Skip to main content
Erschienen in: BMC Infectious Diseases 1/2020

Open Access 01.12.2020 | Research article

Emergence of carbapenem-resistant and colistin-susceptible Enterobacter cloacae complex co-harboring blaIMP-1 and mcr-9 in Japan

verfasst von: Pegah Kananizadeh, Satoshi Oshiro, Shin Watanabe, Shu Iwata, Kyoko Kuwahara-Arai, Masahiro Shimojima, Miho Ogawa, Tatsuya Tada, Teruo Kirikae

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2020

Abstract

Background

The spread of Enterobacteriaceae producing both carbapenemases and Mcr, encoded by plasmid-mediated colistin resistance genes, has become a serious public health problem worldwide. This study describes three clinical isolates of Enterobacter cloacae complex co-harboring blaIMP-1 and mcr-9 that were resistant to carbapenem but susceptible to colistin.

Methods

Thirty-two clinical isolates of E. cloacae complex non-susceptible to carbapenems were obtained from patients at 14 hospitals in Japan. Their minimum inhibitory concentrations (MICs) were determined by broth microdilution methods and E-tests. Their entire genomes were sequenced by MiSeq and MinION methods. Multilocus sequence types were determined and a phylogenetic tree constructed by single nucleotide polymorphism (SNP) alignment of whole genome sequencing data.

Results

All 32 isolates showed MICs of ≥2 μg/ml for imipenem and/or meropenem. Whole-genome analysis revealed that all these isolates harbored blaIMP-1, with three also harboring mcr-9. These three isolates showed low MICs of 0.125 μg/ml for colistin. In two of these isolates, blaIMP-1 and mcr-9 were present on two separate plasmids, of sizes 62 kb and 280/290 kb, respectively. These two isolates did not possess a qseBC gene encoding a two-component system, which is thought to regulate the expression of mcr-9. In the third isolate, however, both blaIMP-1 and mcr-9 were present on the chromosome.

Conclusion

The mcr-9 is silently distributed among carbapenem-resistant E. cloacae complex isolates, of which are emerging in hospitals in Japan. To our knowledge, this is the first report of isolates of E. cloacae complex harboring both blaIMP-1 and mcr-9 in Japan.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12879-020-05021-7.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Background

The emergence of carbapenemase-producing Enterobacteriaceae (CPE) has become a serious problem in medical settings worldwide [1]. The most frequently detected and globally widespread carbapenemase produced by CPE between the Asian countries are the class B metallo-β-lactamases (MBLs), which include IMP-type, NDM-type, and VIM-type MBLs [2].
Because of the emergence of multidrug-resistant Gram-negative pathogens and the lack of new antibiotics with efficient activities, colistin, a polymyxin-type antibiotic, has been the last resort used to treat CPE infections [3, 4]. Bacteria acquire colistin resistance through chromosomal mutation(s) or plasmid transfer [5]. Chromosome-mediated colistin resistance results from mutation(s) or deletion(s) of two component systems, such as phoPQ and pmrAB, altering the structure of lipopolysaccharides [6, 7]. For example, colistin resistance has been associated with modification of the lipid A moiety in lipopolysaccharide, such as by the addition of 4-amino-4-deoxy-L-arabinose (L-Ara-4 N) and phosphoethanolamine (PEtN) to the anionic phosphate groups of lipid A. These additions reduce the anionic charges on lipid A and its affinity to the cationic colistin, inhibiting membrane destruction resulting from the binding of colistin to lipid A, followed by cell death [8].
To date, various types of plasmid-mediated mobilized colistin-resistance genes, mcr, have been identified, including mcr-1 to mcr-9, with several, including mcr-1, − 2, − 3, − 4, and − 6, shown to have PEtN transferase activity [6]. The mcr-1 gene was initially detected in isolates of Escherichia coli and Klebsiella pneumoniae obtained from humans and animals in 2015 in China [9], and mcr-9 was initially identified in a clinical isolate of the colistin-susceptible bacterium, Salmonella enterica serotype typhimurium. The amino acid and nucleotide sequences of mcr-9 are closest to those of mcr-3 with similarities of 64.5 and 99.5%, respectively [10]. In this study, mcr-9 was detected in 335 genomes in multiple genera of Enterobacteriaceae. The analysis of mcr-9 promoter region in these genomes showed conserved regions which is likely a recognition sequence for transcription regulator, suggesting that other factors might be involved in full-expression of mcr-9. Of the 335 genomes, 65 had at least one plasmid replicon indicating that mcr-9 can be found extrachromosomally in different species of Enterobacteriaceae [10].
Isolates of E. cloacae complex resistant to both carbapenem and colistin have been reported in several countries, including China [11, 12], France [13], India [14], the USA [15, 16] and Vietnam [17]. One of these, an isolate of E. cloacae complex (Enterobacter hormaechies) co-harboring blaVIM-4 and mcr-9, was first reported in the United States in 2019 [16]. In addition, a colistin-resistant E. hormaechei isolate producing both MCR-9 and NDM-1 was isolated from a patient in China with bloodstream infection in 2019 [11]. This emergence of colistin resistance, particularly in CPE, may result in significant clinical and public health concerns [18, 19].
The study describes three clinical isolates of E. cloacae complex that were resistant to carbapenem but susceptible to colistin. To our knowledge, this is the first report of isolates of E. cloacae complex harboring both blaIMP-1 and mcr-9 in Japan.

