Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2019

Open Access 01.12.2019 | Review

Emerging organoid models: leaping forward in cancer research

verfasst von: Han Fan, Utkan Demirci, Pu Chen

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2019

Abstract

Cancer heterogeneity is regarded as the main reason for the failure of conventional cancer therapy. The ability to reconstruct intra- and interpatient heterogeneity in cancer models is crucial for understanding cancer biology as well as for developing personalized anti-cancer therapy. Cancer organoids represent an emerging approach for creating patient-derived in vitro cancer models that closely recapitulate the pathophysiological features of natural tumorigenesis and metastasis. Meanwhile, cancer organoids have recently been utilized in the discovery of personalized anti-cancer therapy and prognostic biomarkers. Further, the synergistic combination of cancer organoids with organ-on-a-chip and 3D bioprinting presents a new avenue in the development of more sophisticated and optimized model systems to recapitulate complex cancer-stroma or multiorgan metastasis. Here, we summarize the recent advances in cancer organoids from a perspective of the in vitro emulation of natural cancer evolution and the applications in personalized cancer theranostics. We also discuss the challenges and trends in reconstructing more comprehensive cancer models for basic and clinical cancer research.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
3D
Three-dimensional
ALI
Air-liquid interface
BC
Breast cancer
CIN
Chromosomal instability
CRC
Colorectal cancer
ECM
Extracellular matrix
ECs
Endothelial cells
EMT
Epithelial-to-mesenchymal transition
FDA
U.S. Food and Drug Administration
HLA
Human leukocyte antigen
HSF2
Heat-shock factor 2
MEK-I
MEK inhibitor
MSCs
Mesenchymal stem cells
NSCLC
Non-small cell lung cancer
OBs
Osteoblast-differentiated cells
PDTOs
Patient-derived tumor organoids
PDTXs
Patient-derived tumor xenografts
PLC
Primary liver cancer
ROCK2
Rho-associated protein kinase 2
TCGA
The Cancer Genome Atlas
TIL
Tumor-infiltrating lymphocyte
WHO
World Health Organization

Introduction

Cancer leads to one in seven deaths worldwide. With the increase in the aging population, the global cancer burden is expected to rise to 21.7 million new cases and 13 million deaths by 2030, according to a recent WHO report [1]. While substantial progress has been made in standard anti-cancer treatment strategies, the effective treatments are still severely lacking primarily due to the tumor heterogeneity between and within individual patients. The tumor heterogeneity results in significant differences in the tumor growth rate, invasion ability, drug sensitivity, and prognosis among individual patients [2]. Therefore, the establishment of a high-fidelity preclinical cancer model is urgently needed to provide precise insights into cancer-related molecular evolution patterns in basic research and to allow personalized anti-cancer therapy in clinical.
Currently, immortalized cancer cell lines and patient-derived tumor xenografts (PDTXs) are commonly used in human cancer research. Cancer cell lines, which are characterized by low cost and ease of use, have been broadly employed in the high-throughput screening of drug candidates and cancer biomarkers. However, cancer cell lines can be only constructed from a limited number of cancer subtypes [3]. Moreover, the tumor-specific heterogeneity of cancer cell lines is gradually lost through epigenetic and genetic drift in the long-term culture [4]. In contrast, PDTXs retain tumor heterogeneity and genomic stability during the passage [5]. Besides, PDTXs can reproduce complex cancer-stroma and cancer-matrix interactions in vivo [6]. Nevertheless, the process of generating PDTX models usually takes more than 4 months, which may not be amenable for aiding terminal cancer patients. Additionally, PDTX models are expensive, labor-intensive, and incompatible with standard procedures in the high-throughput drug screening in the pharmaceutical industry (Table 1) [1719].
Table 1
Advantages and disadvantages of using PTDX models and cancer organoids for cancer research
Feature
PDTX models
Cancer organoids
Generation efficiency
10%–70% [7, 8]
70%–100%
Tumor tissue source
Surgically resected specimens
Surgically resected or biopsy needle specimens
Retention of heterogeneity
Retention
Retention
Generation time
4–8 months
4–12 weeks [912]
Passage efficiency
Low
High
Genetic manipulation
Not amenable
Amenable
High-throughput screening for drug discovery
No
Yes
Immune components
Without
Retention [1316]
Cost
High
Low
Recently, the emergence of cancer organoid technology with the intrinsic advantage of retaining the heterogeneity of original tumors has provided a unique opportunity to improve basic and clinical cancer research [20]. The generation of cancer organoids is low cost, ease of use, and can be accomplished in around 4 weeks [21, 22]. Additionally, tumor organoid culture can be performed in the microplates which are compatible with standard high-throughput assays. Using the gene-editing technique, normal organoids can be mutated into tumor organoids, which may emulate genetic alterations during cancer initiation and progression. Currently, various patient-derived tumor organoids (PDTOs) have been generated, including liver, colorectal, pancreatic, and prostate cancer organoids (Table 2) [28, 29, 34, 35]. In this review, we provide an in-depth discussion of cancer organoids for basic cancer research, including carcinogenesis and cancer metastasis. Following this, we describe that the patient-derived cancer organoids offer a revolutionary approach for drug screening, immunotherapy, prognosis-related hallmark discovery. Finally, we conclude the pros and cons of cancer organoid and propose strategies for enhancing the fidelity of organoid in cancer research (Fig. 1).
Table 2
Cancer organoid models: published reports
Tumor organoid model
Cell derived
Research means
Achievement
Refs
Breast cancer organoids
Patient
Quantitative optical imaging
Predict the therapeutic response of anti-tumor drug in individual patients
[23]
Mice
Organoid culture and xenotransplantation
Identify an early dissemination and metastasis mechanism for Her2+ breast cancer
[24]
Liver cancer organoids
Patient
Organoid culture and xenotransplantation
Establishment of hepatocellular carcinoma organoids from needle biopsies, and cancer organoids maintain the genomic features of the original tumors for up to 32 weeks
[11]
Gastric cancer organoids
Patient
Whole-genome sequencing
Identify mutated driver genes of promoting escape from anoikis in organoid culture
[25]
Murine
Gene editing
First reveal the potential metastatic role of TGFBR2 loss-of-function in diffuse gastric cancer
[26]
Colorectal cancer organoids
Human stem cell
CRISPR-Cas9
Verify the deficient of key DNA repair gene MLH1 role in drives tumorigenesis
[27]
Human stem cell
CRISPR-Cas9 and orthotopic transplantation
Visualize the different steps of the in vivo CRC metastatic cascade
[28]
Prostate cancer organoids
Patient, Mouse
Organoid culture and xenotransplantation
Show the role of nucleoporins in the progression of pancreatic cancer
[29]
Patient
Organoid culture and xenotransplantation
Maintain prostate cancer-specific mutations and are suitable for in vitro and in vivo drug testing
[30]
Pancreatic cancer organoids
Patient
Organoid culture
The treatment profiles are parallel to the patient’s outcomes and the chemo-sensitivity of patient can be assessed
[31]
Patient
Tumor organoids co-culture with stromal cells
Evaluate cancer-stroma cell interactions
[32]
Glioblastoma organoids
Patient
Organoid culture and xenotransplantation
Patient-derived organoids display histological features and recapitulate the hypoxic gradients in vivo
[33]

