Skip to main content
Erschienen in: Inflammation 4/2020

11.05.2020 | Original Article

Electronegative LDL Induces M1 Polarization of Human Macrophages Through a LOX-1-Dependent Pathway

verfasst von: Shwu-Fen Chang, Po-Yuan Chang, Yuan-Chun Chou, Shao-Chun Lu

Erschienen in: Inflammation | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten

Abstract

In response to environmental stimuli, monocytes undergo polarization into classically activated (M1) or alternatively activated (M2) states. M1 and M2 macrophages exert opposing pro- and anti-inflammatory properties, respectively. Electronegative low-density lipoprotein (LDL) (LDL(−)) is a naturally occurring mildly oxidized LDL found in the plasma of patients with hypercholesterolemia, diabetes, and acute myocardial infarction, and has been shown to involve in the pathogenesis of atherosclerosis. In this study, we examined the effects of LDL(−) on macrophage polarization and the involvement of lectin-like oxidized LDL receptor-1 (LOX-1) in this process. THP-1 macrophages were treated with native LDL (nLDL) or LDL(−), and then the expression of M1/M2-related surface markers and cytokines were evaluated. The results show that treatment with LDL(−) resulted in profound increase in proinflammatory cytokines, IL-1β, IL-6, and TNF-α, and M1-surface marker CD86; however, M2-related cytokines, IL-10 and TGF-β, and M2-surface marker CD206 were not changed by LDL(−). Untreated or nLDL-treated cells were used as control. LDL(−)-induced M1 polarization and secretion of proinflammatory cytokines were diminished in LOX-1 knockdown cells. Taken together, the results show that LDL(−) promotes differentiation of human monocytes to M1 macrophages through a LOX-1-dependent pathway, and explore the contribution of LDL(−) and LOX-1 to the development of chronic inflammation in atherosclerosis.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Glass, C.K., and J.L. Witztum. 2001. Atherosclerosis. The road ahead. Cell 104: 503–516.CrossRef Glass, C.K., and J.L. Witztum. 2001. Atherosclerosis. The road ahead. Cell 104: 503–516.CrossRef
2.
Zurück zum Zitat Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: Mechanism and functions. Immunity 32: 593–604.CrossRef Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: Mechanism and functions. Immunity 32: 593–604.CrossRef
3.
Zurück zum Zitat Liu, Y.C., X.B. Zou, Y.F. Chai, and Y.M. Yao. 2014. Macrophage polarization in inflammatory diseases. International Journal of Biological Sciences 10: 520–529.CrossRef Liu, Y.C., X.B. Zou, Y.F. Chai, and Y.M. Yao. 2014. Macrophage polarization in inflammatory diseases. International Journal of Biological Sciences 10: 520–529.CrossRef
4.
Zurück zum Zitat Sanchez-Quesada, J.L., S. Benitez, C. Otal, M. Franco, F. Blanco-Vaca, and J. Ordonez-Llanos. 2002. Density distribution of electronegative LDL in normolipemic and hyperlipemic subjects. Journal of Lipid Research 43: 699–705.PubMed Sanchez-Quesada, J.L., S. Benitez, C. Otal, M. Franco, F. Blanco-Vaca, and J. Ordonez-Llanos. 2002. Density distribution of electronegative LDL in normolipemic and hyperlipemic subjects. Journal of Lipid Research 43: 699–705.PubMed
5.
Zurück zum Zitat Chan, H.C., L.Y. Ke, C.S. Chu, A.S. Lee, M.Y. Shen, M.A. Cruz, J.F. Hsu, et al. 2013. Highly electronegative LDL from patients with ST-elevation myocardial infarction triggers platelet activation and aggregation. Blood 122: 3632–3641.CrossRef Chan, H.C., L.Y. Ke, C.S. Chu, A.S. Lee, M.Y. Shen, M.A. Cruz, J.F. Hsu, et al. 2013. Highly electronegative LDL from patients with ST-elevation myocardial infarction triggers platelet activation and aggregation. Blood 122: 3632–3641.CrossRef
6.
