Skip to main content
Erschienen in: Lasers in Medical Science 1/2018

06.10.2017 | Original Article

Enhancement of photo-bactericidal effect of tetrasulfonated hydroxyaluminum phthalocyanine on Pseudomonas aeruginosa

verfasst von: Irena Maliszewska, Wojciech Kałas, Edyta Wysokińska, Włodzimierz Tylus, Natalia Pietrzyk, Katarzyna Popko, Krystyna Palewska

Erschienen in: Lasers in Medical Science | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

At the present time, photodynamic inactivation (PDI) is receiving considerable interest for its potential as an antimicrobial therapy. The results of our study indicate that enhancement of the phototoxic effect on Pseudomonas aeruginosa can be achieved by combination of tetrasulfonated hydroxyaluminum phthalocyanine (AlPcS4) and bimetallic gold/silver nanoparticles (Au/Ag-NPs) synthesized by the cell-free filtrate of Aureobasidium pullulans. The bimetallic nanoparticles were characterized by a number of techniques including UV-vis, XPS, TEM, and SEM-EDS to be 14 ± 3 nm spherical particles coated with proteins. The effect of diode lasers with the peak-power wavelength ʎ = 650 nm (output power of 10 and 40 mW; radiation intensity of 26 and 105 mW/cm2) in combination with the AlPcS4 and the bimetallic nanoparticles mixture on the viability of P. aeruginosa rods was shown. Particularly high efficiency of killing bacterial cells was obtained for the light intensity of 105 mW/cm2, after 20, 30, and 40 min of irradiation corresponding to 126, 189, and 252 J/cm2 energy fluences. For AlPcS4+Au/Ag-NPs treatment, the viable count reduction were equal to 99.90, 99.96, and 99.975%, respectively. These results were significantly better than those accomplished for irradiated separated assays of AlPcS4 and Au/Ag-NPs.
Literatur
3.
Zurück zum Zitat World Health Organization (2014) Antimicrobial resistance: global report on surveillance World Health Organization (2014) Antimicrobial resistance: global report on surveillance
4.
Zurück zum Zitat Dai T, Huang YY, Hamblin MR (2009) Photodynamic therapy for localized infections—state of the art. Photodiagn Photodyn Ther 6:170–188CrossRef Dai T, Huang YY, Hamblin MR (2009) Photodynamic therapy for localized infections—state of the art. Photodiagn Photodyn Ther 6:170–188CrossRef
5.
8.
Zurück zum Zitat Maisch T, Szeimies RM, Jori G, Abels C (2004) Antibacterial photodynamic therapy in dermatology. Photochem Photobiol Sci 3:907–917CrossRefPubMed Maisch T, Szeimies RM, Jori G, Abels C (2004) Antibacterial photodynamic therapy in dermatology. Photochem Photobiol Sci 3:907–917CrossRefPubMed
9.
Zurück zum Zitat Maisch T, Hackbarth S, Regensburger J, Felgenträger A, Bäumler W, Landthaler M, Röder B (2011) Photodynamic inactivation of multi-resistant bacteria (PIB)—a new approach to treat superficial infections in the 21st century. J Dtsch Dermatol Ges 9:360–366PubMed Maisch T, Hackbarth S, Regensburger J, Felgenträger A, Bäumler W, Landthaler M, Röder B (2011) Photodynamic inactivation of multi-resistant bacteria (PIB)—a new approach to treat superficial infections in the 21st century. J Dtsch Dermatol Ges 9:360–366PubMed
10.
Zurück zum Zitat Smijs TG, Pavel S (2011) The susceptibility of dermatophytes to photodynamic treatment with special focus on Trichophyton rubrum. Photochem Photobiol 87:2–13CrossRefPubMed Smijs TG, Pavel S (2011) The susceptibility of dermatophytes to photodynamic treatment with special focus on Trichophyton rubrum. Photochem Photobiol 87:2–13CrossRefPubMed
11.