Organoids for studying carcinogenesis

Carcinogenesis occurs through a temporal accumulation of cancer-specific genetic alterations in normal cells [36, 37]. However, the detailed process of genetic mutation in carcinogenesis is elusive. The in-depth investigation of these details is critical to understand nature carcinogenesis. Recently, researchers used a combination of organoid culture and CRISPR-Cas9 gene-editing technologies to add to this understanding. Matano, M. et al. demonstrated that targeting induction of driver pathway mutations in APC, SMAD4, TP53, KRAS, and/or PIK3CA in healthy human intestinal organoids could model the genesis of adenoma. However, these driver pathway mutations alone were not sufficient to induce colonic tumorigenesis [38]. Likewise, using lentiviral and retroviral infections, another group constructed oncogene-transformed organoids derived from healthy colon, stomach, and pancreas organoids. Consistent with previous clinical studies [39, 40], combinatorial genetic mutations of KrasG12D, p53, Apc, and Smad4 in healthy colonic organoids gave rise to adenocarcinoma organoids, while normal gastric and pancreatic organoids can be transformed into the adenocarcinoma organoids after p53 loss, KrasG12D expression or both [41]. All these results demonstrated the utility of gene-edited organoid systems for the validation of the driver pathway mutations in tumorigenesis, thus providing a flexible in vitro cancer model for the study of tumorigenesis.
Cancer organoid technology has also been used to investigate the complex interactions between genetic alterations and niche factors during carcinogenesis. For instance, Fujii, M. and his colleagues established colorectal cancer (CRC) organoids from endoscopic biopsies or surgically resected neoplasms of colorectal patients (Fig. 2). By screening the different combinations of niche factors in culture media, the researchers identified the niches that supported or inhibited the growth of CRC organoids. For example, CRC organoids that carried mutations in APC, CTNNB1, and TCF7L2 could grow without Wnt activators (Wnt3A/R-spondin1). The synergistic mutation of the KRAS gene and the PI3K pathway led to EGF independence in the growth of CRC organoids [42]. In general, cancer organoids with different carcinogenic mutations show distinct dependence on niche factors, providing an effective tool to understand the interaction between the genetic alterations and tumor microenvironment during carcinogenesis.

Organoids for studying cancer metastasis

Cancer metastasis is a process of cancer cells spreading from the primary site to other organs, which contributes to the major cause of death in cancer patients. However, the underlying mechanisms driving metastasis are even more complicated than those resulting in carcinogenesis [43]. The ability to simplify the complexity and simultaneously retain the major pathophysiological features in the process is required to identify the critical factors in the acquisition of cancer metastatic potential. Cancer organoid has been increasingly used as a simplified and faithful in vitro model system to study cancer metastasis. Below, we describe the recent advances in applying cancer organoids to study cancer metastasis, including tumor invasion, metastasis, anoikis, and metastatic dormancy.

Tumor invasion and metastasis models

Predominantly, tumor invasion is regarded as a single-cell process. However, recent discoveries have implied that tumor invasion behaves as a cohesive multicellular unit, which is referred to as collective invasion [44]. Cancer organoids have been used as an optimizing model system to reveal the underlying mechanisms of collective invasion. For example, breast cancer organoids were used to investigate the role of leader cells that guide tumor cell invasion and intravasation. By using a live-cell microscopy assay, researchers found that BC organoids with the invasive phenotype extended multicellular strands of cancer cells into the extracellular matrix when the collective invasion was initiated by the specialized cancer cells that expressed K14 and p63 [45]. Similarly, by using cancer organoids, the researchers revealed that the cathepsin B led to the collective invasion in salivary adenoid cystic carcinoma [46], the inhibition of rho-associated protein kinase 2 (ROCK2) associated with initiating collective invasion in colorectal adenocarcinomas [47], and the loss of heat-shock factor 2 (HSF2) correlated with collective invasion in prostate cancer [48]. Moreover, extracellular matrix (ECM) in the tumor microenvironment, such as collagen I, could also modulate collective invasion in colon cancer organoids [49]. These studies exemplify that cancer organoid provides a trackable and reliable means to investigate tumor invasion.
Cancer organoids have also been used to identify the critical mutations that contribute to metastasis formation. Researchers have developed gene-edited CRC organoids carrying only the tumorigenesis driver pathway mutations APC, SMAD4, TP53, KRAS, and/or PIK3CA. These CRC organoids merely formed micrometastases when implanted into the spleen of mice. In contrast, the organoids with both chromosomal instability (CIN) and the tumorigenesis driver pathway mutations were capable of forming large metastatic tumors when transplanted into the mice [38]. These results suggested that CIN played an important role in modulating tumor cells to acquire metastatic behaviors in the CRC. In addition, cancer organoids could also aid in the discovery of critical targets for inhibiting tumor metastasis. In one study, Chandhoke, A.S. et al. discovered that the sumoylation of the PIAS3-Smurf2 pathway could inhibit the invasiveness of mammary tumor organoids [50]. Thus, the organoids provide an effective cancer model to study the mechanisms in promotion and inhibition of tumor invasion.