Methods

Bacterial strains

Thirty-two clinical isolates of E. cloacae complex, each with minimum inhibitory concentrations (MICs) of ≥2 μg/ml for meropenem and/or imipenem, had been obtained from individual patients at 14 hospitals in eight prefectures throughout Japan from July to October 2018 by BML Biomedical Laboratories R&D Center (Kawagoe, Saitama, Japan).

Drug susceptibility testing

The MICs of antibiotics were determined using a broth microdilution method according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI) [20]. The MICs of colistin were also determined by a broth microdilution using cation-adjusted Muller Hinton broth and 96-well microtiter plates (Kohjin Bio, Co., Ltd. Saitama, Japan) according to the guidelines of the European Union Committee for Antimicrobial Susceptibility Testing (EUCAST) [21].

Whole genome sequencing

DNA was extracted from each E. cloacae complex isolate using DNeasy Blood and Tissue kits (Qiagen, Tokyo, Japan). A Nextera XT DNA library was prepared from each extracted DNA sample. Each DNA library of was sequenced on the MiSeq system (Illumina) to obtain short reads with 300-bp paired-end reads. MiSeqRun was performed using Nextera XT Index Kit v2 and MiSeq Reagent Kit v3. DNA Libraries for MinION (Oxford Nanopore Technologies, Oxford, UK) were prepared from three isolates (A2483, A2504 and A2563) using Ligation Sequencing Kits 1D (SQK-LSK109) to yield long contigs. The long read generated by MinION were assembled using Canu v1.7.1 and polished with the short reads generated by MiSeq using Pilon v1.22. The nucleotide sequences of plasmids and chromosomes carrying blaIMP-1 and mcr-9 were compared with similar sequences using BLAST and visualized by In silico MolecularCloning. Ver.7 genomic edition (https://​www.​insilicobiology.​co.​jp/​).
Bacterial species were identified by analyses of average nucleotide identity (ANI) [22] and digital DNA-DNA hybridization (dDDH) [23] of whole genome sequences. The seven type strains used as reference species included Enterobacter asburiae (ATCC35953T), E. cloacae (ATCC13047T), E. hormaechei (ATCC49162T), Enterobacter kobei (DSM13645T), Enterobacter ludwigii (EN-119T), Enterobacter nimipressuralis (DSM18955T) and Enterobacter xiangfangensis (LMG27195T). In silico multilocus sequence typing (MLST) was assigned by PUBMLST database (https://​pubmlst.​org/​databases/​). Acquired antibiotic resistance genes were identified using the ResFinder 3.2 tool (https://​cge.​cbs.​dtu.​dk/​services/​ResFinder/​) from the Center for Genomic Epidemiology (CGE).

Phylogenetic analysis based on SNPs

Single nucleotide polymorphisms (SNPs) in the 32 isolates were identified by aligning whole-genome sequencing data of these isolates with the genomic sequences of the E. xiangfangensis reference isolate LMG27195 (GenBank accession no. CP017183.3), using the CSI Phylogeny 1.4 tool (https://​cge.​cbs.​dtu.​dk/​services/​CSIPhylogeny/​) from CGE. A phylogenetic tree was constructed using Fig Tree (version 1.4.4) and a maximum likelihood phylogenetic tree (http://​tree.​bio.​ed.​ac.​uk/​software/​figtree/​).

Results

Phenotypic and genotypic properties of carbapenem-non-susceptible isolates

Drug susceptibility of carbapenem-non-susceptible isolates

The MICs of the 32 clinical isolates of E. cloacae complex are shown in Table 1. All were susceptible to amikacin and colistin, but resistant to ceftazidime. Of these 32 isolates, 25 were resistant to aztreonam, 15 were resistant to ciprofloxacin, and 12 were resistant to tigecycline. Of the all 32 isolates, 28 isolates were resistant to imipenem and/or meropenem with MICs ≥4 μg/ml, whereas the remaining 4 were intermediate to imipenem and/or meropenem with MICs ≥2 μg/ml (Table S1). There are no isolates susceptible to both imipenem and meropenem (Table S1).
Table 1
MIC values of 32 clinical E. cloacae complex isolates
Antimicrobial Agentsa
Breakpoint for resistance (μg/ml)
No. of resistant Isolates (%)
MIC data (μg/ml)
Range
MIC50
MIC90
Amikacin
≥64
0
0.5 to 4
1
2
Aztreonam
≥16
25 (78.1%)
< 0.25 to 256
32
256
Ceftazidime
≥16
32 (100%)
32 to > 512
256
> 512
Ciprofloxacin
≥4
15 (46.87%)
< 0.25 to 64
2
32
Colistinb
> 2
0
0.03 to 2
0.25
0.5
Imipenem
≥4
18 (56.25%)
< 0.25 to16
4
8
Meropenem
≥4
18 (56.25%)
0.5 to 16
4
16
Tigecyclineb
> 0.5
12 (37.5%)
< 0.25 to 4
0.5
1
aBreakpoints for antimicrobial resistance were determined according to CLSI guidelines
bBreakpoint for Colistin and Tigecycline was determined according to EUCAST guidelines