Zurück zum Zitat Lewańska M, Olszewska D, Godela A, Myga-Nowak M, Kuberska M (2016) Selected aspects of combat drug-resistance bacteria. Chem Environ Biotechnol 19:79–85 Lewańska M, Olszewska D, Godela A, Myga-Nowak M, Kuberska M (2016) Selected aspects of combat drug-resistance bacteria. Chem Environ Biotechnol 19:79–85
12.
Zurück zum Zitat Aveline B (2001) Primary processes in photosensitization mechanisms. Compre Ser Photosci 2:17–34CrossRef Aveline B (2001) Primary processes in photosensitization mechanisms. Compre Ser Photosci 2:17–34CrossRef
13.
14.
Zurück zum Zitat Baltazar LM, Ray A, Santos DA, Cisalpino PS, Friedman AJ, Nosanchuk JD (2015) Antimicrobial photodynamic therapy: an effective alternative approach to control fungal infections. Front Microbiol 6:202CrossRefPubMedPubMedCentral Baltazar LM, Ray A, Santos DA, Cisalpino PS, Friedman AJ, Nosanchuk JD (2015) Antimicrobial photodynamic therapy: an effective alternative approach to control fungal infections. Front Microbiol 6:202CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Spagnul C, Turner LC, Boyle RW (2015) Immobilized photosensitizers for antimicrobial applications. J Photochem Photobiol B: Biol 150:11–30CrossRef Spagnul C, Turner LC, Boyle RW (2015) Immobilized photosensitizers for antimicrobial applications. J Photochem Photobiol B: Biol 150:11–30CrossRef
16.
Zurück zum Zitat Malik Z, Ladan H, Nitzan Y (1992) Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions. J Photochem Photobiol B 14:262–266CrossRefPubMed Malik Z, Ladan H, Nitzan Y (1992) Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions. J Photochem Photobiol B 14:262–266CrossRefPubMed
17.
Zurück zum Zitat Segalla A, Borsarelli CD, Braslavsky SE, Spikes JD, Roncucci G, Dei D, Chiti G, Jori G, Reddi E (2002) Photophysical, photochemical and antibacterial photosensitizing properties of a novel octacationic Zn(II)-phthalocyanine. Photochem Photobiol Sci 1:641–648CrossRefPubMed Segalla A, Borsarelli CD, Braslavsky SE, Spikes JD, Roncucci G, Dei D, Chiti G, Jori G, Reddi E (2002) Photophysical, photochemical and antibacterial photosensitizing properties of a novel octacationic Zn(II)-phthalocyanine. Photochem Photobiol Sci 1:641–648CrossRefPubMed
18.
Zurück zum Zitat Nikaido H (1994) Prevention of drug access to bacterial targets: permeability barrier and active efflux. Science 264:362–368CrossRef Nikaido H (1994) Prevention of drug access to bacterial targets: permeability barrier and active efflux. Science 264:362–368CrossRef
19.
Zurück zum Zitat Yoshimura F, Nikaido H (1985) Diffusion of beta-lactam antibiotics through the porin channels of Escherichia coli K-12. Antimicrob Agents Chemother 27:84–92CrossRefPubMedPubMedCentral Yoshimura F, Nikaido H (1985) Diffusion of beta-lactam antibiotics through the porin channels of Escherichia coli K-12. Antimicrob Agents Chemother 27:84–92CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Bertoloni G, Rossi F, Valduga G, Jori G, van Lier J (1990) Photosensitizing activity of water- and lipid-soluble phthalocyanines on Escherichia coli. FEMS Microbiol Lett 59:149–155CrossRefPubMed Bertoloni G, Rossi F, Valduga G, Jori G, van Lier J (1990) Photosensitizing activity of water- and lipid-soluble phthalocyanines on Escherichia coli. FEMS Microbiol Lett 59:149–155CrossRefPubMed
21.
Zurück zum Zitat Storm DR, Rosenthal KS, Swanson PE (1977) Polymyxin and related peptide antibiotics. Annu Rev Biochem 46:723–763CrossRefPubMed Storm DR, Rosenthal KS, Swanson PE (1977) Polymyxin and related peptide antibiotics. Annu Rev Biochem 46:723–763CrossRefPubMed
22.
Zurück zum Zitat Soukos NS, Ximenez-Fyvie LA, Hamblin MR, Socransky SS, Hasan T (1998) Targeted antimicrobial photochemotherapy. Antimicrob Agents Chemother 42:2595–2601PubMedPubMedCentral Soukos NS, Ximenez-Fyvie LA, Hamblin MR, Socransky SS, Hasan T (1998) Targeted antimicrobial photochemotherapy. Antimicrob Agents Chemother 42:2595–2601PubMedPubMedCentral