Tumor anoikis models

Anoikis refers to apoptosis of cancer cells induced by insufficient cancer-matrix interactions [51]. Anoikis resistance may allow the survival and proliferation of cancer cells and may contribute to tumor invasion and metastasis. Recently, intestinal organoids were used to study the effect of the RHOA mutation on the dissociation-induced apoptosis. Wang K. et al. genetically edited intestinal organoids with the RHOA mutations, which existed in approximately 14.3% of diffuse-type gastric cancer patients. Then, these organoids were dissociated into single cells. As expected, the RHOAmutation could lead to a higher efficiency of organoids recovery. More importantly, organoids carrying the RHOA mutation showed a better survival time and proliferative capacity, while the wild-type organoids were dead completely when without addition of the inhibitor of anoikis [25]. This result implied that the RHOA mutation could help cancer organoids escape from anoikis.

Tumor metastatic dormancy models

Metastatic dormancy is a leading cause of cancer recurrence [52]. However, the mechanisms of tumor metastatic dormancy and reactivation are still poorly understood. Cancer organoids have been demonstrated as a useful tool for tumor dormancy studies. Hattar, R. et al. demonstrated that tamoxifen could modulate cancer dormancy in a BC organoid model by reducing the fibronectin level in the extracellular matrix (ECM). BC organoids cultured on the tamoxifen-treated ECM displayed a smaller and smoother morphology compared to the BC organoids cultured on the tamoxifen-untreated ECM. Furthermore, they also found that tumor cell motility and invasion were suppressed by the tamoxifen treatment. These results were consistent with the previous clinical finding that increasing fibronectin level was associated with the lower survival rate in BC patients [53, 54]. Similarly, the antibodies to human collagen I can modulate the tumor dormancy in the BC organoid model by reducing the activity of collagen I in the ECM [55]. These results indicated that the ECM components in the tumor microenvironment could regulate tumor dormancy. In brief, cancer organoids can be used as a tool enabling effective screening of drug candidates that potentially prevent tumor recurrence.

Patient-derived cancer organoids for personalized anti-cancer therapy

The therapeutic responses of anticarcinogens, especially for targeted drugs, strongly depend on the genetic and epigenetic contexts of cancer patients [56]. Although anticarcinogen discovery accounts for the highest proportion in the drug development market, the approval success rate for anticarcinogens is the lowest across the varied therapeutic areas. Moreover, even FDA-approved anticarcinogens display heterogeneous therapeutic responses and prognosis across individual patients [57]. Thus, it is critical to developing personalized anti-cancer therapy in screening drugs, optimizing immunotherapy, and discovering prognosis-related hallmarks.

Cancer organoid models for drug screening

Recent studies have demonstrated that PDTOs can capture the cancer-specific genetic alterations, gene expression, and histopathology in individual patients, which makes them suitable for personalized drug screening [9, 10, 30]. Sachs N and his colleagues constructed BC organoids from surgically resected specimens from 155 cancer patients. By comparing the therapeutic responses of anticarcinogen in the BC organoids and the corresponding patients, they found that the sensitivity to tamoxifen in the BC organoids was closely correlated with that in the original patients with metastatic BC [10]. More recently, personalized hepatocellular carcinoma organoids derived from needle biopsies were used to optimize drug dose for eight patients. The PDTOs displayed a distinct dose-dependent response to the sorafenib treatment in the different patients, which implied the potential value of PDTO models to predict patient-specific drug sensitivities to the targeted drugs [11]. Additionally, cancer organoids also act as an effective tool for interrogating gene-drug association. For example, Saito Y and colleagues constructed cancer organoids from surgically resected specimens from the patients with biliary tract carcinoma. They found that the TP53 mutant organoids were not sensitive to nutlin-3a, while the wild-type organoids were highly sensitive to nutlin-3a [12]. Similarly, the CRC organoids with the TP53 mutation was found insensitive to nutlin-3a [9]. These results agreed well with the clinical outcome in cancer patients with TP53 mutation.

Cancer organoid models for immunotherapy

Though the adoptive cell transfer and immunomodulatory checkpoint blockade have shown clear clinical benefit in the long-lasting anti-tumor immune responses, a large proportion of patients is insensitive to immunotherapy due to the heterogeneity of T cell repertoire and human leukocyte antigen (HLA) resulted from patient-specific neo-antigens [5860]. Recent advances in tumor organoids offer a promising approach to generate tumor-reactive T cells. For example, Dijkstra KK et al. performed a coculture of tumor organoids with the patient’s peripheral blood lymphocytes. Under the stimulation of tumor organoids, tumor-reactive T cells with patient-specific immunogenic mutations were enriched and expanded, and then they could recognize and kill the autologous tumor organoids [13]. In addition, Finnberg NK et al. demonstrated that cancer organoids culturing at the air-liquid interface (ALI) could directly maintain the native tumor microenvironment for up to 44 days [14]. Furthermore, Neal JT and his colleagues indicated that the established tumor organoids using the ALI method could recapitulate the intrinsic tumor T-cell receptor spectrum and anti-PD-1/PD-L1-dependent human tumor-infiltrating lymphocyte (TIL) activation [15]. Meanwhile, cancer organoids have been used to study the effectiveness of combination immune therapy. Della Corte CM et al. investigated the efficacy of combining the anti-PD-L1 antibody with MEK inhibitor (MEK-I) or the anti-PD-1/PD-L1 therapy alone in non-small cell lung cancer (NSCLC) organoids. The research suggested that the combination therapies had a significantly higher drug response rate than the monotherapy owing to the increase of cell toxicity and immunoreactivity by the induction effect of MEK-I [16]. Notably, there are two clinical trials registered on the website of ClinicalTrials.​gov, involving cancer organoids for immunotherapy (ClinicalTrials.​gov number NCT03778814, NCT02718235).
Overall, these results indicate that cancer organoid culture is a promising system to generate tumor-reactive T cells, to predict immunotherapy sensitivity, and to examine combination immunotherapy.

Cancer organoid models for discovering prognosis-related hallmarks

Cancer organoids have been utilized as a platform to discover cancer prognosis-related hallmarks. Broutier L et al. discovered 30 potential tumor biomarkers by systematically comparing transcriptional differences between healthy organoid lines and primary liver cancer (PLC) organoid lines. Among these 30 tumor biomarkers, 19 genes were associated with PLC in clinical, and within 13 genes were related to poor prognosis in clinical. The researchers further analyzed the remaining 11 genes using The Cancer Genome Atlas (TCGA) and identified three genes associated with poor prognosis in hepatocellular carcinoma and one gene associated with poor prognosis in cholangiocarcinoma. Interestingly, STMN1 overexpression, which was previously thought to be associated with poor prognosis in only hepatocellular carcinoma, was proven here to be associated with low survival in cholangiocarcinoma in clinical [28]. These studies exemplify the potential value of PDTOs for tumor prognostic biomarker discovery.