Zurück zum Zitat Lu, J., W. Jiang, J.H. Yang, P.Y. Chang, J.P. Walterscheid, H.H. Chen, M. Marcelli, D. Tang, Y.T. Lee, W.S. Liao, C.Y. Yang, and C.H. Chen. 2008. Electronegative LDL impairs vascular endothelial cell integrity in diabetes by disrupting fibroblast growth factor 2 (FGF2) autoregulation. Diabetes 57: 158–166.CrossRef Lu, J., W. Jiang, J.H. Yang, P.Y. Chang, J.P. Walterscheid, H.H. Chen, M. Marcelli, D. Tang, Y.T. Lee, W.S. Liao, C.Y. Yang, and C.H. Chen. 2008. Electronegative LDL impairs vascular endothelial cell integrity in diabetes by disrupting fibroblast growth factor 2 (FGF2) autoregulation. Diabetes 57: 158–166.CrossRef
7.
Zurück zum Zitat Chang, P.Y., Y.J. Chen, F.H. Chang, J. Lu, W.H. Huang, T.C. Yang, Y.T. Lee, et al. 2013. Aspirin protects human coronary artery endothelial cells against atherogenic electronegative LDL via an epigenetic mechanism: A novel cytoprotective role of aspirin in acute myocardial infarction. Cardiovascular Research 99: 137–145.CrossRef Chang, P.Y., Y.J. Chen, F.H. Chang, J. Lu, W.H. Huang, T.C. Yang, Y.T. Lee, et al. 2013. Aspirin protects human coronary artery endothelial cells against atherogenic electronegative LDL via an epigenetic mechanism: A novel cytoprotective role of aspirin in acute myocardial infarction. Cardiovascular Research 99: 137–145.CrossRef
8.
Zurück zum Zitat Chang, P.Y., S. Luo, T. Jiang, Y.T. Lee, S.C. Lu, P.D. Henry, and C.H. Chen. 2001. Oxidized low-density lipoprotein downregulates endothelial basic fibroblast growth factor through a pertussis toxin-sensitive G-protein pathway: Mediator role of platelet-activating factor-like phospholipids. Circulation 104: 588–593.CrossRef Chang, P.Y., S. Luo, T. Jiang, Y.T. Lee, S.C. Lu, P.D. Henry, and C.H. Chen. 2001. Oxidized low-density lipoprotein downregulates endothelial basic fibroblast growth factor through a pertussis toxin-sensitive G-protein pathway: Mediator role of platelet-activating factor-like phospholipids. Circulation 104: 588–593.CrossRef
9.
Zurück zum Zitat Yang, T.C., P.Y. Chang, and S.C. Lu. 2017. L5-LDL from ST-elevation myocardial infarction patients induces IL-1beta production via LOX-1 and NLRP3 inflammasome activation in macrophages. American Journal of Physiology. Heart and Circulatory Physiology 312: H265–H274.CrossRef Yang, T.C., P.Y. Chang, and S.C. Lu. 2017. L5-LDL from ST-elevation myocardial infarction patients induces IL-1beta production via LOX-1 and NLRP3 inflammasome activation in macrophages. American Journal of Physiology. Heart and Circulatory Physiology 312: H265–H274.CrossRef
10.
Zurück zum Zitat Lai, Y.S., T.C. Yang, P.Y. Chang, S.F. Chang, S.L. Ho, H.L. Chen, and S.C. Lu. 2016. Electronegative LDL is linked to high-fat, high-cholesterol diet-induced nonalcoholic steatohepatitis in hamsters. The Journal of Nutritional Biochemistry 30: 44–52.CrossRef Lai, Y.S., T.C. Yang, P.Y. Chang, S.F. Chang, S.L. Ho, H.L. Chen, and S.C. Lu. 2016. Electronegative LDL is linked to high-fat, high-cholesterol diet-induced nonalcoholic steatohepatitis in hamsters. The Journal of Nutritional Biochemistry 30: 44–52.CrossRef
11.