Whole genome sequences of carbapenem-non-susceptible isolates

Whole genome sequencing of the 32 isolates of E. cloacae complex showed that, based on ANI and dDDH analyses, 31 were E. xiangfangensis and one was E. asburiae. MLST analysis revealed that 13 isolates (40.6%) belonged to sequence type (ST) 78; 10 (31.2%) to ST133; two each (6.3%) to ST175 and ST1196; and one each (3.1%) to ST62, ST93, ST418, and ST484. The ST for one isolate could not be determined because its housekeeping genes did not match those of current STs. A phylogenetic tree of these 32 isolates revealed four major clades, with clades I, II, III and IV consisting of 14, 2, 10 and 6 isolates, respectively (Fig. 1). Clade I consisted of isolates belonging to ST78 and the non-typeable isolate, clade II of isolates belonging to ST418 and ST484, clade III of isolates belonging to ST133 and clade IV of isolates belonging to ST1196, ST175, ST93 and ST62. These isolates harbored various genes associated with drug resistance (additional file: Table S1). All 32 isolates harbored blaIMP-1, with three also harboring mcr-9 (Table S1).

Phenotypic and genotypic properties of isolates harboring both blaIMP-1 and mcr-9

Bacterial identification and drug susceptibility

Of three isolates co-harboring blaIMP-1 and mcr-9, two, A2483 and A2504, were E. xiangfangensis and one, A2563, was E. asburiae (Table S1). The A2483 and A2504 strains obtained in a hospital belonged to ST1199, whereas the A2563 strain obtained in another hospital belonged to ST484. The two hospitals located in the same prefecture in Japan. The drug susceptibility profiles of the two E. xiangfangensis isolates were identical to each other, with both A2483 and A2504 being resistant to aztreonam, ceftazidime, imipenem, meropenem and tigecycline, and susceptible to amikacin, ciprofloxacin and colistin (Table 2). The E. asburiae isolate was resistant to ceftazidime and imipenem, had intermediate resistance to meropenem, but was susceptible to the other drugs tested including colistin (Table 2).
Table 2
Drug susceptibility profile of E. cloacae complex isolates co-harboring mcr-9 and blaIMP-1
Isolates/Antimicrobial Agentsa
MIC (μg/ml)
AMK
AZT
CAZ
CIP
CSTb
IPM
MPM
TIGb
E. xiangfangensis A2483
1
128
> 512
1
0.125
4
8
1
E. xiangfangensis A2504
1
128
> 512
1
0.125
4
8
1
E. asburiae A2563
0.5
0.25>
128
0.5
0.125
8
2
0.5
aBreakpoints for antimicrobial resistance were determined according to CLSI guidelines
bBreakpoints for Colistin and Tigecycline was determined according to EUCAST guidelines

Whole genome sequences of isolates harboring both blaIMP-1 and mcr-9

As shown in Table 3, E. xiangfangensis A2483 contained a chromosome of 5,024,985 bp with a GC content of 55.24% and two plasmids of 61,594 bp and 288,696 bp, respectively. E. xiangfangensis A2504 contained a chromosome of 4,934,510 bp with a GC content of 54.70% and two plasmids of 61,594 bp and 276,927 bp, respectively. The whole genome sequences of A2483 were very close to those of A2504 with similarities of 100% (98% query coverage) on the chromosome, 100% for the 62-kbp plasmid and 100% (96% query coverage) for the 289-kbp plasmid. E. asburiae A2563 contained a chromosome of 4,934,510 bp with a GC content of 55.80% and one plasmid 115,246 bp in size (Table 3). In addition to blaIMP-1 and mcr-9, these isolates harbored several other genes associated with drug resistance, including aac (6′)-IIc, blaACT-6, blaACT-7, fosA and sul1 (Table 3). blaACT genes are the intrinsic AmpC encoding genes of Enterobacter cloacae complex species.
Table 3
Genetic characterization of carbapenem-resistant and colistin non-resistant E.cloacae complex isolates coharboring blaIMP-1 and mcr-9
Isolates
Genetic contents
Plasmid type
Size (bp)
GC content
Antibiotic resistance genes
E. xiangfangensis A2483
chromosome
 