Cancer organoid in clinical trials

The PDTOs provide a promising approach for personalized anti-cancer therapy in clinical. According to the studies registered on the website of the ClinicalTrials.​gov as of November 1, 2019, there were 30 projects (1 terminated and 29 ongoing projects) related to cancer organoids. Among these trials, 53% were the observational studies and 47% belonged to the interventional studies, including one trial in phase I and five trials in phase II. Meanwhile, we noted that 73% projects aimed at studying anti-cancer therapy, including tailoring treatments for patients, identifying effective drug combinations, examining T-cell immunotherapy, and evaluating radiotherapy sensitivity; 13% projects aimed to generate patient-derived cancer organoid models; and the remaining projects focused on the mechanistic investigation of cancer onset and progression. Notably, these clinical trials involved a wide range of cancer types, including lung, pancreatic, prostatic, breast, esophagogastric, hepatocellular, biliary tract, neuroendocrine, and colorectal cancers, astrocytoma, and sarcoma [61].
In one clinical trial in the UK, Vlachogiannis G et al. carried out a phase I/II clinical trials to evaluate the clinical value of PDTOs in personalized anti-cancer therapy. In this trial, 71 patients with CRC or gastroesophageal cancer were recruited. Cancer organoids derived from patients’ biopsies displayed the 100% sensitivity, 93% specificity, 88% positive predictive value, and 100% negative predictive value, compared to the drug responses in the corresponding patients [62]. This study provided an encouraging proof that PDTOs can be employed as a clinically relevant model for anti-cancer therapy. Overall, we expect that the PDTO will revolutionize the conventional paradigm of anti-cancer therapy from systemic to individual approaches.

Cancer organoid biobanks

Cancer organoid biobanks are repositories of PDTOs derived from diverse cancer grades and subtypes. In the repository, cancer organoids can be passaged and cryopreserved, just like immortal cell lines (Table 3) [30]. The establishment of cancer organoid lines can serve as a bioresource for fundamental and clinical cancer research due to several advantages of PDTOs, including cost-effectiveness, immediate accessibility, and proliferative capacity in vitro. Importantly, PDTOs display a much higher clinical relevance to their original patients than the immortal cancer cell lines. In addition, cancer organoid biobanks are more prominent for rare tumor subtypes that are difficult to generate stable lines. For instance, Sachs N and his colleagues established a BC organoid biobank, which had more than 100 common or rare cancer organoid lines derived from primary and metastatic BC [10]. Nevertheless, cancer organoid may lose their originally genetic and cellular heterogeneity during the long-term culture. By evaluating the genetic stability of a CRC organoid biobank containing 52 tumor subtypes, the researchers found that some organoid lines acquired new genetic mutations during the passage, especially in the microsatellite instability CRC organoids [42]. This result implied that the genetic stability of PDTO should be examined after passage to ensure the reliability of the research.
Table 3.
Cancer organoid biobanks from various patients
Cancer types
Cancer organoid types in biobank
Success rate of establishment
Source
Passages
Institution
Refs
Metastatic gastrointestinal cancers
~78 metastatic cancer organoids from 71 patients
71%
Biopsies
Support
The Institute of Cancer Research, UK
[62]
CRC
22 cancer organoids from 27 tumor samples
~90%
Surgically resected
Support
Royal Netherlands Academy of Arts and Sciences, Holland
[9]
CRC
55 cancer organoids from 43 patients
100%
Biopsies, surgically resected
Support
Keio University, Japan
[42]
Breast cancers
> 100 cancer organoids from 155 tumors
>80%
Surgically resected
> 20 passages
Royal Netherlands Academy of Arts and Sciences, Holland
[10]
Pancreatic ductal adenocarcinoma
114 cancer organoids from 101 patients
75%
Biopsies, surgically resected, rapid autopsies
≥ 5 passages
Cold Spring Harbor Laboratory, America
[31]

Future directions and opportunities

Although cancer organoid models resemble some critical features of human cancer development and progression, there are still plenty of spaces to improve the pathophysiological and clinical relevance of cancer organoids to tumors in situ further. Firstly, tumor organoids usually comprise only epithelial cell types and progenitor cells, but they do not contain nonparenchymal cell types such as fibroblasts and endothelial cells. Secondly, tumor organoid culture usually reconstitutes tumors in a single organ, but they cannot recapitulate cancer metastasis in the multiorgan. Additionally, conventional cancer organoid culture does not allow precise spatiotemporal control over biophysical and biochemical factors in the tumor microenvironment. The recent tendency in the synergistic application of organoid with organ-on-a-chip and 3D bioprinting enables to develop more sophisticated cancer models to study underlying mechanisms of tumor-stroma interactions, tumor multiorgan metastasis as well as cancer-microenvironment interactions.

Organoid-on-a-chip

A notable strategy is to generate organoid-on-a-chip by combining organoid with organ-on-a-chip. Organ-on-a-chip is a microfabricated device with integrated living cells, ECM, and microstructures to emulate partial aspects of organ or tissue in their cytoarchitecture, cellular population, and functions [63]. Organ-on-a-chip is featured with the capacities for precise microenvironment control, continuous flow perfusion culture, and high-throughput format. Notably, organ-on-a-chip allows integration of multiple mini-organs in the different microchambers interconnected via microfluidic channels to form human microphysiological system, which provides a unique platform to study cancer multiorgan metastasis via the circulatory system. Nevertheless, at present, most of the organ-on-a-chip systems utilize primary cell lines or stem-cell-derived cells as the cell source to construct organ mimics, and they cannot emulate histological and cellular complexity of native organs and tumors [64]. By incorporating multiple organoids into organ-on-a-chip, organoid-on-a-chip can inherit the benefits from both organoid and organ-on-a-chip and provide an effective tool to study tumor multiorgan metastases and cancer-microenvironment interactions.
A 3D vascularized tumor model was constructed on a chip to study the mechanism of multiorgan metastasis from breast cancer (Fig. 3a). In this chip, endothelial cells (ECs), mesenchymal stem cells (MSCs), and osteoblast-differentiated cells (OBs) were cultured in 3D ECM to mimic bone marrow and muscle microenvironments with the microvascular networks. Extravasation rates of these metastatic BC cells were investigated on these microenvironments with or without adenosine treatment. The result showed that metastatic BC cells displayed distinct extravasation rates in different microenvironments, and blockage of A3 adenosine receptor in BC cells resulted in increased extravasation rate in the muscle microenvironment [65]. In another study, a four-organ-on-a-chip system was developed to model metastasis of primary lung cancer to the downstream organs, including the brain, liver, and bone (Fig. 3b) [66]. The results implied the metastasis displayed spatiotemporal heterogeneity over the different organs and ultimately led to the damages on all these four organs. However, these tumor-on-chip models were built with cancer cell lines and could not represent the critical features of the native tumor. In turn, incorporation of metastatic tumor organoids with other normal organoids on a chip presents a better way for studying cancer multiorgan metastasis.

