Skip to main content
Erschienen in: Lasers in Medical Science 1/2015

01.01.2015 | Original Article

RUNX3 expression is associated with sensitivity to pheophorbide a-based photodynamic therapy in keloids

verfasst von: Zhenlong Zheng, Lianhua Zhu, Xianglan Zhang, Lianhua Li, Sook Moon, Mi Ryung Roh, Zhehu Jin

Erschienen in: Lasers in Medical Science | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

Runt-related transcription factor 3 (RUNX3) has recently been reported to be a possible predictor of sensitivity of cancer cells for photodynamic therapy (PDT), a promising therapeutic modality for keloids. In this study, we aimed to elucidate the implications of RUNX3 for keloid pathogenesis and sensitivity to pheophorbide a-based PDT (Pa-PDT). RUNX3 and proliferating cell nuclear antigen (PCNA) expression were examined in 6 normal skin samples and 32 keloid tissue samples by immunohistochemistry. We found that RUNX3 expression was detected more often in keloid tissues than in dermis of normal skin. In keloid tissues, RUNX3 expression was significantly increased in patients presenting with symptoms of pain or pruritus, and was also significantly related to PCNA expression. The therapeutic effect of Pa-PDT was comparatively investigated in keloid fibroblasts (KFs) with and without RUNX3 expression. Significant differences were found after Pa-PDT between KFs with and without RUNX3 expression in cell viability, proliferative ability, type I collagen expression, generation of reactive oxygen species (ROS), and apoptotic cell death. In addition, RUNX3 expression was significantly decreased after Pa-PDT in KFs, and KFs with downregulation of RUNX3 showed significantly increased cell viability after Pa-PDT. Pa-PDT may be a potential therapeutic modality for keloids, and RUNX3, as a possible contributor to keloid pathogenesis, may improve sensitivity to Pa-PDT in KFs.
Literatur
1.
Zurück zum Zitat Mrowietz U, Seifert O (2009) Keloid scarring: new treatments ahead. Actas Dermosifiliogr 100(Suppl 2):75–83PubMedCrossRef Mrowietz U, Seifert O (2009) Keloid scarring: new treatments ahead. Actas Dermosifiliogr 100(Suppl 2):75–83PubMedCrossRef
2.
3.
Zurück zum Zitat Calderon M, Lawrence WT, Banes AJ (1996) Increased proliferation in keloid fibroblasts wounded in vitro. J Surg Res 61(2):343–347PubMedCrossRef Calderon M, Lawrence WT, Banes AJ (1996) Increased proliferation in keloid fibroblasts wounded in vitro. J Surg Res 61(2):343–347PubMedCrossRef
4.
Zurück zum Zitat Blazic TM, Brajac I (2006) Defective induction of senescence during wound healing is a possible mechanism of keloid formation. Med Hypotheses 66(3):649–652PubMedCrossRef Blazic TM, Brajac I (2006) Defective induction of senescence during wound healing is a possible mechanism of keloid formation. Med Hypotheses 66(3):649–652PubMedCrossRef
5.
Zurück zum Zitat Bock O, Schmid-Ott G, Malewski P, Mrowietz U (2006) Quality of life of patients with keloid and hypertrophic scarring. Arch Dermatol Res 297(10):433–438PubMedCrossRef Bock O, Schmid-Ott G, Malewski P, Mrowietz U (2006) Quality of life of patients with keloid and hypertrophic scarring. Arch Dermatol Res 297(10):433–438PubMedCrossRef
6.
Zurück zum Zitat Shaffer JJ, Taylor SC, Cook-Bolden F (2002) Keloidal scars: a review with a critical look at therapeutic options. J Am Acad Dermatol 46(2 Suppl Understanding):S63–S97PubMedCrossRef Shaffer JJ, Taylor SC, Cook-Bolden F (2002) Keloidal scars: a review with a critical look at therapeutic options. J Am Acad Dermatol 46(2 Suppl Understanding):S63–S97PubMedCrossRef
7.
Zurück zum Zitat Niessen FB, Spauwen PH, Schalkwijk J, Kon M (1999) On the nature of hypertrophic scars and keloids: a review. Plast Reconstr Surg 104(5):1435–1458PubMedCrossRef Niessen FB, Spauwen PH, Schalkwijk J, Kon M (1999) On the nature of hypertrophic scars and keloids: a review. Plast Reconstr Surg 104(5):1435–1458PubMedCrossRef
8.
