawy S. The influence of local delivery of bisphosphonate on osseointegration of dental implants. Evid Based Dent. 2018;19(3):82–3.PubMedCrossRef
53.
Zurück zum Zitat Guimarães MB, Antes TH, Dolacio MB, Pereira DD, Marquezan M. Does local delivery of bisphosphonates influence the osseointegration of titanium implants? A systematic review. Int J Oral Maxillofac Surg. 2017;46(11):1429–36.PubMedCrossRef Guimarães MB, Antes TH, Dolacio MB, Pereira DD, Marquezan M. Does local delivery of bisphosphonates influence the osseointegration of titanium implants? A systematic review. Int J Oral Maxillofac Surg. 2017;46(11):1429–36.PubMedCrossRef
54.
Zurück zum Zitat Harrison G, Shapiro IM, Golub EE. The phosphatidylinositol-glycolipid anchor on alkaline phosphatase facilitates mineralization initiation in vitro. J Bone Miner Res. 1995;10(4):568–73.PubMedCrossRef Harrison G, Shapiro IM, Golub EE. The phosphatidylinositol-glycolipid anchor on alkaline phosphatase facilitates mineralization initiation in vitro. J Bone Miner Res. 1995;10(4):568–73.PubMedCrossRef
55.
Zurück zum Zitat Komori T. Requisite roles of Runx2 and Cbfb in skeletal development. J Bone Miner Metab. 2003;21(4):193–7.PubMed Komori T. Requisite roles of Runx2 and Cbfb in skeletal development. J Bone Miner Metab. 2003;21(4):193–7.PubMed
56.
Zurück zum Zitat Lian JB, Stein GS. Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation. Crit Rev Oral Biol Med. 1992;3(3):269–305.PubMedCrossRef Lian JB, Stein GS. Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation. Crit Rev Oral Biol Med. 1992;3(3):269–305.PubMedCrossRef
57.
Zurück zum Zitat Kim SE, Suh DH, Yun YP, Lee JY, Park K, Chung JY, Lee DW. Local delivery of alendronate eluting chitosan scaffold can effectively increase osteoblast functions and inhibit osteoclast differentiation. J Mater Sci Mater Med. 2012;23(11):2739–49.PubMedCrossRef Kim SE, Suh DH, Yun YP, Lee JY, Park K, Chung JY, Lee DW. Local delivery of alendronate eluting chitosan scaffold can effectively increase osteoblast functions and inhibit osteoclast differentiation. J Mater Sci Mater Med. 2012;23(11):2739–49.PubMedCrossRef
58.
Zurück zum Zitat Pautke C, Schieker M, Tischer T, Kolk A, Neth P, Mutschler W, Milz S. Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts. Anticancer Res. 2004;24(6):3743–8.PubMed Pautke C, Schieker M, Tischer T, Kolk A, Neth P, Mutschler W, Milz S. Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts. Anticancer Res. 2004;24(6):3743–8.PubMed
59.
Zurück zum Zitat Hwang PW, Horton JA. Variable osteogenic performance of MC3T3-E1 subclones impacts their utility as models of osteoblast biology. Sci Rep. 2019;9(1):8299.PubMedPubMedCentralCrossRef Hwang PW, Horton JA. Variable osteogenic performance of MC3T3-E1 subclones impacts their utility as models of osteoblast biology. Sci Rep. 2019;9(1):8299.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Jonsson KB, Frost A, Nilsson O, Ljunghall S, Ljunggren O. Three isolation techniques for primary culture of human osteoblast-like cells: a comparison. Acta Orthop Scand. 1999;70(4):365–73.PubMedCrossRef Jonsson KB, Frost A, Nilsson O, Ljunghall S, Ljunggren O. Three isolation techniques for primary culture of human osteoblast-like cells: a comparison. Acta Orthop Scand. 1999;70(4):365–73.PubMedCrossRef
61.
Zurück zum Zitat Sedlaczek J, Lohmann CH, Lotz EM, Hyzy SL, Boyan BD, Schwartz Z. Effects of low-frequency ultrasound treatment of titanium surface roughness on osteoblast phenotype and maturation. Clin Oral Implants Res. 2017;28(10):e151–8.PubMedCrossRef Sedlaczek J, Lohmann CH, Lotz EM, Hyzy SL, Boyan BD, Schwartz Z. Effects of low-frequency ultrasound treatment of titanium surface roughness on osteoblast phenotype and maturation. Clin Oral Implants Res. 2017;28(10):e151–8.PubMedCrossRef
62.