3D Bioprinting of organoid culture system

Another strategy is to develop sophisticated organoid culture systems for multiple tumor types by using 3D bioprinting. 3D bioprinting allows precise control over spatial heterogeneity in the tumor microenvironment by spatially deterministic deposition of predefined biobanks that may contain multiple cell types, biochemical factors, and ECM (Fig. 3c) [6770]. For example, Grolman, J.M., et al. constructed a BC microenvironment to study the role of paracrine signaling network in the regulation of breast cancer metastasis. Breast adenocarcinoma (MDA-MB-231) and macrophages (RAW 264.7) were printed in the hydrogels with distinct spatial distributions and variable geometrical shapes by extrusion-based 3D bioprinting technique (Fig. 3d) [71]. The results indicated that geometric cues regulated the paracrine loop between BC cells and macrophages, which further initiated BC tumor intravasation into the bloodstream. Another example of an in vitro cervical tumor model was established to demonstrate the epithelial-to-mesenchymal transition (EMT). The HeLa cells were mixed with hydrogel and further be fabricated into cell-biomaterial constructs with grid shape by employing an extrusion-based 3D bioprinter (Fig. 3e) [72]. The results implied the supplement of TGF-β-induced EMT and this promoting effect was inhibited by the treatment of disulfiram and EMT pathway inhibitor C19 in a dose-dependent manner, which suggested that the tumor metastasis in 3D culture was a comprehensive result involving the complex interacions between tumor cells, ECM, and 3D microenvironment.

Conclusion

Cancer organoids exhibit higher physiological and clinical relevance than cancer cell lines and animal cancer models. Meanwhile, the PDTOs can effectively retain the molecular, cellular, and histological phenotypes of original cancer patients and maximally maintain patient-specific tumor heterogeneity compared to the common cancer cell lines and PDTX models. Therefore, cancer organoid models provide a powerful tool for advancing our understanding of tumor evolution and have great clinical significance in personalized anti-cancer therapy. Furthermore, synergistic applications of organ-on-a-chip and 3D bioprinting to organoids present a new trend to achieve more comprehensive cancer model systems, enabling precise regulation of tumor microenvironment, incorporation of microvascular network, and integration with multiple organs. Overall, we expect that these emerging in vitro cancer model systems will ultimately revolutionize the conventional paradigm of cancer research and produce true benefits in clinical.

