Skip to main content
Erschienen in: Lasers in Medical Science 1/2015

01.01.2015 | Original Article

Effects of tattoo ink’s absorption spectra and particle size on cosmetic tattoo treatment efficacy using Q-switched Nd:YAG laser

verfasst von: Fur-Jiang Leu, Chuen-Lin Huang, Yuh-Mou Sue, Shao-Chen Lee, Chia-Chen Wang

Erschienen in: Lasers in Medical Science | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

The mechanisms responsible for variable responses of cosmetic tattoos to Q-switched laser removal treatment remain unclear. We sought to investigate the properties of tattoo inks that may affect the efficacy of laser-assisted tattoo removal. The absorption of white, brown, and black inks before and after Q-switched neodymium-doped yttrium aluminum garnet laser irradiation were analyzed by a reflectance measurement system. Rats were tattooed using the three inks and treated with the same laser for two sessions. Skin biopsies were taken from the treated and untreated sites. Black ink showed strong absorption, reduced after laser irradiation, over the entire spectrum. White ink had low absorption over the visible light spectrum, and brown ink had strong absorption at 400–550 nm wavelengths. White and brown inks turned dark after laser exposure, and the absorption of laser-darkened inks were intermediate between their original color and black ink. White, brown, and black tattoos in rat skin achieved poor, fair to good, and excellent responses to laser treatment, respectively. Transmission electron microscopy showed that white tattoo particles were the largest, brown were intermediate, and black were the smallest before laser. After laser treatment, white and brown tattoo particles were mixtures of large and small particles, while black particles showed overall reduction in number and size. Black tattoo ink’s excellent response to Q-switched lasers was associated with its strong absorption and small particle size. White tattoo ink’s poor response was associated with its poor absorption, even after laser darkening, and large particle size.
Literatur
1.
2.
Zurück zum Zitat Taylor CR, Anderson RR, Gange RW, Michaud NA, Flotte TJ (1991) Light and electron microscopic analysis of tattoos treated by Q-switched ruby laser. J Invest Dermatol 97:131–136PubMedCrossRef Taylor CR, Anderson RR, Gange RW, Michaud NA, Flotte TJ (1991) Light and electron microscopic analysis of tattoos treated by Q-switched ruby laser. J Invest Dermatol 97:131–136PubMedCrossRef
3.
Zurück zum Zitat Timko AL, Miller CH, Johnson FB, Ross EV (2001) In vitro quantitative chemical analysis of tattoo pigments. Arch Dermatol 137:143–147PubMed Timko AL, Miller CH, Johnson FB, Ross EV (2001) In vitro quantitative chemical analysis of tattoo pigments. Arch Dermatol 137:143–147PubMed
4.
Zurück zum Zitat Anderson RR, Geronemus R, Kilmer SL, Farinelli W, Fitzpatrick RE (1993) Cosmetic tattoo ink darkening. A complication of Q-switched and pulsed-laser treatment. Arch Dermatol 129:1010–1014PubMedCrossRef Anderson RR, Geronemus R, Kilmer SL, Farinelli W, Fitzpatrick RE (1993) Cosmetic tattoo ink darkening. A complication of Q-switched and pulsed-laser treatment. Arch Dermatol 129:1010–1014PubMedCrossRef
5.
Zurück zum Zitat Kim JW, Lee JW, Won YH, Kim JH, Lee SC (2006) Titanium, a major constituent of blue ink, causes resistance to Nd-YAG (1,064 nm) laser: results of animal experiments. Acta Dermatol Venereol 86:110–113 Kim JW, Lee JW, Won YH, Kim JH, Lee SC (2006) Titanium, a major constituent of blue ink, causes resistance to Nd-YAG (1,064 nm) laser: results of animal experiments. Acta Dermatol Venereol 86:110–113
6.