Zurück zum Zitat Zhang Y, Andrukhov O, Berner S, Matejka M, Wieland M, Rausch-Fan X, Schedle A. Osteogenic properties of hydrophilic and hydrophobic titanium surfaces evaluated with osteoblast-like cells (MG63) in coculture with human umbilical vein endothelial cells (HUVEC). Dent Mater. 2010;26(11):1043–51.PubMedCrossRef Zhang Y, Andrukhov O, Berner S, Matejka M, Wieland M, Rausch-Fan X, Schedle A. Osteogenic properties of hydrophilic and hydrophobic titanium surfaces evaluated with osteoblast-like cells (MG63) in coculture with human umbilical vein endothelial cells (HUVEC). Dent Mater. 2010;26(11):1043–51.PubMedCrossRef
63.
Zurück zum Zitat Yamamura K, Miura T, Kou I, Muramatsu T, Furusawa M, Yoshinari M. Influence of various superhydrophilic treatments of titanium on the initial attachment, proliferation, and differentiation of osteoblast-like cells. Dent Mater J. 2015;34(1):120–7.PubMedCrossRef Yamamura K, Miura T, Kou I, Muramatsu T, Furusawa M, Yoshinari M. Influence of various superhydrophilic treatments of titanium on the initial attachment, proliferation, and differentiation of osteoblast-like cells. Dent Mater J. 2015;34(1):120–7.PubMedCrossRef
64.
Zurück zum Zitat Starý V, Douděrová M, Bačáková L. Influence of surface roughness of carbon materials on human osteoblast-like cell growth. J Biomed Mater Res A. 2014;102(6):1868–79.PubMedCrossRef Starý V, Douděrová M, Bačáková L. Influence of surface roughness of carbon materials on human osteoblast-like cell growth. J Biomed Mater Res A. 2014;102(6):1868–79.PubMedCrossRef
65.
Zurück zum Zitat Costa DO, Prowse PD, Chrones T, Sims SM, Hamilton DW, Rizkalla AS, Dixon SJ. The differential regulation of osteoblast and osteoclast activity by surface topography of hydroxyapatite coatings. Biomaterials. 2013;34(30):7215–26.PubMedCrossRef Costa DO, Prowse PD, Chrones T, Sims SM, Hamilton DW, Rizkalla AS, Dixon SJ. The differential regulation of osteoblast and osteoclast activity by surface topography of hydroxyapatite coatings. Biomaterials. 2013;34(30):7215–26.PubMedCrossRef
66.
Zurück zum Zitat Deng B, Bruzzaniti A, Cheng GJ. Enhancement of osteoblast activity on nanostructured NiTi/hydroxyapatite coatings on additive manufactured NiTi metal implants by nanosecond pulsed laser sintering. Int J Nanomedicine. 2018;13:8217–30.PubMedPubMedCentralCrossRef Deng B, Bruzzaniti A, Cheng GJ. Enhancement of osteoblast activity on nanostructured NiTi/hydroxyapatite coatings on additive manufactured NiTi metal implants by nanosecond pulsed laser sintering. Int J Nanomedicine. 2018;13:8217–30.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Albrektsson T. Hydroxyapatite-coated implants: a case against their use. J Oral Maxillofac Surg. 1998;56(11):1312–26.PubMedCrossRef Albrektsson T. Hydroxyapatite-coated implants: a case against their use. J Oral Maxillofac Surg. 1998;56(11):1312–26.PubMedCrossRef
68.
Zurück zum Zitat Sun J, Song F, Zhang W, Sexton BE, Windsor LJ. Effects of alendronate on human osteoblast-like MG63 cells and matrix metalloproteinases. Arch Oral Biol. 2012;57(6):728–36.PubMedCrossRef Sun J, Song F, Zhang W, Sexton BE, Windsor LJ. Effects of alendronate on human osteoblast-like MG63 cells and matrix metalloproteinases. Arch Oral Biol. 2012;57(6):728–36.PubMedCrossRef
69.
Zurück zum Zitat Pons-Fuster López E, Seoane Leston J, López Jornet P. Epigallocatechin-3-gallate reduces damage to osteoblast-like cells treated with Zoledronic acid. Arch Oral Biol. 2018;94:27–32.PubMedCrossRef Pons-Fuster López E, Seoane Leston J, López Jornet P. Epigallocatechin-3-gallate reduces damage to osteoblast-like cells treated with Zoledronic acid. Arch Oral Biol. 2018;94:27–32.PubMedCrossRef
70.
Metadaten
Titel
Effect of bisphosphonate treatment of titanium surfaces on alkaline phosphatase activity in osteoblasts: a systematic review and meta-analysis
verfasst von
Christian Wehner
Stefan Lettner
Andreas Moritz
Oleh Andrukhov
Xiaohui Rausch-Fan
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Oral Health / Ausgabe 1/2020
Elektronische ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-020-01089-4