Acknowledgements

Dr. Chen gratefully acknowledge the financial support from the National Key Research and Development Program of China (No. 2018YFA0109000) and the Applied Foundational Research Program of Wuhan Municipal Science and Technology Bureau (No.2018010401011296). Dr. Demirci would like to acknowledge NIH (U54CA19907502, R01 DE024971) and Center for Cancer Nanotechnology Eccellence for Translational Diagnostics. The authors would like to thank Longjun Gu and Haowen Qiao for their helpful comments, and Ao Xiao for his help in schematic illustration.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Society AC. Global Cancer Facts & Figures 3rd Edition. Am Cancer Soc. 2015;800:1–64. Society AC. Global Cancer Facts & Figures 3rd Edition. Am Cancer Soc. 2015;800:1–64.
2.
Zurück zum Zitat McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017;168(4):613–28.PubMedCrossRef McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017;168(4):613–28.PubMedCrossRef
4.
Zurück zum Zitat Torsvik A, Stieber D, Enger PØ, Golebiewska A, Molven A, Svendsen A, et al. U-251 revisited: genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells. Cancer medicine. 2014;3(4):812–24.PubMedPubMedCentralCrossRef Torsvik A, Stieber D, Enger PØ, Golebiewska A, Molven A, Svendsen A, et al. U-251 revisited: genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells. Cancer medicine. 2014;3(4):812–24.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Li S, Shen D, Shao J, Crowder R, Liu W, Prat A, et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 2013;4(6):1116–30.PubMedCrossRef Li S, Shen D, Shao J, Crowder R, Liu W, Prat A, et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 2013;4(6):1116–30.PubMedCrossRef
7.
8.
Zurück zum Zitat Pergolini I, Morales-Oyarvide V, Mino-Kenudson M, et al. Tumor engraftment in patient-derived xenografts of pancreatic ductal adenocarcinoma is associated with adverse clinicopathological features and poor survival. PLoS One. 2017;12(8):e0182855.PubMedPubMedCentralCrossRef Pergolini I, Morales-Oyarvide V, Mino-Kenudson M, et al. Tumor engraftment in patient-derived xenografts of pancreatic ductal adenocarcinoma is associated with adverse clinicopathological features and poor survival. PLoS One. 2017;12(8):e0182855.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161(4):933–45.PubMedPubMedCentralCrossRef van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161(4):933–45.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Sachs N, de Ligt J, Kopper O, et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell. 2018;172(1-2):373–386.e10.PubMedCrossRef Sachs N, de Ligt J, Kopper O, et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell. 2018;172(1-2):373–386.e10.PubMedCrossRef
11.
Zurück zum Zitat Nuciforo S, Fofana I, Matter MS, Blumer T, Calabrese D, Boldanova T, et al. Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep. 2018;24(5):1363–76.PubMedPubMedCentralCrossRef Nuciforo S, Fofana I, Matter MS, Blumer T, Calabrese D, Boldanova T, et al. Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep. 2018;24(5):1363–76.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Saito Y, Muramatsu T, Kanai Y, et al. Establishment of Patient-Derived Organoids and Drug Screening for Biliary Tract Carcinoma. Cell Rep. 2019;27(4):1265–1276.e4.PubMedCrossRef Saito Y, Muramatsu T, Kanai Y, et al. Establishment of Patient-Derived Organoids and Drug Screening for Biliary Tract Carcinoma. Cell Rep. 2019;27(4):1265–1276.e4.PubMedCrossRef
13.
Zurück zum Zitat Dijkstra KK, Cattaneo CM, Weeber F, et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell. 2018;174(6):1586–1598.e12.PubMedPubMedCentralCrossRef Dijkstra KK, Cattaneo CM, Weeber F, et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell. 2018;174(6):1586–1598.e12.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Finnberg NK, Gokare P, Lev A, et al. Application of 3D tumoroid systems to define immune and cytotoxic therapeutic responses based on tumoroid and tissue slice culture molecular signatures. Oncotarget. 2017;8(40):66747–57.PubMedPubMedCentralCrossRef Finnberg NK, Gokare P, Lev A, et al. Application of 3D tumoroid systems to define immune and cytotoxic therapeutic responses based on tumoroid and tissue slice culture molecular signatures. Oncotarget. 2017;8(40):66747–57.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Della Corte CM, Barra G, Ciaramella V, et al. Antitumor activity of dual blockade of PD-L1 and MEK in NSCLC patients derived three-dimensional spheroid cultures. J Exp Clin Cancer Res. 2019;38(1):253.PubMedPubMedCentralCrossRef Della Corte CM, Barra G, Ciaramella V, et al. Antitumor activity of dual blockade of PD-L1 and MEK in NSCLC patients derived three-dimensional spheroid cultures. J Exp Clin Cancer Res. 2019;38(1):253.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Sharifnia T, Hong AL, Painter CA, Boehm JS. Emerging opportunities for target discovery in rare cancers. Cell chemical biology. 2017;24(9):1075–91.PubMedPubMedCentralCrossRef Sharifnia T, Hong AL, Painter CA, Boehm JS. Emerging opportunities for target discovery in rare cancers. Cell chemical biology. 2017;24(9):1075–91.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer discovery. 2014;4(9):998–1013.PubMedPubMedCentralCrossRef Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer discovery. 2014;4(9):998–1013.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol. 2016;18(3):246.PubMedCrossRef Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol. 2016;18(3):246.PubMedCrossRef
23.
Zurück zum Zitat Walsh AJ, Cook RS, Sanders ME, Aurisicchio L, Ciliberto G, Arteaga CL, et al. Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. Cancer Res. 2014;74(18):5184–94.PubMedPubMedCentralCrossRef Walsh AJ, Cook RS, Sanders ME, Aurisicchio L, Ciliberto G, Arteaga CL, et al. Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. Cancer Res. 2014;74(18):5184–94.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Harper KL, Sosa MS, Entenberg D, Hosseini H, Cheung JF, Nobre R, et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature. 2016;540(7634):588.PubMedPubMedCentralCrossRef Harper KL, Sosa MS, Entenberg D, Hosseini H, Cheung JF, Nobre R, et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature. 2016;540(7634):588.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Wang K, Yuen ST, Xu J, Lee SP, Yan HH, Shi ST, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46(6):573.PubMedCrossRef Wang K, Yuen ST, Xu J, Lee SP, Yan HH, Shi ST, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46(6):573.PubMedCrossRef
26.