Zurück zum Zitat Wang CC, Huang CL, Yang AH, Chen CK, Lee SC, Leu FJ (2010) Comparison of two Q-switched lasers and a short-pulse erbium-doped yttrium aluminum garnet laser for treatment of cosmetic tattoos containing titanium and iron in an animal model. Dermatol Surg 36:1656–1663PubMedCrossRef Wang CC, Huang CL, Yang AH, Chen CK, Lee SC, Leu FJ (2010) Comparison of two Q-switched lasers and a short-pulse erbium-doped yttrium aluminum garnet laser for treatment of cosmetic tattoos containing titanium and iron in an animal model. Dermatol Surg 36:1656–1663PubMedCrossRef
7.
Zurück zum Zitat Fitzpatrick RE, Lupton JR (2000) Successful treatment of treatment-resistant laser-induced pigment darkening of a cosmetic tattoo. Lasers Surg Med 27:358–361PubMedCrossRef Fitzpatrick RE, Lupton JR (2000) Successful treatment of treatment-resistant laser-induced pigment darkening of a cosmetic tattoo. Lasers Surg Med 27:358–361PubMedCrossRef
8.
Zurück zum Zitat Hodersdal M, Bech-Thomsen N, Wulf HC (1996) Skin reflectance-guided laser selections for treatment of decorative tattoos. Arch Dermatol 132:403–407PubMedCrossRef Hodersdal M, Bech-Thomsen N, Wulf HC (1996) Skin reflectance-guided laser selections for treatment of decorative tattoos. Arch Dermatol 132:403–407PubMedCrossRef
9.
Zurück zum Zitat Beute TC, Miller CH, Timko AL, Ross EV (2008) In vitro spectral analysis of tattoo pigments. Dermatol Surg 34:508–516PubMed Beute TC, Miller CH, Timko AL, Ross EV (2008) In vitro spectral analysis of tattoo pigments. Dermatol Surg 34:508–516PubMed
10.
Zurück zum Zitat Høgsberg T, Loeschner K, Löf D, Serup J (2011) Tattoo inks in general usage contain nanoparticles. Br J Dermatol 165:1210–1218PubMedCrossRef Høgsberg T, Loeschner K, Löf D, Serup J (2011) Tattoo inks in general usage contain nanoparticles. Br J Dermatol 165:1210–1218PubMedCrossRef
11.
Zurück zum Zitat Torimoto T, Fox R III, Fox M (1996) Photoelectrochemical doping of TiO2 particles and the effect of charge carrier density on the photocatalytic activity of microporous semiconductor electrode films. J Electrochem Soc 143:3712–3717CrossRef Torimoto T, Fox R III, Fox M (1996) Photoelectrochemical doping of TiO2 particles and the effect of charge carrier density on the photocatalytic activity of microporous semiconductor electrode films. J Electrochem Soc 143:3712–3717CrossRef
12.
Zurück zum Zitat Gómez C, Martin V, Sastre R, Costela A, García-Moreno I (2010) In vitro and in vivo laser treatments of tattoos. High efficiency and low fluences. Arch Dermatol 146:39–45PubMedCrossRef Gómez C, Martin V, Sastre R, Costela A, García-Moreno I (2010) In vitro and in vivo laser treatments of tattoos. High efficiency and low fluences. Arch Dermatol 146:39–45PubMedCrossRef
13.
Zurück zum Zitat Humphries A, Lister TS, Wright PA, Hughes MP (2013) Finite element analysis of thermal and acoustic processes during laser tattoo removal. Lasers Surg Med 45:108–115PubMedCrossRef Humphries A, Lister TS, Wright PA, Hughes MP (2013) Finite element analysis of thermal and acoustic processes during laser tattoo removal. Lasers Surg Med 45:108–115PubMedCrossRef
14.
Zurück zum Zitat Chappé M, Hildenhagen J, Dickmann K, Bredol M (2003) Laser irradiation of medieval pigments at IR, VIS and UV wavelengths. J Cult Herit 4:264–270sCrossRef Chappé M, Hildenhagen J, Dickmann K, Bredol M (2003) Laser irradiation of medieval pigments at IR, VIS and UV wavelengths. J Cult Herit 4:264–270sCrossRef
15.
Zurück zum Zitat Pouli P, Emmony DC, Madden CE, Sutherland I (2003) Studies towards a thorough understanding of the laser-induced discoloration mechanisms of medieval pigments. J Cult Herit 4:271–275sCrossRef Pouli P, Emmony DC, Madden CE, Sutherland I (2003) Studies towards a thorough understanding of the laser-induced discoloration mechanisms of medieval pigments. J Cult Herit 4:271–275sCrossRef