5,024,985
55.24%
blaACT- 7, fosA
plasmid
IncHI2
288,696
46.30%
mcr-9
plasmid
 
61,594
47.40%
aac(6′)-Iic, blaIMP-1, sul1
E. xiangfangensis A2504
chromosome
 
4,934,510
54.70%
blaACT- 7,fosA
plasmid
IncHI2
276,927
46.30%
mcr-9
plasmid
 
61,594
47.40%
aac(6′)-Iic, blaIMP-1,sul1
E. asburiae A2563
chromosome
 
4,808,368
55.80%
blaACT- 6,blaIMP-1,mcr-9, sul1
plasmid
IncFIB (pECLA)
115,246
  

Location of mcr-9 and its genetic environments

The mcr-9 gene was present on the 289-kpb IncHI2 plasmid of A2483 and the 277-kpb IncHI2 plasmid of A2504, but was present on the chromosome of A2563 (Table 3). The two plasmids harboring mcr-9, pA2483mcr-9 on A2483 and pA2504mcr-9 on A2504, had the same GC content of 46.30%, and contained open reading frames (ORFs) of 360 and 358, respectively (Fig. 2. (a)). The nucleotide sequences of these plasmids were identical to each other, except for a genetic region with 11,770 bp, from nucleotide (nt) 146,310 to nt 158,080, in the 277-kbp plasmid. The mcr-9 gene on the chromosome of A2563 was detected at nt ~ 129 Mb.
The genetic environments of mcr-9 in the A2483 and A2504 plasmids were identical to each other, with mcr-9 located in a ~ 30 kb region surrounded by two insertion sequences encoding an IS5-like element (IS903 family transposase; Fig. 3). The region upstream of mcr-9 included rcnR (encoding a Ni/Co-binding transcriptional repressor), pcoS (encoding a two-component sensor histidine kinase) and pcoE (encoding a copper-binding protein). The region downstream of mcr-9 included wbuC (encoding a cupin fold metalloprotein) but no genes encoding the two-component system qseC-qseB, which has been associated with the expression of mcr-9 [24]. Insertion sequences were not detected in the region downstream of mcr-9 on the A2563 chromosome. The region upstream of mcr-9 was rcnR-pcoSpcoE, whereas the region downstream of mcr-9 was wbuC-qseC-qseB (Fig. 3). The A2483 and A2504 plasmids showed 83% query coverage and 99.97% identity to the IncHI2 plasmid, pME-1a (GenBank accession no. NZ_CP041734.1), in E. hormaechei, a strain isolated in 2019 from a pediatric inpatient in the USA (Fig. 3) [16]. Three IncHI2 plasmids were identified with similar sequences, pCTXM9_020038 from E. hormaechei isolated in China in 2018 (83% query and 99.97% identity; GenBank accession no. CP031724), pRH-R27 from Salmonella enterica Infantis in Germany in 2015 (82% query coverage and 99.99% identity; GenBank accession no. LN555650), and pMCR-SCNJ07 from E. hormaechei isolated in China in 2019 (80% query and 99.99% identity; GenBank accession no. MK933279) (Fig. 3).

Location of blaIMP-1 and its genetic environment

The blaIMP-1 gene was present on the 62-kbp plasmids of A2483 and A2504 and on the chromosome of A2563 (Table 3). The two plasmids harboring blaIMP-1, pA2483imp-1 from A2483 and pA2504imp-1 from A2504, had the same GC content of 47.40% and identical nucleotide sequences (Fig. 2 (b)). In these plasmids, blaIMP-1 was located in a class I integron containing intl-blaIMP-1-aac (6′)-IIc-qacE∆1-sul1. The blaIMP-1 gene on the chromosome of A2563 was present in the same class I integron (Fig. 2 (c)). The same class I integron containing blaIMP-1 and aac (6′)-IIc was detected in the bacteria E. asburiae NUH15_ECL035_1 (GenBank accession no AP019388.1), Enterobacter cloacae NUH15_ECL020 (GenBank accession no AP019386.1) and Enterobacter asburiae NUH12_ECL030 (GenBank accession no AP019383.1), all of which were isolated in Japan in 2019. The two pA2483imp-1 and pA2504imp-1 showed 84% query coverage and 97.75% identity with the plasmid pJJ1886_4 (GenBank accession no CP006788.1), which was detected in the USA and did not contain a class I integron or any other resistance genes [25].