Zurück zum Zitat Chang, P.Y., J.H. Pai, Y.S. Lai, and S.C. Lu. 2019. Electronegative LDL from rabbits fed with atherogenic diet is highly proinflammatory. Mediators of Inflammation 2019: 6163130.PubMedPubMedCentral Chang, P.Y., J.H. Pai, Y.S. Lai, and S.C. Lu. 2019. Electronegative LDL from rabbits fed with atherogenic diet is highly proinflammatory. Mediators of Inflammation 2019: 6163130.PubMedPubMedCentral
12.
Zurück zum Zitat Hofnagel, O., B. Luechtenborg, K. Stolle, S. Lorkowski, H. Eschert, G. Plenz, and H. Robenek. 2004. Proinflammatory cytokines regulate LOX-1 expression in vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology 24: 1789–1795.CrossRef Hofnagel, O., B. Luechtenborg, K. Stolle, S. Lorkowski, H. Eschert, G. Plenz, and H. Robenek. 2004. Proinflammatory cytokines regulate LOX-1 expression in vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology 24: 1789–1795.CrossRef
13.
Zurück zum Zitat Yang, T.C., P.Y. Chang, T.L. Kuo, and S.C. Lu. 2017. Electronegative L5-LDL induces the production of G-CSF and GM-CSF in human macrophages through LOX-1 involving NF-kappaB and ERK2 activation. Atherosclerosis 267: 1–9.CrossRef Yang, T.C., P.Y. Chang, T.L. Kuo, and S.C. Lu. 2017. Electronegative L5-LDL induces the production of G-CSF and GM-CSF in human macrophages through LOX-1 involving NF-kappaB and ERK2 activation. Atherosclerosis 267: 1–9.CrossRef
14.
Zurück zum Zitat Mehta, J.L., N. Sanada, C.P. Hu, J. Chen, A. Dandapat, F. Sugawara, H. Satoh, et al. 2007. 3 Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circulation Research 100: 1634–1642.CrossRef Mehta, J.L., N. Sanada, C.P. Hu, J. Chen, A. Dandapat, F. Sugawara, H. Satoh, et al. 2007. 3 Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circulation Research 100: 1634–1642.CrossRef
15.
Zurück zum Zitat Lu, J., J.H. Yang, A.R. Burns, H.H. Chen, D. Tang, J.P. Walterscheid, S. Suzuki, C.Y. Yang, T. Sawamura, and C.H. Chen. 2009. Mediation of electronegative low-density lipoprotein signaling by LOX-1: A possible mechanism of endothelial apoptosis. Circulation Research 104: 619–627.CrossRef Lu, J., J.H. Yang, A.R. Burns, H.H. Chen, D. Tang, J.P. Walterscheid, S. Suzuki, C.Y. Yang, T. Sawamura, and C.H. Chen. 2009. Mediation of electronegative low-density lipoprotein signaling by LOX-1: A possible mechanism of endothelial apoptosis. Circulation Research 104: 619–627.CrossRef
16.
Zurück zum Zitat Levitan, I., S. Volkov, and P.V. Subbaiah. 2010. Oxidized LDL: Diversity, patterns of recognition, and pathophysiology. Antioxidants & Redox Signaling 13: 39–75.CrossRef Levitan, I., S. Volkov, and P.V. Subbaiah. 2010. Oxidized LDL: Diversity, patterns of recognition, and pathophysiology. Antioxidants & Redox Signaling 13: 39–75.CrossRef
17.
Zurück zum Zitat Rios, F.J., M.M. Koga, M. Pecenin, M. Ferracini, M. Gidlund, and S. Jancar. 2013. Oxidized LDL induces alternative macrophage phenotype through activation of CD36 and PAFR. Mediators of Inflammation 2013: 198193.CrossRef Rios, F.J., M.M. Koga, M. Pecenin, M. Ferracini, M. Gidlund, and S. Jancar. 2013. Oxidized LDL induces alternative macrophage phenotype through activation of CD36 and PAFR. Mediators of Inflammation 2013: 198193.CrossRef
18.
