Skip to main content
Erschienen in: Lasers in Medical Science 1/2015

01.01.2015 | Original Article

Effect of DTPP-mediated photodynamic therapy on cell morphology, viability, cell cycle, and cytotoxicity in a murine lung adenocarcinoma cell line

verfasst von: Jianhua Liu, Liqing Zheng, Yingxin Li, Zhihua Zhang, Li Zhang, Lixia Shen, Xiulong Zhang, Haixia Qiao

Erschienen in: Lasers in Medical Science | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

Photodynamic therapy (PDT) involves the administration and activation of photosensitizing reagents in cancer tissues to induce cytotoxicity. Here we examined the effects of 5-5- (4-N, N-diacetoxylphenyl)-10,15,20- tetraphenylporphyrin (DTPP) -mediated PDT on cell morphology, viability, cell cycle, and cytotoxicity in a murine lung adenocarcinoma cell line. LA795 murine lung adenocarcinoma cell line was used in the study, with cellular uptake of DTPP being quantified by a UV-visible spectrophotometer. The subcellular localization of DTPP was detected by confocal laser scanning microscopy, alteration of cell morphology after PDT was observed by an inverted light microscope, and late-stage apoptosis was examined by terminal dUTP nick end labeling (TUNEL) . The effects of influencing factors on cytotoxicity of PDT in LA795 cells was investigated with varying concentrations of DTPP, energy densities, power densities, and antioxidants by 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Effects of PDT on cell cycle and plasma membrane integrity were studied by flow cytometry analysis. The uptake of DTPP by LA795 cells reached maximum after incubation for 24 h. Confocal laser scanning microscopy showed that DTPP was mainly in the mitochondrion, and slight localization was detected in the lysosomes. Cellular inhibitory effects increased with increased irradiation dose and DTPP concentration, while unactivated DTPP had low toxicity. Flow cytometry analysis revealed that DTPP-PDT-treated cells showed S phase arrest. Cell membrane damage initiation, repair, and irreversible damage were observed at 2, 4, and 5 h after DTPP-PDT , respectively. Together, our results demonstrated cell apoptosis, compromised viability, and cell cycle S phase arrest of LA795 in response to DTPP-PDT , while no effect on the lung cancer cells was observed with irradiation or photosensitizer treatment alone.
Literatur
1.
Zurück zum Zitat Marks P (1999) Photodynamic therapy for central nervous system tumors: achievements and prospects. Br J Neurosurg 13(4):349–351PubMedCrossRef Marks P (1999) Photodynamic therapy for central nervous system tumors: achievements and prospects. Br J Neurosurg 13(4):349–351PubMedCrossRef
2.
Zurück zum Zitat Marks PV, Belchetz PE, Saxena A et al (2000) Effect of photo-dynamic therapy on recurrent pituitary adenomas: clinical phase I/ II trial—an early report. Br J Neurosurg 14:317–325 Marks PV, Belchetz PE, Saxena A et al (2000) Effect of photo-dynamic therapy on recurrent pituitary adenomas: clinical phase I/ II trial—an early report. Br J Neurosurg 14:317–325
3.
Zurück zum Zitat Allison RR, Sibata CH (2010) Oncological photodynamic therapy photosensitizers: a clinical review. Photodiagn Photodyn Ther 7:61–75CrossRef Allison RR, Sibata CH (2010) Oncological photodynamic therapy photosensitizers: a clinical review. Photodiagn Photodyn Ther 7:61–75CrossRef
4.
