Skip to main content
Erschienen in: International Journal of Diabetes in Developing Countries 4/2019

30.05.2019 | Original Article

Effects of diabetic foot infection on vascular and immune function in the lower limbs

verfasst von: Xiaohua Shen, Meixiang Zhang, Xuehua Jiao, Xiaofeng Cang, Ye Lu

Erschienen in: International Journal of Diabetes in Developing Countries | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

Object

The study investigated the effects of diabetic foot infection on vascular and immune function in the lower limbs.

Methods

Seventy-two patients with diabetic foot infection were included in the infected group, while 64 diabetic patients without infection were selected as the control group. Hemodynamic parameters and vascular endothelial function of the dorsalis pedis artery were assessed by color Doppler ultrasonography. Enzyme-linked immunosorbent assay was used to determine the serum levels of interleukin 6 (IL-6), IL-17, tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), and high mobility group box 1 protein (HMGB1). Western blotting was used to quantify expression levels of toll-like receptor 4 (TLR4) and nuclear transcription factor kappa B (NFκB) in human peripheral blood mononuclear cells (PBMC).

Results

Compared with the control group, the intima-media thickness and peak systolic velocity of the infected group were increased (both p < 0.05), while the inner vascular diameter, blood flow volume, endothelium-dependent dilation, and endothelium-independent dilation were decreased (all p < 0.05). Compared with the control group, the serum levels of IL-6, IL-17, TNF-α, CRP, and HMGB1, and the expression levels of TLR4 and NFκB in PBMC were significantly increased in the infected group (all p < 0.001).