Weitere Artikel der Ausgabe 1/2020

BMC Oral Health 1/2020 Zur Ausgabe

Parodontalbehandlung verbessert Prognose bei Katheterablation

19.04.2024 Vorhofflimmern Nachrichten

Werden Personen mit Vorhofflimmern in der Blanking-Periode nach einer Katheterablation gegen eine bestehende Parodontitis behandelt, verbessert dies die Erfolgsaussichten. Dafür sprechen die Resultate einer prospektiven Untersuchung.

Invasive Zahnbehandlung: Wann eine Antibiotikaprophylaxe vor infektiöser Endokarditis schützt

11.04.2024 Endokarditis Nachrichten

Bei welchen Personen eine Antibiotikaprophylaxe zur Prävention einer infektiösen Endokarditis nach invasiven zahnärztlichen Eingriffen sinnvoll ist, wird diskutiert. Neue Daten stehen im Einklang mit den europäischen Leitlinienempfehlungen.

Zell-Organisatoren unter Druck: Mechanismen des embryonalen Zahnwachstums aufgedeckt

08.04.2024 Zahnmedizin Nachrichten

Der Aufbau von Geweben und Organen während der Embryonalentwicklung wird von den Zellen bemerkenswert choreografiert. Für diesen Prozess braucht es spezielle sogenannte „Organisatoren“. In einer aktuellen Veröffentlichung im Fachjournal Nature Cell Biology berichten Forschende durch welchen Vorgang diese Organisatoren im Gewebe entstehen und wie sie dann die Bildung von Zähnen orchestrieren.

Die Oralprophylaxe & Kinderzahnheilkunde umbenannt

11.03.2024 Kinderzahnmedizin Nachrichten

Infolge der Umbenennung der Deutschen Gesellschaft für Kinderzahnheilkunde in Deutsche Gesellschaft für Kinderzahnmedizin (DGKiZ) wird deren Mitgliederzeitschrift Oralprophylaxe & Kinderzahnheilkunde in Oralprophylaxe & Kinderzahnmedizin umbenannt. Aus diesem Grunde trägt die erste Ausgabe in 2024 erstmalig den neuen Titel.

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Zahnmedizin und bleiben Sie gut informiert – ganz bequem per eMail.