16.
Zurück zum Zitat Ross EV, Yashar S, Michaud N, Fitzpatrick R, Geronemus R, Tope WD, Anderson RR (2001) Tattoo darkening and nonresponse after laser treatment: a possible role for titanium dioxide. Arch Dermatol 137:33–37PubMedCrossRef Ross EV, Yashar S, Michaud N, Fitzpatrick R, Geronemus R, Tope WD, Anderson RR (2001) Tattoo darkening and nonresponse after laser treatment: a possible role for titanium dioxide. Arch Dermatol 137:33–37PubMedCrossRef
17.
Zurück zum Zitat Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, Yuan F, Xi T (2009) Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 9:4924–4932PubMedCrossRef Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, Yuan F, Xi T (2009) Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 9:4924–4932PubMedCrossRef
18.
Zurück zum Zitat Anderson LL, Cardone JS, McCollough ML, Grabski WJ (1996) Tattoo pigment mimicking metastatic malignant melanoma. Dermatol Surg 22:92–94PubMed Anderson LL, Cardone JS, McCollough ML, Grabski WJ (1996) Tattoo pigment mimicking metastatic malignant melanoma. Dermatol Surg 22:92–94PubMed
19.
Zurück zum Zitat Ferguson JE, Andrew SM, Jones CJP, August PJ (1997) The Q-switched neodymium:YAG laser and tattoos: a microscopic analysis of laser-tattoo interactions. Br J Dermatol 137:405–410PubMedCrossRef Ferguson JE, Andrew SM, Jones CJP, August PJ (1997) The Q-switched neodymium:YAG laser and tattoos: a microscopic analysis of laser-tattoo interactions. Br J Dermatol 137:405–410PubMedCrossRef
20.
Zurück zum Zitat Dorsett-Martin WA (2004) Rat models of skin wound healing: a review. Wound Repair Regen 12:591–599PubMedCrossRef Dorsett-Martin WA (2004) Rat models of skin wound healing: a review. Wound Repair Regen 12:591–599PubMedCrossRef
21.
Zurück zum Zitat Ibrahimi OA, Syed Z, Sakamoto FH, Avram MM, Anderson RR (2011) Treatment of tattoo allergy with ablative fractional resurfacing: a novel paradigm for tattoo removal. J Am Acad Dermatol 64:1111–1114PubMedCrossRef Ibrahimi OA, Syed Z, Sakamoto FH, Avram MM, Anderson RR (2011) Treatment of tattoo allergy with ablative fractional resurfacing: a novel paradigm for tattoo removal. J Am Acad Dermatol 64:1111–1114PubMedCrossRef
22.
Zurück zum Zitat Wang CC, Huang CL, Lee SC, Sue YM, Leu FJ (2013) Treatment of cosmetic tattoos with nonablative fractional laser in an animal model: a novel method with histopathologic evidence. Lasers Surg Med 45:116–122PubMedCrossRef Wang CC, Huang CL, Lee SC, Sue YM, Leu FJ (2013) Treatment of cosmetic tattoos with nonablative fractional laser in an animal model: a novel method with histopathologic evidence. Lasers Surg Med 45:116–122PubMedCrossRef
23.
Zurück zum Zitat Wang CC, Huang CL, Sue YM, Lee SC, Leu FJ (2013) Treatment of cosmetic tattoos with carbon-dioxide ablative fractional resurfacing in an animal model: a novel method confirmed histopathologically. Dermatol Surg 39:571–577PubMedCrossRef Wang CC, Huang CL, Sue YM, Lee SC, Leu FJ (2013) Treatment of cosmetic tattoos with carbon-dioxide ablative fractional resurfacing in an animal model: a novel method confirmed histopathologically. Dermatol Surg 39:571–577PubMedCrossRef
Metadaten
Titel
Effects of tattoo ink’s absorption spectra and particle size on cosmetic tattoo treatment efficacy using Q-switched Nd:YAG laser
verfasst von
Fur-Jiang Leu
Chuen-Lin Huang
Yuh-Mou Sue
Shao-Chen Lee
Chia-Chen Wang
Publikationsdatum
01.01.2015
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 1/2015
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-014-1657-6

Weitere Artikel der Ausgabe 1/2015

Lasers in Medical Science 1/2015 Zur Ausgabe