Zurück zum Zitat Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90PubMedCrossRef Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90PubMedCrossRef
5.
Zurück zum Zitat Kessel D, Luo Y, Mathieu P, Reiners JJ Jr (2000) Determinants of apoptotic response to lysosomal photodamage. Photochem Photobiol 71:196–200PubMedCrossRef Kessel D, Luo Y, Mathieu P, Reiners JJ Jr (2000) Determinants of apoptotic response to lysosomal photodamage. Photochem Photobiol 71:196–200PubMedCrossRef
7.
Zurück zum Zitat Chi L (2005) Technological developments in laser-guided cancer screening and therapy. Univ Toronto Med J 83:119–120 Chi L (2005) Technological developments in laser-guided cancer screening and therapy. Univ Toronto Med J 83:119–120
8.
Zurück zum Zitat Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905PubMedCrossRef Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905PubMedCrossRef
9.
Zurück zum Zitat Yang VXD, Muller PJ, Herman P, Wilson BC (2003) A multispectral fluorescence imaging system: design and initial clinic tests in intra-operative Photofrin-photodynamic therapy of brain tumors. Lasers Surg Med 32(3):224–232PubMedCrossRef Yang VXD, Muller PJ, Herman P, Wilson BC (2003) A multispectral fluorescence imaging system: design and initial clinic tests in intra-operative Photofrin-photodynamic therapy of brain tumors. Lasers Surg Med 32(3):224–232PubMedCrossRef
10.
Zurück zum Zitat Chen J, Wang Y, Liu T (2011) Photodynamic efficiency of new porphyrin-typed drug on HGC27 and MGC803 cells. Int J Biomed Eng 34(3):154–157 Chen J, Wang Y, Liu T (2011) Photodynamic efficiency of new porphyrin-typed drug on HGC27 and MGC803 cells. Int J Biomed Eng 34(3):154–157
11.
Zurück zum Zitat Yslas E, Rivarola V, Durantini EN (2005) Synthesis and photodynamic activity of zinc(II) phthalocyanine derivatives bearing methoxy and trifluoromethylbenzyloxy substituents in homogeneous and biological media. Bioorg Med Chem 13:39–46PubMedCrossRef Yslas E, Rivarola V, Durantini EN (2005) Synthesis and photodynamic activity of zinc(II) phthalocyanine derivatives bearing methoxy and trifluoromethylbenzyloxy substituents in homogeneous and biological media. Bioorg Med Chem 13:39–46PubMedCrossRef
12.
Zurück zum Zitat Macdonald IJ, Dougherty TJ (2001) Basic principles of photodynamic therapy. J Porphyr Phthalocyan 5:105–129CrossRef Macdonald IJ, Dougherty TJ (2001) Basic principles of photodynamic therapy. J Porphyr Phthalocyan 5:105–129CrossRef
13.
Zurück zum Zitat Krishnamurthy S, Powers SK, Witmer P, Brown T (2000) Optimal light dose for interstitial photodynamic therapy in treatment for malignant brain tumors. Lasers Surg Med 27:224–234PubMedCrossRef Krishnamurthy S, Powers SK, Witmer P, Brown T (2000) Optimal light dose for interstitial photodynamic therapy in treatment for malignant brain tumors. Lasers Surg Med 27:224–234PubMedCrossRef
14.
Zurück zum Zitat Tomioka Y, Kushibiki T, Awazu K (2010) Evaluation of oxygen consumption of culture medium and in vitro photodynamic effect of talaporfin sodium in lung tumor cells. Photomed Laser Surg 28:385–390 Tomioka Y, Kushibiki T, Awazu K (2010) Evaluation of oxygen consumption of culture medium and in vitro photodynamic effect of talaporfin sodium in lung tumor cells. Photomed Laser Surg 28:385–390
15.
Zurück zum Zitat Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophy Acta 1776:86–107 Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophy Acta 1776:86–107
16.