Discussion

The mcr-9 gene may be silently spreading in Enterobacteriaceae throughout the world. The prevalence of mcr-9 is unclear because this gene is not actually related to colistin resistance, as it may be silent or inducible in clinical isolates of Enterobacteriaceae. For example, an isolate of E. hormechei harboring mcr-9 did not express its gene product [16]. This isolate was susceptible to colistin, likely because the two-component system genes qseCB were lacking from the region downstream of mcr-9. In contrast, another isolate of E. hormechei that harbored and expressed mcr-9 was found to be resistant to colistin and to have the two-component system genes in the region downstream of mcr-9 [11]. The expression of mcr-9 is mediated by the two-component system QseCB and can be induced by subinhibitory concentrations of colistin [24]. At least 11 mcr-9-positive IncHI2 plasmids have been detected by Blast, with six having and five lacking the two-component system genes [11].
The two-component QseCB system, consisting of a sensor (qseC) and a response regulator (qseB), plays an essential role in the expression of mcr-9 [24]. Our finding, that the isolate A2563 harbored mcr-9 along with the two-component system genes qseCB but was susceptible to colistin suggests that other, as yet undetermined, genes or molecules may regulate mcr-9 expression. The pA2480mcr-9 and pA2504mcr-9 had similar structures to those of pME-1a and pCTXM9_020038, as they lacked qseCB. This two-component system was transcribed as an operon, with the QseB promoter binding to low- and high-affinity binding sites located − 500 to − 10 bp at upstream of qseB [26]. The nucleotide sequence of this region in A2563 was 100% identical to that of the QseB promoter (− 500 to + 1 bp) in pMCR-SCNJ07, which confers resistance to colistin [11], suggesting that the QseB promoter in A2563 may be repressed by an as yet undetermined mechanism [26]. Four plasmids, pME-1a, pCTXM9_020038, pRH-R27 and pMCR-SCNJ07, had the conserved gene structure, rcnR-pcoS-pcoE-IS-5, upstream of mcr-9. Whereas, the chromosome of A2563 had the same conserved gene structure, but with a 53-bp deletion in pcoEpcoE), suggesting that the deleted region may be associated with mcr-9 expression. Further studies are necessary to determine the mechanism for regulation of mcr-9 expression in Enterobacteriaceae.
To our knowledge, it is the first report describing a bacterial isolate harboring mcr-9 on its chromosome, indicating that mcr-9 may have been inserted into the chromosome by mobile elements. Several Enterobacteriaceae isolates from animals and humans have reported the chromosomal location of mcr-1 and mcr-2 [2733]. The mcr-1 was detected on the chromosomes of two colistin-resistant E. coli strains isolated from swine in 2012 in China [28], and on the chromosome of an E. coli ST410 strain harboring blaCTX-M-15 isolated from a sample of turkey meat in 2013 in Germany [27]. The chromosomal integration of mcr-1 was also detected in a clinical strain of E. coli ST156 harboring blaNDM-5 isolated from a bile sample in 2015 in China [29], in E. coli isolated from food production animals in 2011–2016 in Poland [32], and in E. coli isolated from veal calves in 2016 in the Netherlands [30]. Chromosomes carrying mcr-1 were detected in Enterobacteriaceae from environmental water sources in 2017 in China [33]. Moreover, the mcr-2 gene (mcr-6.1) was detected on the chromosome of a strain of Moraxella isolated from a pig in 2014–2015 in Great Britain [31]. These studies support the mobility characterization of mcr genes across different genetic elements and insertion of the plasmid-variant of mcr into chromosome could lead to higher prevalence of colistin resistance among Enterobacteriaceae specious.
The direct origin of the mcr-9 on the chromosome of A2563 is unclear. However, the genetic environments of the mcr-9 and qseCB genes in A2563 are similar to those of pMCR-SCNJ07 from E. hormaechei in China in 2019 (GenBank accession no. MK933279), pRH-R27 from Salmonella enterica Infantis in Germany in 2015 (GenBank accession no. LN555650), pT5282-mphA from E. cloacae in China in 2012 (GenBank accession no. KY270852), pN1863-HI2 from E. cloacae in China in 2017 (GenBank accession no. MF344583), pSE15-SA01028 from S. enterica subsp. enterica in Germany in 2018 (GenBank accession no. NZ_CP026661) and p707804-NDM from Leclercia adecarboxylata in China in 2018 (GenBank accession no. MH909331). These 7 strains carrying plasmids with mcr-9 in China and Germany did not harbored blaIMPs, but blaNDMs or blaVIMs [11].
The plasmids pA2483imp-1 and pA2504imp-1 had the same backbone as the plasmid pJJ1886_4 (GenBank accession no CP006788.1), which had been isolated in the USA. The 55,956 bp plasmid pJJ1886_4, which was smaller in length than the 61,594 bp plasmids pA2483imp-1 and pA2504imp-1, lacked a class I integron carrying blaIMP-1 (intl-blaIMP-1-aac (6′)-IIc-qacE ∆1-sul1). The E. cloacae EN3600 plasmid (GenBank accession no CP035638.1) carrying blaIMP-8 also had the same backbone as pJJ1886_4, with 83% coverage and 96.8% identity. These findings indicate that pJJ1886_4 has spread globally and captured drug-resistance genes and that this plasmid functions as a carrier of acquired drug-resistance genes.

Conclusion

In conclusion, this study describes the characterization of the complete genomes of three clinically obtained isolates of carbapenem-resistant and colistin-susceptible E. cloacae complex harboring both blaIMP-1 and mcr-9 from different hospitals in Japan. Enterobacteriaceae harboring both blaIMP-1 and mcr-9 may become a healthcare problem, suggesting the need for steps to prevent their further dissemination.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12879-020-05021-7.