9.
Zurück zum Zitat Mall JW, Pollmann C, Muller JM, Buttemeyer R (2002) Keloid of the earlobe after ear piercing. Not only a surgical problem. Chirurg 73(5):514–516PubMedCrossRef Mall JW, Pollmann C, Muller JM, Buttemeyer R (2002) Keloid of the earlobe after ear piercing. Not only a surgical problem. Chirurg 73(5):514–516PubMedCrossRef
10.
Zurück zum Zitat Durani P, Bayat A (2008) Levels of evidence for the treatment of keloid disease. J Plast Reconstr Aesthet Surg 61(1):4–17PubMedCrossRef Durani P, Bayat A (2008) Levels of evidence for the treatment of keloid disease. J Plast Reconstr Aesthet Surg 61(1):4–17PubMedCrossRef
11.
Zurück zum Zitat Christensen E, Warloe T, Kroon S, Funk J, Helsing P, Soler AM et al (2010) Guidelines for practical use of MAL-PDT in non-melanoma skin cancer. J Eur Acad Dermatol Venereol 24(5):505–512PubMedCrossRef Christensen E, Warloe T, Kroon S, Funk J, Helsing P, Soler AM et al (2010) Guidelines for practical use of MAL-PDT in non-melanoma skin cancer. J Eur Acad Dermatol Venereol 24(5):505–512PubMedCrossRef
12.
Zurück zum Zitat Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387PubMedCrossRef Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387PubMedCrossRef
13.
Zurück zum Zitat Wilson BC (2002) Photodynamic therapy for cancer: principles. Can J Gastroenterol 16(6):393–396PubMed Wilson BC (2002) Photodynamic therapy for cancer: principles. Can J Gastroenterol 16(6):393–396PubMed
14.
Zurück zum Zitat Vrouenraets MB, Visser GW, Snow GB, van Dongen GA (2003) Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer Res 23(1B):505–522PubMed Vrouenraets MB, Visser GW, Snow GB, van Dongen GA (2003) Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer Res 23(1B):505–522PubMed
15.
Zurück zum Zitat Brown SB, Brown EA, Walker I (2004) The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 5(8):497–508PubMedCrossRef Brown SB, Brown EA, Walker I (2004) The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 5(8):497–508PubMedCrossRef
16.
Zurück zum Zitat Luna MC, Ferrario A, Wong S, Fisher AM, Gomer CJ (2000) Photodynamic therapy-mediated oxidative stress as a molecular switch for the temporal expression of genes ligated to the human heat shock promoter. Cancer Res 60(6):1637–1644PubMed Luna MC, Ferrario A, Wong S, Fisher AM, Gomer CJ (2000) Photodynamic therapy-mediated oxidative stress as a molecular switch for the temporal expression of genes ligated to the human heat shock promoter. Cancer Res 60(6):1637–1644PubMed
17.
Zurück zum Zitat Lim DS, Ko SH, Lee WY (2004) Silkworm-pheophorbide alpha mediated photodynamic therapy against B16F10 pigmented melanoma. J Photochem Photobiol, B 74(1):1–6CrossRef Lim DS, Ko SH, Lee WY (2004) Silkworm-pheophorbide alpha mediated photodynamic therapy against B16F10 pigmented melanoma. J Photochem Photobiol, B 74(1):1–6CrossRef
18.
Zurück zum Zitat Tang PM, Liu XZ, Zhang DM, Fong WP, Fung KP (2009) Pheophorbide a based photodynamic therapy induces apoptosis via mitochondrial-mediated pathway in human uterine carcinosarcoma. Cancer Biol Ther 8(6):533–539PubMedCrossRef Tang PM, Liu XZ, Zhang DM, Fong WP, Fung KP (2009) Pheophorbide a based photodynamic therapy induces apoptosis via mitochondrial-mediated pathway in human uterine carcinosarcoma. Cancer Biol Ther 8(6):533–539PubMedCrossRef
19.
Zurück zum Zitat Hoi SW, Wong HM, Chan JY, Yue GG, Tse GM, Law BK et al (2012) Photodynamic therapy of pheophorbide a inhibits the proliferation of human breast tumour via both caspase-dependent and -independent apoptotic pathways in in vitro and in vivo models. Phytother Res 26(5):734–742PubMedCrossRef Hoi SW, Wong HM, Chan JY, Yue GG, Tse GM, Law BK et al (2012) Photodynamic therapy of pheophorbide a inhibits the proliferation of human breast tumour via both caspase-dependent and -independent apoptotic pathways in in vitro and in vivo models. Phytother Res 26(5):734–742PubMedCrossRef
20.