Zurück zum Zitat Henderson BW, Busch TM, Snyder JW (2006) Fluence rate as a modulator of PDT mechanisms. Lasers Surg Med 38:489–493PubMedCrossRef Henderson BW, Busch TM, Snyder JW (2006) Fluence rate as a modulator of PDT mechanisms. Lasers Surg Med 38:489–493PubMedCrossRef
17.
Zurück zum Zitat Harrod-Kim P (2006) Tumor ablation with photodynamic therapy: introduction to mechanism and clinical applications. J Vasc Interv Radiol 17:1441–1448PubMedCrossRef Harrod-Kim P (2006) Tumor ablation with photodynamic therapy: introduction to mechanism and clinical applications. J Vasc Interv Radiol 17:1441–1448PubMedCrossRef
19.
Zurück zum Zitat Yin H, Li Y, Zheng Y, Ye X, Zheng L, Li C, Xue Z (2012) Photoinactivation of cell-free human immuno deficiency virus by hematoporphyrin monomethyl ether. Lasers Med Sci 27:943–950PubMedCentralPubMedCrossRef Yin H, Li Y, Zheng Y, Ye X, Zheng L, Li C, Xue Z (2012) Photoinactivation of cell-free human immuno deficiency virus by hematoporphyrin monomethyl ether. Lasers Med Sci 27:943–950PubMedCentralPubMedCrossRef
20.
Zurück zum Zitat Gruber J, Fong S, Chen C-B , Yoong S, Pastorin G, Schaffer S, Cheah I, Halliwell B (2013) Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing. Biotechnol Adv 31:563–592PubMedCrossRef Gruber J, Fong S, Chen C-B , Yoong S, Pastorin G, Schaffer S, Cheah I, Halliwell B (2013) Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing. Biotechnol Adv 31:563–592PubMedCrossRef
21.
Zurück zum Zitat Pazos MC, Nader HB (2007) Effect of photodynamic therapy on the extracellular matrix and associated components. Braz J Med Biol Res 40:1025–1035PubMedCrossRef Pazos MC, Nader HB (2007) Effect of photodynamic therapy on the extracellular matrix and associated components. Braz J Med Biol Res 40:1025–1035PubMedCrossRef
22.
Zurück zum Zitat Ratcliffe SL, Matthews EK (1995) Modification of the photodynamic action of delta-aminolaevulinic acid (ALA) on rat pancreatoma cells by mitochondrial benzodiazepine receptor ligands. Br J Cancer 71:300–305PubMedCentralPubMedCrossRef Ratcliffe SL, Matthews EK (1995) Modification of the photodynamic action of delta-aminolaevulinic acid (ALA) on rat pancreatoma cells by mitochondrial benzodiazepine receptor ligands. Br J Cancer 71:300–305PubMedCentralPubMedCrossRef
23.
Zurück zum Zitat Verma A, Facchina SL, Hirsch DJ, Song SY, Dillahey LF, Williams JR, Snyder SH (1998) Photodynamic tumor therapy: mitochondrial benzodiazepine receptors as a therapeutic target. Mol Med 4:40–45PubMedCentralPubMed Verma A, Facchina SL, Hirsch DJ, Song SY, Dillahey LF, Williams JR, Snyder SH (1998) Photodynamic tumor therapy: mitochondrial benzodiazepine receptors as a therapeutic target. Mol Med 4:40–45PubMedCentralPubMed
24.
Zurück zum Zitat Kessel D, Luo Y (1998) Mitochondrial photodamage and PDT-induced apoptosis. J Photochem Photobiol B 42:89–95PubMedCrossRef Kessel D, Luo Y (1998) Mitochondrial photodamage and PDT-induced apoptosis. J Photochem Photobiol B 42:89–95PubMedCrossRef
25.
Zurück zum Zitat Noodt BB, Berg K, Stokke T, Peng Q, Nesland JM (1999) Different apoptotic pathways are induced from various intracellular sites by tetraphenylporphyrins and light. Br J Cancer 79:72–81PubMedCentralPubMedCrossRef Noodt BB, Berg K, Stokke T, Peng Q, Nesland JM (1999) Different apoptotic pathways are induced from various intracellular sites by tetraphenylporphyrins and light. Br J Cancer 79:72–81PubMedCentralPubMedCrossRef
26.