Acknowledgements

Not applicable.
The study protocol was approved by the ethics committee of Juntendo University (number 809), and by the Biosafety Committee, Juntendo University (approval number BSL2/29–1). Individual informed consent was waived by the ethics committee listed above because this study used currently existing sample collected during the course of routine medical care and did not pose any additional risks to the patients. Informed consent about study participation was officially announced by mail and poster. All patient data were anonymized prior to the analysis.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect. 2014;20(9):821–30.CrossRef Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect. 2014;20(9):821–30.CrossRef
2.
Zurück zum Zitat Cornaglia G, Giamarellou H, Rossolini GM. Metallo-beta-lactamases: a last frontier for beta-lactams? Lancet Infect Dis. 2011;11(5):381–93.CrossRef Cornaglia G, Giamarellou H, Rossolini GM. Metallo-beta-lactamases: a last frontier for beta-lactams? Lancet Infect Dis. 2011;11(5):381–93.CrossRef
3.
Zurück zum Zitat Jeannot K, Bolard A, Plesiat P. Resistance to polymyxins in gram-negative organisms. Int J Antimicrob Agents. 2017;49(5):526–35.CrossRef Jeannot K, Bolard A, Plesiat P. Resistance to polymyxins in gram-negative organisms. Int J Antimicrob Agents. 2017;49(5):526–35.CrossRef
4.
Zurück zum Zitat Falagas ME, Kasiakou SK. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis. 2005;40(9):1333–41.CrossRef Falagas ME, Kasiakou SK. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis. 2005;40(9):1333–41.CrossRef
5.
Zurück zum Zitat Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol. 2014;5:643.CrossRef Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol. 2014;5:643.CrossRef
6.
Zurück zum Zitat Osei SJ. Mcr colistin resistance gene: a systematic review of current diagnostics and detection methods. Microbiologyopen. 2019;8(4):e00682.CrossRef Osei SJ. Mcr colistin resistance gene: a systematic review of current diagnostics and detection methods. Microbiologyopen. 2019;8(4):e00682.CrossRef
7.
Zurück zum Zitat Esposito F, Fernandes MR, Lopes R, Munoz M, Sabino CP, Cunha MP, et al. Detection of colistin-resistant MCR-1-positive Escherichia coli by use of assays based on inhibition by EDTA and zeta potential. J Clin Microbiol. 2017;55(12):3454–65.CrossRef Esposito F, Fernandes MR, Lopes R, Munoz M, Sabino CP, Cunha MP, et al. Detection of colistin-resistant MCR-1-positive Escherichia coli by use of assays based on inhibition by EDTA and zeta potential. J Clin Microbiol. 2017;55(12):3454–65.CrossRef
8.
Zurück zum Zitat Abdul Momin MHF, Bean DC, Hendriksen RS, Haenni M, Phee LM, Wareham DW. CHROMagar COL-APSE: a selective bacterial culture medium for the isolation and differentiation of colistin-resistant gram-negative pathogens. J Med Microbiol. 2017;66(11):1554–61.CrossRef Abdul Momin MHF, Bean DC, Hendriksen RS, Haenni M, Phee LM, Wareham DW. CHROMagar COL-APSE: a selective bacterial culture medium for the isolation and differentiation of colistin-resistant gram-negative pathogens. J Med Microbiol. 2017;66(11):1554–61.CrossRef
9.
Zurück zum Zitat Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–8.CrossRef Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–8.CrossRef
10.
Zurück zum Zitat Carroll LM, Gaballa A, Guldimann C, Sullivan G, Henderson LO, Wiedmann M. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype Typhimurium isolate. mBio. 2019;10(3). Carroll LM, Gaballa A, Guldimann C, Sullivan G, Henderson LO, Wiedmann M. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype Typhimurium isolate. mBio. 2019;10(3).
11.
Zurück zum Zitat Yuan Y, Li Y, Wang G, Li C, Xiang L, She J, et al. Coproduction of MCR-9 and NDM-1 by colistin-resistant Enterobacter hormaechei isolated from bloodstream infection. Infect Drug Resist. 2019;12:2979–85.CrossRef Yuan Y, Li Y, Wang G, Li C, Xiang L, She J, et al. Coproduction of MCR-9 and NDM-1 by colistin-resistant Enterobacter hormaechei isolated from bloodstream infection. Infect Drug Resist. 2019;12:2979–85.CrossRef
12.
Zurück zum Zitat Huang L, Wang X, Feng Y, Xie Y, Xie L, Zong Z. First identification of an IMI-1 carbapenemase-producing colistin-resistant Enterobacter cloacae in China. Ann Clin Microbiol Antimicrob. 2015;14:51.CrossRef Huang L, Wang X, Feng Y, Xie Y, Xie L, Zong Z. First identification of an IMI-1 carbapenemase-producing colistin-resistant Enterobacter cloacae in China. Ann Clin Microbiol Antimicrob. 2015;14:51.CrossRef