Zurück zum Zitat Nadauld LD, Garcia S, Natsoulis G, Bell JM, Miotke L, Hopmans ES, et al. Metastatic tumor evolution and organoid modeling implicate TGFBR2 as a cancer driver in diffuse gastric cancer. Genome Biol. 2014;15(8):428.PubMedPubMedCentralCrossRef Nadauld LD, Garcia S, Natsoulis G, Bell JM, Miotke L, Hopmans ES, et al. Metastatic tumor evolution and organoid modeling implicate TGFBR2 as a cancer driver in diffuse gastric cancer. Genome Biol. 2014;15(8):428.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Drost J, Van Boxtel R, Blokzijl F, Mizutani T, Sasaki N, Sasselli V, et al. Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science. 2017;358(6360):234–8.PubMedPubMedCentralCrossRef Drost J, Van Boxtel R, Blokzijl F, Mizutani T, Sasaki N, Sasselli V, et al. Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science. 2017;358(6360):234–8.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarró LM, Bradshaw CR, et al. Human primary liver cancer–derived organoid cultures for disease modeling and drug screening. Nat Med. 2017;23(12):1424.PubMedPubMedCentralCrossRef Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarró LM, Bradshaw CR, et al. Human primary liver cancer–derived organoid cultures for disease modeling and drug screening. Nat Med. 2017;23(12):1424.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Boj SF, Hwang C-I, Baker LA, Chio IIC, Engle DD, Corbo V, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160(1-2):324–38.PubMedCrossRef Boj SF, Hwang C-I, Baker LA, Chio IIC, Engle DD, Corbo V, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160(1-2):324–38.PubMedCrossRef
30.
Zurück zum Zitat Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell. 2014;159(1):176–87.PubMedPubMedCentralCrossRef Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell. 2014;159(1):176–87.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Tiriac H, Belleau P, Engle DD, Plenker D, Deschênes A, Somerville TD, et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer discovery. 2018;8(9):1112–29.PubMedPubMedCentralCrossRef Tiriac H, Belleau P, Engle DD, Plenker D, Deschênes A, Somerville TD, et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer discovery. 2018;8(9):1112–29.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Tsai S, McOlash L, Palen K, Johnson B, Duris C, Yang Q, et al. Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer. 2018;18(1):335.PubMedPubMedCentralCrossRef Tsai S, McOlash L, Palen K, Johnson B, Duris C, Yang Q, et al. Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer. 2018;18(1):335.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Hubert CG, Rivera M, Spangler LC, Wu Q, Mack SC, Prager BC, et al. A three dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. Cancer Res. 2016;76(8):2465–77.PubMedPubMedCentralCrossRef Hubert CG, Rivera M, Spangler LC, Wu Q, Mack SC, Prager BC, et al. A three dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. Cancer Res. 2016;76(8):2465–77.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Fumagalli A, Drost J, Suijkerbuijk SJ, Van Boxtel R, De Ligt J, Offerhaus GJ, et al. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc Natl Acad Sci. 2017;114(12):E2357–E64.PubMedCrossRefPubMedCentral Fumagalli A, Drost J, Suijkerbuijk SJ, Van Boxtel R, De Ligt J, Offerhaus GJ, et al. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc Natl Acad Sci. 2017;114(12):E2357–E64.PubMedCrossRefPubMedCentral
35.
36.
Zurück zum Zitat Thoma CR, Zimmermann M, Agarkova I, Kelm JM, Krek W. 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv Drug Deliv Rev. 2014;69:29–41.PubMedCrossRef Thoma CR, Zimmermann M, Agarkova I, Kelm JM, Krek W. 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv Drug Deliv Rev. 2014;69:29–41.PubMedCrossRef
37.
Zurück zum Zitat Onuma K, Ochiai M, Orihashi K, Takahashi M, Imai T, Nakagama H, et al. Genetic reconstitution of tumorigenesis in primary intestinal cells. Proc Natl Acad Sci. 2013;110(27):11127–32.PubMedCrossRefPubMedCentral Onuma K, Ochiai M, Orihashi K, Takahashi M, Imai T, Nakagama H, et al. Genetic reconstitution of tumorigenesis in primary intestinal cells. Proc Natl Acad Sci. 2013;110(27):11127–32.PubMedCrossRefPubMedCentral
38.
Zurück zum Zitat Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, et al. Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids. Nat Med. 2015;21(3):256.PubMedCrossRef Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, et al. Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids. Nat Med. 2015;21(3):256.PubMedCrossRef
39.
Zurück zum Zitat Nakayama M, Sakai E, Echizen K, Yamada Y, Oshima H, Han T, et al. Intestinal cancer progression by mutant p53 through the acquisition of invasiveness associated with complex glandular formation. Oncogene. 2017;36(42):5885.PubMedPubMedCentralCrossRef Nakayama M, Sakai E, Echizen K, Yamada Y, Oshima H, Han T, et al. Intestinal cancer progression by mutant p53 through the acquisition of invasiveness associated with complex glandular formation. Oncogene. 2017;36(42):5885.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Schell MJ, Yang M, Teer JK, Lo FY, Madan A, Coppola D, et al. A multigene mutation classification of 468 colorectal cancers reveals a prognostic role for APC. Nat Commun. 2016;7:11743.PubMedPubMedCentralCrossRef Schell MJ, Yang M, Teer JK, Lo FY, Madan A, Coppola D, et al. A multigene mutation classification of 468 colorectal cancers reveals a prognostic role for APC. Nat Commun. 2016;7:11743.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Li X, Nadauld L, Ootani A, Corney DC, Pai RK, Gevaert O, et al. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat Med. 2014;20(7):769.PubMedPubMedCentralCrossRef Li X, Nadauld L, Ootani A, Corney DC, Pai RK, Gevaert O, et al. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat Med. 2014;20(7):769.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell. 2016;18(6):827–38.PubMedCrossRef Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell. 2016;18(6):827–38.PubMedCrossRef
43.
44.
Zurück zum Zitat Friedl P, Locker J, Sahai E, Segall JE. Classifying collective cancer cell invasion. Nat Cell Biol. 2012;14(8):777.PubMedCrossRef Friedl P, Locker J, Sahai E, Segall JE. Classifying collective cancer cell invasion. Nat Cell Biol. 2012;14(8):777.PubMedCrossRef
45.
Zurück zum Zitat Cheung KJ, Gabrielson E, Werb Z, Ewald AJ. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell. 2013;155(7):1639–51.PubMedPubMedCentralCrossRef Cheung KJ, Gabrielson E, Werb Z, Ewald AJ. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell. 2013;155(7):1639–51.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Wu JS, Li ZF, Wang HF, et al. Cathepsin B defines leader cells during the collective invasion of salivary adenoid cystic carcinoma. Int J Oncol. 2019;54(4):1233–44.PubMedPubMedCentral Wu JS, Li ZF, Wang HF, et al. Cathepsin B defines leader cells during the collective invasion of salivary adenoid cystic carcinoma. Int J Oncol. 2019;54(4):1233–44.PubMedPubMedCentral
47.
Zurück zum Zitat Libanje F, Raingeaud J, Luan R, et al. ROCK2 inhibition triggers the collective invasion of colorectal adenocarcinomas. EMBO J. 2019;38(14):e99299.PubMedCrossRefPubMedCentral Libanje F, Raingeaud J, Luan R, et al. ROCK2 inhibition triggers the collective invasion of colorectal adenocarcinomas. EMBO J. 2019;38(14):e99299.PubMedCrossRefPubMedCentral