Zurück zum Zitat Tang PM, Chan JY, Au SW, Kong SK, Tsui SK, Waye MM et al (2006) Pheophorbide a, an active compound isolated from Scutellaria barbata, possesses photodynamic activities by inducing apoptosis in human hepatocellular carcinoma. Cancer Biol Ther 5(9):1111–1116PubMedCrossRef Tang PM, Chan JY, Au SW, Kong SK, Tsui SK, Waye MM et al (2006) Pheophorbide a, an active compound isolated from Scutellaria barbata, possesses photodynamic activities by inducing apoptosis in human hepatocellular carcinoma. Cancer Biol Ther 5(9):1111–1116PubMedCrossRef
21.
Zurück zum Zitat Hajri A, Wack S, Meyer C, Smith MK, Leberquier C, Kedinger M et al (2002) In vitro and in vivo efficacy of photofrin and pheophorbide a, a bacteriochlorin, in photodynamic therapy of colonic cancer cells. Photochem Photobiol 75(2):140–148PubMedCrossRef Hajri A, Wack S, Meyer C, Smith MK, Leberquier C, Kedinger M et al (2002) In vitro and in vivo efficacy of photofrin and pheophorbide a, a bacteriochlorin, in photodynamic therapy of colonic cancer cells. Photochem Photobiol 75(2):140–148PubMedCrossRef
22.
Zurück zum Zitat Lee WY, Lim DS, Ko SH, Park YJ, Ryu KS, Ahn MY et al (2004) Photoactivation of pheophorbide a induces a mitochondrial-mediated apoptosis in Jurkat leukaemia cells. J Photochem Photobiol, B 75(3):119–126CrossRef Lee WY, Lim DS, Ko SH, Park YJ, Ryu KS, Ahn MY et al (2004) Photoactivation of pheophorbide a induces a mitochondrial-mediated apoptosis in Jurkat leukaemia cells. J Photochem Photobiol, B 75(3):119–126CrossRef
23.
Zurück zum Zitat Moon S, Bae JY, Son HK, Lee DY, Park G, You H et al (2013) RUNX3 confers sensitivity to pheophorbide a-photodynamic therapy in human oral squamous cell carcinoma cell lines. Lasers Med Sci. doi:10.1007/s10103-013-1350-1 Moon S, Bae JY, Son HK, Lee DY, Park G, You H et al (2013) RUNX3 confers sensitivity to pheophorbide a-photodynamic therapy in human oral squamous cell carcinoma cell lines. Lasers Med Sci. doi:10.​1007/​s10103-013-1350-1
24.
Zurück zum Zitat Ito K (2011) RUNX3 in oncogenic and anti-oncogenic signaling in gastrointestinal cancers. J Cell Biochem 112(5):1243–1249PubMedCrossRef Ito K (2011) RUNX3 in oncogenic and anti-oncogenic signaling in gastrointestinal cancers. J Cell Biochem 112(5):1243–1249PubMedCrossRef
25.
Zurück zum Zitat Lee CW, Chuang LS, Kimura S, Lai SK, Ong CW, Yan B et al (2011) RUNX3 functions as an oncogene in ovarian cancer. Gynecol Oncol 122(2):410–417PubMedCrossRef Lee CW, Chuang LS, Kimura S, Lai SK, Ong CW, Yan B et al (2011) RUNX3 functions as an oncogene in ovarian cancer. Gynecol Oncol 122(2):410–417PubMedCrossRef
26.
Zurück zum Zitat Kudo Y, Tsunematsu T, Takata T (2011) Oncogenic role of RUNX3 in head and neck cancer. J Cell Biochem 112(2):387–393PubMedCrossRef Kudo Y, Tsunematsu T, Takata T (2011) Oncogenic role of RUNX3 in head and neck cancer. J Cell Biochem 112(2):387–393PubMedCrossRef
27.