13.
Zurück zum Zitat Miltgen G, Bonnin RA, Avril C, Benoit-Cattin T, Martak D, Leclaire A, et al. Outbreak of IMI-1 carbapenemase-producing colistin-resistant Enterobacter cloacae on the French island of Mayotte (Indian Ocean). Int J Antimicrob Agents. 2018;52(3):416–20.CrossRef Miltgen G, Bonnin RA, Avril C, Benoit-Cattin T, Martak D, Leclaire A, et al. Outbreak of IMI-1 carbapenemase-producing colistin-resistant Enterobacter cloacae on the French island of Mayotte (Indian Ocean). Int J Antimicrob Agents. 2018;52(3):416–20.CrossRef
14.
Zurück zum Zitat Manohar P, Shanthini T, Ayyanar R, Bozdogan B, Wilson A, Tamhankar AJ, et al. The distribution of carbapenem- and colistin-resistance in gram-negative bacteria from the Tamil Nadu region in India. J Med Microbiol. 2017;66(7):874–83.CrossRef Manohar P, Shanthini T, Ayyanar R, Bozdogan B, Wilson A, Tamhankar AJ, et al. The distribution of carbapenem- and colistin-resistance in gram-negative bacteria from the Tamil Nadu region in India. J Med Microbiol. 2017;66(7):874–83.CrossRef
15.
Zurück zum Zitat Norgan AP, Freese JM, Tuin PM, Cunningham SA, Jeraldo PR, Patel R. Carbapenem- and colistin-resistant Enterobacter cloacae from Delta, Colorado, in 2015. Antimicrob Agents Chemother. 2016;60(5):3141–4.CrossRef Norgan AP, Freese JM, Tuin PM, Cunningham SA, Jeraldo PR, Patel R. Carbapenem- and colistin-resistant Enterobacter cloacae from Delta, Colorado, in 2015. Antimicrob Agents Chemother. 2016;60(5):3141–4.CrossRef
16.
Zurück zum Zitat Chavda KD, Westblade LF, Satlin MJ, Hemmert AC, Castanheira M, Jenkins SG, et al. First report of bla VIM-4- and mcr-9-coharboring Enterobacter species isolated from a pediatric patient. mSphere. 2019;4:5.CrossRef Chavda KD, Westblade LF, Satlin MJ, Hemmert AC, Castanheira M, Jenkins SG, et al. First report of bla VIM-4- and mcr-9-coharboring Enterobacter species isolated from a pediatric patient. mSphere. 2019;4:5.CrossRef
17.
Zurück zum Zitat Le-Ha TD, Le L, Le-Vo HN, Anda M, Motooka D, Nakamura S, et al. Characterization of a carbapenem- and colistin-resistant Enterobacter cloacae carrying Tn6901 in Bla NDM-1 genomic context. Infect Drug Resist. 2019;12:733–9.CrossRef Le-Ha TD, Le L, Le-Vo HN, Anda M, Motooka D, Nakamura S, et al. Characterization of a carbapenem- and colistin-resistant Enterobacter cloacae carrying Tn6901 in Bla NDM-1 genomic context. Infect Drug Resist. 2019;12:733–9.CrossRef
18.
Zurück zum Zitat Srinivas P, Rivard K. Polymyxin resistance in gram-negative pathogens. Curr Infect Dis Rep. 2017;19(11):38.CrossRef Srinivas P, Rivard K. Polymyxin resistance in gram-negative pathogens. Curr Infect Dis Rep. 2017;19(11):38.CrossRef
19.
Zurück zum Zitat Tumbarello M, Trecarichi EM, De Rosa FG, Giannella M, Giacobbe DR, Bassetti M, et al. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J Antimicrob Chemother. 2015;70(7):2133–43.CrossRef Tumbarello M, Trecarichi EM, De Rosa FG, Giannella M, Giacobbe DR, Bassetti M, et al. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J Antimicrob Chemother. 2015;70(7):2133–43.CrossRef
20.
Zurück zum Zitat CLSI. In: Clinical and Laboratory Standards Institute, editor. Performance Standards for Antimicrobial Susceptibility Testing. 29th. CLSI supplement M100. Wayne, PA; 2019. CLSI. In: Clinical and Laboratory Standards Institute, editor. Performance Standards for Antimicrobial Susceptibility Testing. 29th. CLSI supplement M100. Wayne, PA; 2019.
22.
Zurück zum Zitat Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek. 2017;110(10):1281–6.CrossRef Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek. 2017;110(10):1281–6.CrossRef
23.
Zurück zum Zitat Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013;14:60.CrossRef Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013;14:60.CrossRef
24.
Zurück zum Zitat Kieffer N, Royer G, Decousser JW, Bourrel AS, Palmieri M, Ortiz De La Rosa JM, et al. mcr-9, an inducible gene encoding an acquired phosphoethanolamine transferase in Escherichia coli, and its origin. Antimicrob Agents Chemother. 2019;63:9. Kieffer N, Royer G, Decousser JW, Bourrel AS, Palmieri M, Ortiz De La Rosa JM, et al. mcr-9, an inducible gene encoding an acquired phosphoethanolamine transferase in Escherichia coli, and its origin. Antimicrob Agents Chemother. 2019;63:9.
25.