Zurück zum Zitat Seo, J.W., E.J. Yang, K.H. Yoo, and I.H. Choi. 2015. Macrophage differentiation from monocytes is influenced by the lipid oxidation degree of low density lipoprotein. Mediators of Inflammation 2015: 235797.CrossRef Seo, J.W., E.J. Yang, K.H. Yoo, and I.H. Choi. 2015. Macrophage differentiation from monocytes is influenced by the lipid oxidation degree of low density lipoprotein. Mediators of Inflammation 2015: 235797.CrossRef
19.
Zurück zum Zitat van Tits, L.J., R. Stienstra, P.L. van Lent, M.G. Netea, L.A. Joosten, and A.F. Stalenhoef. 2011. Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: A crucial role for Kruppel-like factor 2. Atherosclerosis 214: 345–349.CrossRef van Tits, L.J., R. Stienstra, P.L. van Lent, M.G. Netea, L.A. Joosten, and A.F. Stalenhoef. 2011. Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: A crucial role for Kruppel-like factor 2. Atherosclerosis 214: 345–349.CrossRef
20.
Zurück zum Zitat Oh, J., A.E. Riek, S. Weng, M. Petty, D. Kim, M. Colonna, M. Cella, et al. 2012. Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation. The Journal of Biological Chemistry 287: 11629–11641.CrossRef Oh, J., A.E. Riek, S. Weng, M. Petty, D. Kim, M. Colonna, M. Cella, et al. 2012. Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation. The Journal of Biological Chemistry 287: 11629–11641.CrossRef
21.
Zurück zum Zitat Yang, C.Y., J.L. Raya, H.H. Chen, C.H. Chen, Y. Abe, H.J. Pownall, A.A. Taylor, et al. 2003. Isolation, characterization, and functional assessment of oxidatively modified subfractions of circulating low-density lipoproteins. Arteriosclerosis, Thrombosis, and Vascular Biology 23: 1083–1090.CrossRef Yang, C.Y., J.L. Raya, H.H. Chen, C.H. Chen, Y. Abe, H.J. Pownall, A.A. Taylor, et al. 2003. Isolation, characterization, and functional assessment of oxidatively modified subfractions of circulating low-density lipoproteins. Arteriosclerosis, Thrombosis, and Vascular Biology 23: 1083–1090.CrossRef
22.
Zurück zum Zitat Chen, C.Y., H.C. Hsu, A.S. Lee, D. Tang, L.P. Chow, C.Y. Yang, H. Chen, et al. 2012. The most negatively charged low-density lipoprotein L5 induces stress pathways in vascular endothelial cells. Journal of Vascular Research 49: 329–341.CrossRef Chen, C.Y., H.C. Hsu, A.S. Lee, D. Tang, L.P. Chow, C.Y. Yang, H. Chen, et al. 2012. The most negatively charged low-density lipoprotein L5 induces stress pathways in vascular endothelial cells. Journal of Vascular Research 49: 329–341.CrossRef
23.
Zurück zum Zitat Benitez, S., C. Bancells, J. Ordonez-Llanos, and J.L. Sanchez-Quesada. 2007. Pro-inflammatory action of LDL(−) on mononuclear cells is counteracted by increased IL10 production. Biochimica et Biophysica Acta 1771: 613–622.CrossRef Benitez, S., C. Bancells, J. Ordonez-Llanos, and J.L. Sanchez-Quesada. 2007. Pro-inflammatory action of LDL(−) on mononuclear cells is counteracted by increased IL10 production. Biochimica et Biophysica Acta 1771: 613–622.CrossRef
24.