Zurück zum Zitat Kessel D, Luo Y, Deng Y, Chang CK (1997) The role of subcellular localization in initiation of apoptosis by photodynamic therapy. Photochem Photobiol 65:422–426PubMedCrossRef Kessel D, Luo Y, Deng Y, Chang CK (1997) The role of subcellular localization in initiation of apoptosis by photodynamic therapy. Photochem Photobiol 65:422–426PubMedCrossRef
27.
Zurück zum Zitat Haywood-Smalla SL, Vernona DI, Griffithsb J, Schofieldb J, Brown SB (2006) Phthalocyanine-mediated photodynamic therapy induces cell death and a G0/G1 cell cycle arrest in cervical cancer cells. Biochem Biophys Res Commun 339:569–576CrossRef Haywood-Smalla SL, Vernona DI, Griffithsb J, Schofieldb J, Brown SB (2006) Phthalocyanine-mediated photodynamic therapy induces cell death and a G0/G1 cell cycle arrest in cervical cancer cells. Biochem Biophys Res Commun 339:569–576CrossRef
28.
Zurück zum Zitat Meikrantz W, Gisselbrecht S, Tam SW, Schlegel R (1994) Activation of cyclin A-dependent protein kinases during apoptosis. Natl Acad Sci 91(9):3754–3758CrossRef Meikrantz W, Gisselbrecht S, Tam SW, Schlegel R (1994) Activation of cyclin A-dependent protein kinases during apoptosis. Natl Acad Sci 91(9):3754–3758CrossRef
29.
Zurück zum Zitat Lukšienė Z (2003) Photodynamic therapy: mechanism of action and ways to improve the efficiency of treatment. Medicina 39:1137–1150PubMed Lukšienė Z (2003) Photodynamic therapy: mechanism of action and ways to improve the efficiency of treatment. Medicina 39:1137–1150PubMed
30.
Zurück zum Zitat Van Hillegers R, Kort WJ, Wilson JHP (1994) Current status of photodynamic therapy in oncology. Drugs 48:510–527CrossRef Van Hillegers R, Kort WJ, Wilson JHP (1994) Current status of photodynamic therapy in oncology. Drugs 48:510–527CrossRef
31.
Zurück zum Zitat Yao JA, Jiang M, Tseng GN (1997) Mechanism of enhancement of slow delayed rectifier current by extracellular sulfhydryl modification [J]. Am J Physiol 273:208–219 Yao JA, Jiang M, Tseng GN (1997) Mechanism of enhancement of slow delayed rectifier current by extracellular sulfhydryl modification [J]. Am J Physiol 273:208–219
32.
Zurück zum Zitat Chiamvimonvat N, O’Rourke B, Kamp TJ et al (1995) Functional consequences of sulfhydryl modification in the pore-forming subunits of cardiovascular Ca2+ and Na+ channels [J]. Circ Res 76:325–334 Chiamvimonvat N, O’Rourke B, Kamp TJ et al (1995) Functional consequences of sulfhydryl modification in the pore-forming subunits of cardiovascular Ca2+ and Na+ channels [J]. Circ Res 76:325–334
33.
Zurück zum Zitat Xianting L, Cheng Y (2013) Enantiomer-specific profenofos-induced cytotoxicity and DNA damage mediated by oxidative stress in rat adrenal pheochromocytoma (PC12) cells. J Appl Toxicol 34(2):166–175 Xianting L, Cheng Y (2013) Enantiomer-specific profenofos-induced cytotoxicity and DNA damage mediated by oxidative stress in rat adrenal pheochromocytoma (PC12) cells. J Appl Toxicol 34(2):166–175
Metadaten
Titel
Effect of DTPP-mediated photodynamic therapy on cell morphology, viability, cell cycle, and cytotoxicity in a murine lung adenocarcinoma cell line
verfasst von
Jianhua Liu
Liqing Zheng
Yingxin Li
Zhihua Zhang
Li Zhang
Lixia Shen
Xiulong Zhang
Haixia Qiao
Publikationsdatum
01.01.2015
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 1/2015
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-014-1637-x

Weitere Artikel der Ausgabe 1/2015

Lasers in Medical Science 1/2015 Zur Ausgabe