Zurück zum Zitat Andersen PS, Stegger M, Aziz M, Contente-Cuomo T, Gibbons HS, Keim P, et al. Complete genome sequence of the epidemic and highly virulent CTX-M-15-producing H30-Rx subclone of Escherichia coli ST131. Genome Announc. 2013;1:6.CrossRef Andersen PS, Stegger M, Aziz M, Contente-Cuomo T, Gibbons HS, Keim P, et al. Complete genome sequence of the epidemic and highly virulent CTX-M-15-producing H30-Rx subclone of Escherichia coli ST131. Genome Announc. 2013;1:6.CrossRef
26.
Zurück zum Zitat Clarke MB, Sperandio V. Transcriptional autoregulation by quorum sensing Escherichia coli regulators B and C (QseBC) in enterohaemorrhagic E. coli (EHEC). Mol Microbiol. 2005;58(2):441–55.CrossRef Clarke MB, Sperandio V. Transcriptional autoregulation by quorum sensing Escherichia coli regulators B and C (QseBC) in enterohaemorrhagic E. coli (EHEC). Mol Microbiol. 2005;58(2):441–55.CrossRef
27.
Zurück zum Zitat Falgenhauer L, Waezsada S-E, Gwozdzinski K, Ghosh H, Doijad S, Bunk B, et al. Chromosomal locations of mcr-1 and blaCTX-M-15 in fluoroquinolone-resistant Escherichia coli ST410. Emerg Infect Dis. 2016;22(9):1689.CrossRef Falgenhauer L, Waezsada S-E, Gwozdzinski K, Ghosh H, Doijad S, Bunk B, et al. Chromosomal locations of mcr-1 and blaCTX-M-15 in fluoroquinolone-resistant Escherichia coli ST410. Emerg Infect Dis. 2016;22(9):1689.CrossRef
28.
Zurück zum Zitat Sun J, Li XP, Fang LX, Sun RY, He YZ, Lin J, et al. Co-occurrence of mcr-1 in the chromosome and on an IncHI2 plasmid: persistence of colistin resistance in Escherichia coli. Int J Antimicrob Agents. 2018;51(6):842–7.CrossRef Sun J, Li XP, Fang LX, Sun RY, He YZ, Lin J, et al. Co-occurrence of mcr-1 in the chromosome and on an IncHI2 plasmid: persistence of colistin resistance in Escherichia coli. Int J Antimicrob Agents. 2018;51(6):842–7.CrossRef
29.
Zurück zum Zitat Yu H, Qu F, Shan B, Huang B, Jia W, Chen C, et al. Detection of the mcr-1 colistin resistance gene in carbapenem-resistant Enterobacteriaceae from different hospitals in China. Antimicrob Agents Chemother. 2016;60(8):5033–5.CrossRef Yu H, Qu F, Shan B, Huang B, Jia W, Chen C, et al. Detection of the mcr-1 colistin resistance gene in carbapenem-resistant Enterobacteriaceae from different hospitals in China. Antimicrob Agents Chemother. 2016;60(8):5033–5.CrossRef
30.
Zurück zum Zitat Veldman K, van Essen-Zandbergen A, Rapallini M, Wit B, Heymans R, van Pelt W, et al. Location of colistin resistance gene mcr-1 in Enterobacteriaceae from livestock and meat. J Antimicrob Chemother. 2016;71(8):2340–2.CrossRef Veldman K, van Essen-Zandbergen A, Rapallini M, Wit B, Heymans R, van Pelt W, et al. Location of colistin resistance gene mcr-1 in Enterobacteriaceae from livestock and meat. J Antimicrob Chemother. 2016;71(8):2340–2.CrossRef
31.
Zurück zum Zitat AbuOun M, Stubberfield EJ, Duggett NA, Kirchner M, Dormer L, Nunez-Garcia J, et al. Mcr-1 and mcr-2 variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J Antimicrob Chemother. 2017;72(10):2745–9.CrossRef AbuOun M, Stubberfield EJ, Duggett NA, Kirchner M, Dormer L, Nunez-Garcia J, et al. Mcr-1 and mcr-2 variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J Antimicrob Chemother. 2017;72(10):2745–9.CrossRef
32.
Zurück zum Zitat Zając MM, Sztromwasser P, Bortolaia V, Leekitcharoenphon P, Cavaco LM, Ziętek-Barszcz A, et al. Occurrence and characterization of mcr-1-positive Escherichia coli isolated from food-producing animals in Poland, 2011-2016. Front Microbiol. 2019;10:1753.CrossRef Zając MM, Sztromwasser P, Bortolaia V, Leekitcharoenphon P, Cavaco LM, Ziętek-Barszcz A, et al. Occurrence and characterization of mcr-1-positive Escherichia coli isolated from food-producing animals in Poland, 2011-2016. Front Microbiol. 2019;10:1753.CrossRef
33.
Zurück zum Zitat Zhou HW, Zhang T, Ma JH, Fang Y, Wang HY, Huang ZX, et al. Occurrence of plasmid- and chromosome-carried mcr-1 in waterborne Enterobacteriaceae in China. Antimicrob Agents Chemother. 2017;61:8. Zhou HW, Zhang T, Ma JH, Fang Y, Wang HY, Huang ZX, et al. Occurrence of plasmid- and chromosome-carried mcr-1 in waterborne Enterobacteriaceae in China. Antimicrob Agents Chemother. 2017;61:8.
Metadaten
Titel
Emergence of carbapenem-resistant and colistin-susceptible Enterobacter cloacae complex co-harboring blaIMP-1 and mcr-9 in Japan
verfasst von
Pegah Kananizadeh
Satoshi Oshiro
Shin Watanabe
Shu Iwata
Kyoko Kuwahara-Arai
Masahiro Shimojima
Miho Ogawa
Tatsuya Tada
Teruo Kirikae
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2020
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-05021-7

Weitere Artikel der Ausgabe 1/2020

BMC Infectious Diseases 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.