Conclusion

Thus, diabetic foot infection is associated with vascular and immune dysfunction in the lower limbs, possibly in relation to the activation of the HMGB1/TLR4/NFκB signaling pathway.
Literatur
1.
Zurück zum Zitat d’Emden MC, Shaw JE, Jones GR, Cheung NW. Guidance concerning the use of glycated haemoglobin (HbA1c) for the diagnosis of diabetes mellitus. Med J Aust. 2015;203(2):89–90.PubMedCrossRef d’Emden MC, Shaw JE, Jones GR, Cheung NW. Guidance concerning the use of glycated haemoglobin (HbA1c) for the diagnosis of diabetes mellitus. Med J Aust. 2015;203(2):89–90.PubMedCrossRef
2.
Zurück zum Zitat Kulprachakarn K, Ounjaijean S, Wungrath J, Mani R, Rerkasem K. Micronutrients and natural compounds status and their effects on wound healing in the diabetic foot ulcer. Int J Low Extrem Wounds. 2017;16(4):244–50.PubMedCrossRef Kulprachakarn K, Ounjaijean S, Wungrath J, Mani R, Rerkasem K. Micronutrients and natural compounds status and their effects on wound healing in the diabetic foot ulcer. Int J Low Extrem Wounds. 2017;16(4):244–50.PubMedCrossRef
3.
Zurück zum Zitat Thurber EG, Kisuule F, Humbyrd C, Townsend J. Inpatient management of diabetic foot infections: a review of the guidelines for hospitalists. J Hosp Med. 2017;12(12):994–1000.PubMedCrossRef Thurber EG, Kisuule F, Humbyrd C, Townsend J. Inpatient management of diabetic foot infections: a review of the guidelines for hospitalists. J Hosp Med. 2017;12(12):994–1000.PubMedCrossRef
4.
Zurück zum Zitat Zhao WN, Xu SQ, Liang JF, Peng L, Liu HL, Wang Z, et al. Endothelial progenitor cells from human fetal aorta cure diabetic foot in a rat model. Metabolism. 2016;65(12):1755–67.PubMedCrossRef Zhao WN, Xu SQ, Liang JF, Peng L, Liu HL, Wang Z, et al. Endothelial progenitor cells from human fetal aorta cure diabetic foot in a rat model. Metabolism. 2016;65(12):1755–67.PubMedCrossRef
5.
Zurück zum Zitat Jhamb S, Vangaveti VN, Malabu UH. Genetic and molecular basis of diabetic foot ulcers: clinical review. J Tissue Viability. 2016;25(4):229–36.PubMedCrossRef Jhamb S, Vangaveti VN, Malabu UH. Genetic and molecular basis of diabetic foot ulcers: clinical review. J Tissue Viability. 2016;25(4):229–36.PubMedCrossRef
6.
Zurück zum Zitat Lipsky BA, Silverman MH, Joseph WS. A proposed new classification of skin and soft tissue infections modeled on the subset of diabetic foot infection. Open Forum Infect Dis. 2017;4(1):ofw255. Lipsky BA, Silverman MH, Joseph WS. A proposed new classification of skin and soft tissue infections modeled on the subset of diabetic foot infection. Open Forum Infect Dis. 2017;4(1):ofw255.
7.
Zurück zum Zitat Chen SY, Giurini JM, Karchmer AW. Invasive systemic infection after hospital treatment for diabetic foot ulcer: risk of occurrence and effect on survival. Clin Infect Dis. 2017;64(3):326–34.PubMedCrossRef Chen SY, Giurini JM, Karchmer AW. Invasive systemic infection after hospital treatment for diabetic foot ulcer: risk of occurrence and effect on survival. Clin Infect Dis. 2017;64(3):326–34.PubMedCrossRef
8.
Zurück zum Zitat Hafez YM, El-Deeb OS, Atef MM. The emerging role of the epigenetic enzyme Sirtuin-1 and high mobility group Box 1 in patients with diabetic foot ulceration. Diabetes Metab Syndr. 2018;12(6):1065–70.PubMedCrossRef Hafez YM, El-Deeb OS, Atef MM. The emerging role of the epigenetic enzyme Sirtuin-1 and high mobility group Box 1 in patients with diabetic foot ulceration. Diabetes Metab Syndr. 2018;12(6):1065–70.PubMedCrossRef
9.
Zurück zum Zitat Sun J, Shi S, Wang Q, Yu K, Wang R. Continuous hemodiafiltration therapy reduces damage of multi-organs by ameliorating of HMGB1/TLR4/NFκB in a dog sepsis model. Int J Clin Exp Pathol. 2015;8(2):1555–64.PubMedPubMedCentral Sun J, Shi S, Wang Q, Yu K, Wang R. Continuous hemodiafiltration therapy reduces damage of multi-organs by ameliorating of HMGB1/TLR4/NFκB in a dog sepsis model. Int J Clin Exp Pathol. 2015;8(2):1555–64.PubMedPubMedCentral
10.