Zurück zum Zitat Iqbal SA, Syed F, McGrouther DA, Paus R, Bayat A (2010) Differential distribution of haematopoietic and nonhaematopoietic progenitor cells in intralesional and extralesional keloid: do keloid scars provide a niche for nonhaematopoietic mesenchymal stem cells? Br J Dermatol 162(6):1377–1383PubMedCrossRef Iqbal SA, Syed F, McGrouther DA, Paus R, Bayat A (2010) Differential distribution of haematopoietic and nonhaematopoietic progenitor cells in intralesional and extralesional keloid: do keloid scars provide a niche for nonhaematopoietic mesenchymal stem cells? Br J Dermatol 162(6):1377–1383PubMedCrossRef
28.
Zurück zum Zitat Lau K, Paus R, Tiede S, Day P, Bayat A (2009) Exploring the role of stem cells in cutaneous wound healing. Exp Dermatol 18(11):921–933PubMedCrossRef Lau K, Paus R, Tiede S, Day P, Bayat A (2009) Exploring the role of stem cells in cutaneous wound healing. Exp Dermatol 18(11):921–933PubMedCrossRef
29.
Zurück zum Zitat Vincent AS, Phan TT, Mukhopadhyay A, Lim HY, Halliwell B, Wong KP (2008) Human skin keloid fibroblasts display bioenergetics of cancer cells. J Invest Dermatol 128(3):702–709PubMedCrossRef Vincent AS, Phan TT, Mukhopadhyay A, Lim HY, Halliwell B, Wong KP (2008) Human skin keloid fibroblasts display bioenergetics of cancer cells. J Invest Dermatol 128(3):702–709PubMedCrossRef
30.
Zurück zum Zitat Zhang G, Jiang JJ, Luo SJ, Tang SM, Liang J, Yu Q (2008) The relationship between RUNX3 gene mutation and keloid. Zhonghua Zheng Xing Wai Ke Za Zhi 24(3):224–227PubMed Zhang G, Jiang JJ, Luo SJ, Tang SM, Liang J, Yu Q (2008) The relationship between RUNX3 gene mutation and keloid. Zhonghua Zheng Xing Wai Ke Za Zhi 24(3):224–227PubMed
31.
Zurück zum Zitat Luo X, Pan Q, Liu L, Chegini N (2007) Genomic and proteomic profiling II: comparative assessment of gene expression profiles in leiomyomas, keloids, and surgically-induced scars. Reprod Biol Endocrinol 5:35PubMedCentralPubMedCrossRef Luo X, Pan Q, Liu L, Chegini N (2007) Genomic and proteomic profiling II: comparative assessment of gene expression profiles in leiomyomas, keloids, and surgically-induced scars. Reprod Biol Endocrinol 5:35PubMedCentralPubMedCrossRef
32.
Zurück zum Zitat Ahn MY, Kwon SM, Kim YC, Ahn SG, Yoon JH (2012) Pheophorbide a-mediated photodynamic therapy induces apoptotic cell death in murine oral squamous cell carcinoma in vitro and in vivo. Oncol Rep 27(6):1772–1778PubMed Ahn MY, Kwon SM, Kim YC, Ahn SG, Yoon JH (2012) Pheophorbide a-mediated photodynamic therapy induces apoptotic cell death in murine oral squamous cell carcinoma in vitro and in vivo. Oncol Rep 27(6):1772–1778PubMed
33.
Zurück zum Zitat Lim SH, Lee HB, Ho AS (2011) A new naturally derived photosensitizer and its phototoxicity on head and neck cancer cells. Photochem Photobiol 87(5):1152–1158PubMedCrossRef Lim SH, Lee HB, Ho AS (2011) A new naturally derived photosensitizer and its phototoxicity on head and neck cancer cells. Photochem Photobiol 87(5):1152–1158PubMedCrossRef
34.
Zurück zum Zitat Mendoza J, Sebastian A, Allan E, Allan D, Mandal P, Alonso-Rasgado T et al (2012) Differential cytotoxic response in keloid fibroblasts exposed to photodynamic therapy is dependent on photosensitiser precursor, fluence and location of fibroblasts within the lesion. Arch Dermatol Res 304(7):549–562PubMedCrossRef Mendoza J, Sebastian A, Allan E, Allan D, Mandal P, Alonso-Rasgado T et al (2012) Differential cytotoxic response in keloid fibroblasts exposed to photodynamic therapy is dependent on photosensitiser precursor, fluence and location of fibroblasts within the lesion. Arch Dermatol Res 304(7):549–562PubMedCrossRef
35.