Zurück zum Zitat Shapouri-Moghaddam, A., S. Mohammadian, H. Vazini, M. Taghadosi, S.A. Esmaeili, F. Mardani, B. Seifi, et al. 2018. Macrophage plasticity, polarization, and function in health and disease. Journal of Cellular Physiology 233: 6425–6440.CrossRef Shapouri-Moghaddam, A., S. Mohammadian, H. Vazini, M. Taghadosi, S.A. Esmaeili, F. Mardani, B. Seifi, et al. 2018. Macrophage plasticity, polarization, and function in health and disease. Journal of Cellular Physiology 233: 6425–6440.CrossRef
25.
Zurück zum Zitat Moore, K.J., and M.W. Freeman. 2006. Scavenger receptors in atherosclerosis: Beyond lipid uptake. Arteriosclerosis, Thrombosis, and Vascular Biology 26: 1702–1711.CrossRef Moore, K.J., and M.W. Freeman. 2006. Scavenger receptors in atherosclerosis: Beyond lipid uptake. Arteriosclerosis, Thrombosis, and Vascular Biology 26: 1702–1711.CrossRef
26.
Zurück zum Zitat Canton, J., D. Neculai, and S. Grinstein. 2013. Scavenger receptors in homeostasis and immunity. Nature Reviews. Immunology 13: 621–634.CrossRef Canton, J., D. Neculai, and S. Grinstein. 2013. Scavenger receptors in homeostasis and immunity. Nature Reviews. Immunology 13: 621–634.CrossRef
27.
Zurück zum Zitat Aoyama, T., T. Sawamura, Y. Furutani, R. Matsuoka, M.C. Yoshida, H. Fujiwara, and T. Masaki. 1999. Structure and chromosomal assignment of the human lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) gene. The Biochemical Journal 339 (Pt 1): 177–184.CrossRef Aoyama, T., T. Sawamura, Y. Furutani, R. Matsuoka, M.C. Yoshida, H. Fujiwara, and T. Masaki. 1999. Structure and chromosomal assignment of the human lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) gene. The Biochemical Journal 339 (Pt 1): 177–184.CrossRef
28.
Zurück zum Zitat Sobanov, Y., A. Bernreiter, S. Derdak, D. Mechtcheriakova, B. Schweighofer, M. Duchler, F. Kalthoff, et al. 2001. A novel cluster of lectin-like receptor genes expressed in monocytic, dendritic and endothelial cells maps close to the NK receptor genes in the human NK gene complex. European Journal of Immunology 31: 3493–3503.CrossRef Sobanov, Y., A. Bernreiter, S. Derdak, D. Mechtcheriakova, B. Schweighofer, M. Duchler, F. Kalthoff, et al. 2001. A novel cluster of lectin-like receptor genes expressed in monocytic, dendritic and endothelial cells maps close to the NK receptor genes in the human NK gene complex. European Journal of Immunology 31: 3493–3503.CrossRef
29.
Zurück zum Zitat Kakutani, M., M. Ueda, T. Naruko, T. Masaki, and T. Sawamura. 2001. Accumulation of LOX-1 ligand in plasma and atherosclerotic lesions of Watanabe heritable hyperlipidemic rabbits: Identification by a novel enzyme immunoassay. Biochemical and Biophysical Research Communications 282: 180–185.CrossRef Kakutani, M., M. Ueda, T. Naruko, T. Masaki, and T. Sawamura. 2001. Accumulation of LOX-1 ligand in plasma and atherosclerotic lesions of Watanabe heritable hyperlipidemic rabbits: Identification by a novel enzyme immunoassay. Biochemical and Biophysical Research Communications 282: 180–185.CrossRef
Metadaten
Titel
Electronegative LDL Induces M1 Polarization of Human Macrophages Through a LOX-1-Dependent Pathway
verfasst von
Shwu-Fen Chang
Po-Yuan Chang
Yuan-Chun Chou
Shao-Chun Lu
Publikationsdatum
11.05.2020
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2020
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-020-01229-6

Weitere Artikel der Ausgabe 4/2020

Inflammation 4/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.