Zurück zum Zitat Lipsky BA, Berendt AR, Cornia PB, Pile JC, Peters EJ, Armstrong DG, et al. 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. J Am Podiatr Med Assoc. 2013;103(1):2–7.PubMedCrossRef Lipsky BA, Berendt AR, Cornia PB, Pile JC, Peters EJ, Armstrong DG, et al. 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. J Am Podiatr Med Assoc. 2013;103(1):2–7.PubMedCrossRef
11.
Zurück zum Zitat Celermajer DS, Sorensen KE, Gooch VM. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosiz. Lancet. 1992;340(8828):1111–5.PubMedCrossRef Celermajer DS, Sorensen KE, Gooch VM. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosiz. Lancet. 1992;340(8828):1111–5.PubMedCrossRef
12.
Zurück zum Zitat Guan D, Mi J, Chen X, Wu Y, Yao Y, Wang L, et al. Lung endothelial cell-targeted peptide-guided bFGF promotes the regeneration after radiation induced lung injury. Biomaterials. 2018;184:10–9.PubMedCrossRef Guan D, Mi J, Chen X, Wu Y, Yao Y, Wang L, et al. Lung endothelial cell-targeted peptide-guided bFGF promotes the regeneration after radiation induced lung injury. Biomaterials. 2018;184:10–9.PubMedCrossRef
13.
Zurück zum Zitat Gao J, Zhao G, Li W, Zhang J, Che Y, Song M, et al. MiR-155 targets PTCH1 to mediate endothelial progenitor cell dysfunction caused by high glucose. Exp Cell Res. 2018;366(1):55–62.PubMedCrossRef Gao J, Zhao G, Li W, Zhang J, Che Y, Song M, et al. MiR-155 targets PTCH1 to mediate endothelial progenitor cell dysfunction caused by high glucose. Exp Cell Res. 2018;366(1):55–62.PubMedCrossRef
14.
Zurück zum Zitat Li X, Xie X, Lian W, Shi R, Han S, Zhang H, et al. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Exp Mol Med. 2018;50(4):29.PubMedPubMedCentralCrossRef Li X, Xie X, Lian W, Shi R, Han S, Zhang H, et al. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Exp Mol Med. 2018;50(4):29.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat You J, Sun J, Ma T, Yang Z, Wang X, Zhang Z, et al. Curcumin induces therapeutic angiogenesis in a diabetic mouse hindlimb ischemia model via modulating the function of endothelial progenitor cells. Stem Cell Res Ther. 2017;8(1):182.PubMedPubMedCentralCrossRef You J, Sun J, Ma T, Yang Z, Wang X, Zhang Z, et al. Curcumin induces therapeutic angiogenesis in a diabetic mouse hindlimb ischemia model via modulating the function of endothelial progenitor cells. Stem Cell Res Ther. 2017;8(1):182.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Xing Y, Lai J, Liu X, Zhang N, Ming J, Liu H, et al. Netrin-1 restores cell injury and impaired angiogenesis in vascular endothelial cells upon high glucose by PI3K/AKT-eNOS. J Mol Endocrinol. 2017;58(4):167–77.PubMedCrossRef Xing Y, Lai J, Liu X, Zhang N, Ming J, Liu H, et al. Netrin-1 restores cell injury and impaired angiogenesis in vascular endothelial cells upon high glucose by PI3K/AKT-eNOS. J Mol Endocrinol. 2017;58(4):167–77.PubMedCrossRef
17.
Zurück zum Zitat Baluk P, Phillips K, Yao LC, Adams A, Nitschké M, McDonald DM. Neutrophil dependence of vascular remodeling after mycoplasma infection of mouse airways. Am J Pathol. 2014;184(6):1877–89.PubMedPubMedCentralCrossRef Baluk P, Phillips K, Yao LC, Adams A, Nitschké M, McDonald DM. Neutrophil dependence of vascular remodeling after mycoplasma infection of mouse airways. Am J Pathol. 2014;184(6):1877–89.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Almodovar S, Swanson J, Giavedoni LD, Kanthaswamy S, Long CS, Voelkel NF, et al. Lung vascular remodeling, cardiac hypertrophy, and inflammatory cytokines in SHIVnef-infected macaques. Viral Immunol. 2018;31(3):206–22.PubMedPubMedCentralCrossRef Almodovar S, Swanson J, Giavedoni LD, Kanthaswamy S, Long CS, Voelkel NF, et al. Lung vascular remodeling, cardiac hypertrophy, and inflammatory cytokines in SHIVnef-infected macaques. Viral Immunol. 2018;31(3):206–22.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Khanna S, Biswas S, Shang Y, Collard E, Azad A, Kauh C, et al. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One. 2010;5:e9539.PubMedPubMedCentralCrossRef Khanna S, Biswas S, Shang Y, Collard E, Azad A, Kauh C, et al. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One. 2010;5:e9539.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Fu Y, Lei J, Zhuang Y, Zhang K, Lu D. Overexpression of HMGB1 A-box reduced IL-1β-induced MMP expression and the production of inflammatory mediators in human chondrocytes. Exp Cell Res. 2016;349(1):184–90.PubMedCrossRef Fu Y, Lei J, Zhuang Y, Zhang K, Lu D. Overexpression of HMGB1 A-box reduced IL-1β-induced MMP expression and the production of inflammatory mediators in human chondrocytes. Exp Cell Res. 2016;349(1):184–90.PubMedCrossRef
21.
Zurück zum Zitat He L, Sun F, Wang Y, Zhu J, Fang J, Zhang S, et al. HMGB1 exacerbates bronchiolitis obliterans syndrome via RAGE/NF-κB/HPSE signaling to enhance latent TGF-β release from ECM. Am J Transl Res. 2016;8(5):1971–84.PubMedPubMedCentral He L, Sun F, Wang Y, Zhu J, Fang J, Zhang S, et al. HMGB1 exacerbates bronchiolitis obliterans syndrome via RAGE/NF-κB/HPSE signaling to enhance latent TGF-β release from ECM. Am J Transl Res. 2016;8(5):1971–84.PubMedPubMedCentral
22.
Zurück zum Zitat Rojas A, Delgado-López F, Perez-Castro R, Gonzalez I, Romero J, Rojas I, et al. HMGB1 enhances the protumoral activities of M2 macrophages by a RAGE-dependent mechanism. Tumour Biol. 2016;37(3):3321–9.PubMedCrossRef Rojas A, Delgado-López F, Perez-Castro R, Gonzalez I, Romero J, Rojas I, et al. HMGB1 enhances the protumoral activities of M2 macrophages by a RAGE-dependent mechanism. Tumour Biol. 2016;37(3):3321–9.PubMedCrossRef
23.
Zurück zum Zitat Yan XX, Lu L, Peng WH, Wang LJ, Zhang Q, Zhang RY, et al. Increased serum HMGB1 level is associated with coronary artery disease in nondiabetic and type 2 diabetic patients. Atherosclerosis. 2009;205(2):544–8.PubMedCrossRef Yan XX, Lu L, Peng WH, Wang LJ, Zhang Q, Zhang RY, et al. Increased serum HMGB1 level is associated with coronary artery disease in nondiabetic and type 2 diabetic patients. Atherosclerosis. 2009;205(2):544–8.PubMedCrossRef
24.
Zurück zum Zitat Yang J, Chen L, Ding J, Fan Z, Li S, Wu H, et al. MicroRNA-24 inhibits high glucose-induced vascular smooth muscle cell proliferation and migration by targeting HMGB1. Gene. 2016;586(2):268–73.PubMedCrossRef Yang J, Chen L, Ding J, Fan Z, Li S, Wu H, et al. MicroRNA-24 inhibits high glucose-induced vascular smooth muscle cell proliferation and migration by targeting HMGB1. Gene. 2016;586(2):268–73.PubMedCrossRef
25.
Zurück zum Zitat Elfeky M, Kaede R, Okamatsu-Ogura Y, Kimura K. Adiponectin inhibits LPS-induced HMGB1 release through an AMP kinase and heme oxygenase-1-dependent pathway in RAW 264 macrophage cells. Mediat Inflamm. 2016;2016:1–9.CrossRef Elfeky M, Kaede R, Okamatsu-Ogura Y, Kimura K. Adiponectin inhibits LPS-induced HMGB1 release through an AMP kinase and heme oxygenase-1-dependent pathway in RAW 264 macrophage cells. Mediat Inflamm. 2016;2016:1–9.CrossRef
26.
Zurück zum Zitat Meng L, Li L, Lu S, Li K, Su Z, Wang Y, et al. The protective effect of dexmedetomidine on LPS-induced acute lung injury through the HMGB1-mediated TLR4/NF-κB and PI3K/Akt/mTOR pathways. Mol Immunol. 2018;94:7–17.PubMedCrossRef Meng L, Li L, Lu S, Li K, Su Z, Wang Y, et al. The protective effect of dexmedetomidine on LPS-induced acute lung injury through the HMGB1-mediated TLR4/NF-κB and PI3K/Akt/mTOR pathways. Mol Immunol. 2018;94:7–17.PubMedCrossRef
Metadaten
Titel
Effects of diabetic foot infection on vascular and immune function in the lower limbs
verfasst von
Xiaohua Shen
Meixiang Zhang
Xuehua Jiao
Xiaofeng Cang
Ye Lu
Publikationsdatum
30.05.2019
Verlag
Springer India
Erschienen in
International Journal of Diabetes in Developing Countries / Ausgabe 4/2019
Print ISSN: 0973-3930
Elektronische ISSN: 1998-3832
DOI
https://doi.org/10.1007/s13410-019-00750-1

Weitere Artikel der Ausgabe 4/2019

International Journal of Diabetes in Developing Countries 4/2019 Zur Ausgabe