Zurück zum Zitat Chiu LL, Sun CH, Yeh AT, Torkian B, Karamzadeh A, Tromberg B et al (2005) Photodynamic therapy on keloid fibroblasts in tissue-engineered keratinocyte-fibroblast co-culture. Lasers Surg Med 37(3):231–244PubMedCrossRef Chiu LL, Sun CH, Yeh AT, Torkian B, Karamzadeh A, Tromberg B et al (2005) Photodynamic therapy on keloid fibroblasts in tissue-engineered keratinocyte-fibroblast co-culture. Lasers Surg Med 37(3):231–244PubMedCrossRef
36.
Zurück zum Zitat Nie Z, Bayat A, Behzad F, Rhodes LE (2010) Positive response of a recurrent keloid scar to topical methyl aminolevulinate-photodynamic therapy. Photodermatol Photoimmunol Photomed 26(6):330–332PubMedCrossRef Nie Z, Bayat A, Behzad F, Rhodes LE (2010) Positive response of a recurrent keloid scar to topical methyl aminolevulinate-photodynamic therapy. Photodermatol Photoimmunol Photomed 26(6):330–332PubMedCrossRef
37.
Zurück zum Zitat Hsieh YJ, Wu CC, Chang CJ, Yu JS (2003) Subcellular localization of Photofrin determines the death phenotype of human epidermoid carcinoma A431 cells triggered by photodynamic therapy: when plasma membranes are the main targets. J Cell Physiol 194(3):363–375PubMedCrossRef Hsieh YJ, Wu CC, Chang CJ, Yu JS (2003) Subcellular localization of Photofrin determines the death phenotype of human epidermoid carcinoma A431 cells triggered by photodynamic therapy: when plasma membranes are the main targets. J Cell Physiol 194(3):363–375PubMedCrossRef
38.
Zurück zum Zitat Almeida RD, Manadas BJ, Carvalho AP, Duarte CB (2004) Intracellular signaling mechanisms in photodynamic therapy. Biochim Biophys Acta 1704(2):59–86PubMed Almeida RD, Manadas BJ, Carvalho AP, Duarte CB (2004) Intracellular signaling mechanisms in photodynamic therapy. Biochim Biophys Acta 1704(2):59–86PubMed
39.
Zurück zum Zitat Salto-Tellez M, Peh BK, Ito K, Tan SH, Chong PY, Han HC et al (2006) RUNX3 protein is overexpressed in human basal cell carcinomas. Oncogene 25(58):7646–7649PubMedCrossRef Salto-Tellez M, Peh BK, Ito K, Tan SH, Chong PY, Han HC et al (2006) RUNX3 protein is overexpressed in human basal cell carcinomas. Oncogene 25(58):7646–7649PubMedCrossRef
40.
Zurück zum Zitat Tsunematsu T, Kudo Y, Iizuka S, Ogawa I, Fujita T, Kurihara H et al (2009) RUNX3 has an oncogenic role in head and neck cancer. PLoS One 4(6):e5892PubMedCentralPubMedCrossRef Tsunematsu T, Kudo Y, Iizuka S, Ogawa I, Fujita T, Kurihara H et al (2009) RUNX3 has an oncogenic role in head and neck cancer. PLoS One 4(6):e5892PubMedCentralPubMedCrossRef
41.
Zurück zum Zitat Nevadunsky NS, Barbieri JS, Kwong J, Merritt MA, Welch WR, Berkowitz RS et al (2009) RUNX3 protein is overexpressed in human epithelial ovarian cancer. Gynecol Oncol 112(2):325–330PubMedCrossRef Nevadunsky NS, Barbieri JS, Kwong J, Merritt MA, Welch WR, Berkowitz RS et al (2009) RUNX3 protein is overexpressed in human epithelial ovarian cancer. Gynecol Oncol 112(2):325–330PubMedCrossRef
Metadaten
Titel
RUNX3 expression is associated with sensitivity to pheophorbide a-based photodynamic therapy in keloids
verfasst von
Zhenlong Zheng
Lianhua Zhu
Xianglan Zhang
Lianhua Li
Sook Moon
Mi Ryung Roh
Zhehu Jin
Publikationsdatum
01.01.2015
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 1/2015
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-014-1614-4

Weitere Artikel der Ausgabe 1/2015

Lasers in Medical Science 1/2015 Zur Ausgabe