48.
Zurück zum Zitat Björk JK, Åkerfelt M, Joutsen J, et al. Heat-shock factor 2 is a suppressor of prostate cancer invasion. Oncogene. 2016;35(14):1770–84.PubMedCrossRef Björk JK, Åkerfelt M, Joutsen J, et al. Heat-shock factor 2 is a suppressor of prostate cancer invasion. Oncogene. 2016;35(14):1770–84.PubMedCrossRef
49.
Zurück zum Zitat Vellinga TT, den Uil S, Rinkes IH, et al. Collagen-rich stroma in aggressive colon tumors induces mesenchymal gene expression and tumor cell invasion. Oncogene. 2016;35(40):5263–71.PubMedCrossRef Vellinga TT, den Uil S, Rinkes IH, et al. Collagen-rich stroma in aggressive colon tumors induces mesenchymal gene expression and tumor cell invasion. Oncogene. 2016;35(40):5263–71.PubMedCrossRef
50.
Zurück zum Zitat Chandhoke AS, Chanda A, Karve K, Deng L, Bonni S. The PIAS3-Smurf2 sumoylation pathway suppresses breast cancer organoid invasiveness. Oncotarget. 2017;8(13):21001. Chandhoke AS, Chanda A, Karve K, Deng L, Bonni S. The PIAS3-Smurf2 sumoylation pathway suppresses breast cancer organoid invasiveness. Oncotarget. 2017;8(13):21001.
51.
Zurück zum Zitat Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta. 2013;1833(12):3481–98.PubMedCrossRef Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta. 2013;1833(12):3481–98.PubMedCrossRef
53.
Zurück zum Zitat Hattar R, Maller O, McDaniel S, Hansen KC, Hedman KJ, Lyons TR, et al. Tamoxifen induces pleiotrophic changes in mammary stroma resulting in extracellular matrix that suppresses transformed phenotypes. Breast Cancer Res. 2009;11(1):R5.PubMedPubMedCentralCrossRef Hattar R, Maller O, McDaniel S, Hansen KC, Hedman KJ, Lyons TR, et al. Tamoxifen induces pleiotrophic changes in mammary stroma resulting in extracellular matrix that suppresses transformed phenotypes. Breast Cancer Res. 2009;11(1):R5.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Sampayo RG, Toscani AM, Rubashkin MG, Thi K, Masullo LA, Violi IL, et al. Fibronectin rescues estrogen receptor α from lysosomal degradation in breast cancer cells. J Cell Biol. 2018;217(8):2777–98.PubMedPubMedCentralCrossRef Sampayo RG, Toscani AM, Rubashkin MG, Thi K, Masullo LA, Violi IL, et al. Fibronectin rescues estrogen receptor α from lysosomal degradation in breast cancer cells. J Cell Biol. 2018;217(8):2777–98.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Gao H, Chakraborty G, Zhang Z, Akalay I, Gadiya M, Gao Y, et al. Multi-organ site metastatic reactivation mediated by non-canonical discoidin domain receptor 1 signaling. Cell. 2016;166(1):47–62.PubMedPubMedCentralCrossRef Gao H, Chakraborty G, Zhang Z, Akalay I, Gadiya M, Gao Y, et al. Multi-organ site metastatic reactivation mediated by non-canonical discoidin domain receptor 1 signaling. Cell. 2016;166(1):47–62.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Wilding JL, Bodmer WF. Cancer cell lines for drug discovery and development. Cancer Res. 2014;74(9):2377–84.PubMedCrossRef Wilding JL, Bodmer WF. Cancer cell lines for drug discovery and development. Cancer Res. 2014;74(9):2377–84.PubMedCrossRef
57.
Zurück zum Zitat Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32(1):40.PubMedCrossRef Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32(1):40.PubMedCrossRef
59.
Zurück zum Zitat Sahin U. Studying tumor-reactive t cells: a personalized organoid model. Cell Stem Cell. 2018;23(3):318–9.PubMedCrossRef Sahin U. Studying tumor-reactive t cells: a personalized organoid model. Cell Stem Cell. 2018;23(3):318–9.PubMedCrossRef
60.
Zurück zum Zitat Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74.PubMedCrossRef Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74.PubMedCrossRef
62.
Zurück zum Zitat Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359(6378):920–6.PubMedPubMedCentralCrossRef Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359(6378):920–6.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Takebe T, Zhang B, Radisic M. Synergistic engineering: organoids meet organs-on-a-chip. Cell Stem Cell. 2017;21(3):297–300.PubMedCrossRef Takebe T, Zhang B, Radisic M. Synergistic engineering: organoids meet organs-on-a-chip. Cell Stem Cell. 2017;21(3):297–300.PubMedCrossRef
65.
Zurück zum Zitat Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, et al. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc Natl Acad Sci. 2015;112(1):214–9.PubMedCrossRef Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, et al. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc Natl Acad Sci. 2015;112(1):214–9.PubMedCrossRef
66.
Zurück zum Zitat Xu Z, Li E, Guo Z, Yu R, Hao H, Xu Y, et al. Design and construction of a multi-organ microfluidic chip mimicking the in vivo microenvironment of lung cancer metastasis. ACS Appl Mater Interfaces. 2016;8(39):25840–7.PubMedCrossRef Xu Z, Li E, Guo Z, Yu R, Hao H, Xu Y, et al. Design and construction of a multi-organ microfluidic chip mimicking the in vivo microenvironment of lung cancer metastasis. ACS Appl Mater Interfaces. 2016;8(39):25840–7.PubMedCrossRef
67.
Zurück zum Zitat Peng W, Unutmaz D, Ozbolat IT. Bioprinting towards physiologically relevant tissue models for pharmaceutics. Trends Biotechnol. 2016;34(9):722–32.PubMedCrossRef Peng W, Unutmaz D, Ozbolat IT. Bioprinting towards physiologically relevant tissue models for pharmaceutics. Trends Biotechnol. 2016;34(9):722–32.PubMedCrossRef
68.
Zurück zum Zitat Lee H, Cho D-W. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab Chip. 2016;16(14):2618–25.PubMedCrossRef Lee H, Cho D-W. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab Chip. 2016;16(14):2618–25.PubMedCrossRef
69.
Zurück zum Zitat Knowlton S, Yenilmez B, Tasoglu S. Towards single-step biofabrication of organs on a chip via 3D printing. Trends Biotechnol. 2016;34(9):685–8.PubMedCrossRef Knowlton S, Yenilmez B, Tasoglu S. Towards single-step biofabrication of organs on a chip via 3D printing. Trends Biotechnol. 2016;34(9):685–8.PubMedCrossRef
70.
Zurück zum Zitat Ho CMB, Ng SH, Li KHH, Yoon Y-J. 3D printed microfluidics for biological applications. Lab Chip. 2015;15(18):3627–37.PubMedCrossRef Ho CMB, Ng SH, Li KHH, Yoon Y-J. 3D printed microfluidics for biological applications. Lab Chip. 2015;15(18):3627–37.PubMedCrossRef
71.
72.
Zurück zum Zitat Pang Y, Mao SS, Yao R, et al. TGF-β induced epithelial-mesenchymal transition in an advanced cervical tumor model by 3D printing. Biofabrication. 2018;10(4):044102.PubMedCrossRef Pang Y, Mao SS, Yao R, et al. TGF-β induced epithelial-mesenchymal transition in an advanced cervical tumor model by 3D printing. Biofabrication. 2018;10(4):044102.PubMedCrossRef
Metadaten
Titel
Emerging organoid models: leaping forward in cancer research
verfasst von
Han Fan
Utkan Demirci
Pu Chen
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2019
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-019-0832-4

Weitere Artikel der Ausgabe 1/2019

Journal of Hematology & Oncology 1/2019 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.