23.
Zurück zum Zitat Grafe S, Gebhardt P, Albrecht V (2004) Siderophore conjugates of photoactive dyes for photodynamic therapy. Patent US20040186087 Grafe S, Gebhardt P, Albrecht V (2004) Siderophore conjugates of photoactive dyes for photodynamic therapy. Patent US20040186087
24.
Zurück zum Zitat Narband N, Mubarak M, Ready D, Parkin IP, Nair SP, Green MA et al (2008) Quantum dots as enhancers of the efficacy of bacterial lethal photosensitization. Nanotechnology 19:445102CrossRefPubMed Narband N, Mubarak M, Ready D, Parkin IP, Nair SP, Green MA et al (2008) Quantum dots as enhancers of the efficacy of bacterial lethal photosensitization. Nanotechnology 19:445102CrossRefPubMed
25.
Zurück zum Zitat Paszko E, Ehrhardt C, Senge MO, Kelleher DP, Reynolds JV (2011) Nanodrug applications in photodynamic therapy. Photodiagn Photodyn Ther 8:14–29CrossRef Paszko E, Ehrhardt C, Senge MO, Kelleher DP, Reynolds JV (2011) Nanodrug applications in photodynamic therapy. Photodiagn Photodyn Ther 8:14–29CrossRef
26.
Zurück zum Zitat Masilela N, Antunes E, Nyokong T (2013) Axial coordination of zinc and silicon phthalocyanines to silver and gold nanoparticles: an investigation of their photophysicochemical and antimicrobial behavior. J Porphyrins Phthalocyanines 17:417–430CrossRef Masilela N, Antunes E, Nyokong T (2013) Axial coordination of zinc and silicon phthalocyanines to silver and gold nanoparticles: an investigation of their photophysicochemical and antimicrobial behavior. J Porphyrins Phthalocyanines 17:417–430CrossRef
27.
Zurück zum Zitat Jijie R, Dumych T, Chengnan L, Bouckaert J, Turcheniuk K, Hage CH et al (2016) Particle-based photodynamic therapy based on indocyanine green modified plasmonic nanostructures for inactivation of a Crohn’s disease-associated Escherichia coli strain. J Mater Chem B 4:2598–2605CrossRef Jijie R, Dumych T, Chengnan L, Bouckaert J, Turcheniuk K, Hage CH et al (2016) Particle-based photodynamic therapy based on indocyanine green modified plasmonic nanostructures for inactivation of a Crohn’s disease-associated Escherichia coli strain. J Mater Chem B 4:2598–2605CrossRef
28.
Zurück zum Zitat Kendall CA, Morton CA (2003) Photodynamic therapy for the treatment of skin disease. Technol Cancer Res Treat 2:283–288CrossRefPubMed Kendall CA, Morton CA (2003) Photodynamic therapy for the treatment of skin disease. Technol Cancer Res Treat 2:283–288CrossRefPubMed
29.
Zurück zum Zitat Moan J, Peng Q, Sorensen R, Iani V, Nesland JM (1998) The biophysical foundations of photodynamic therapy. Endoscopy 30:387–391CrossRefPubMed Moan J, Peng Q, Sorensen R, Iani V, Nesland JM (1998) The biophysical foundations of photodynamic therapy. Endoscopy 30:387–391CrossRefPubMed
30.
Zurück zum Zitat Wharton T, Gali H, Hamblin MR (2009) Photosensitizers for targeted photodynamic therapy. Patent US20090076115 Wharton T, Gali H, Hamblin MR (2009) Photosensitizers for targeted photodynamic therapy. Patent US20090076115
31.
Zurück zum Zitat Palewska K, Sujka M, Urasińska-Wójcik B, Sworakowski J, Lipiński J, Nešpůrek S, Rakušan J, Karásková M (2008) Light-induced effects in sulfonated aluminum phthalocyanines—potential photosensitizers in the photodynamic therapy. Spectroscopic and kinetic study. J Photochem Photobiol A Chem 197:1–12CrossRef Palewska K, Sujka M, Urasińska-Wójcik B, Sworakowski J, Lipiński J, Nešpůrek S, Rakušan J, Karásková M (2008) Light-induced effects in sulfonated aluminum phthalocyanines—potential photosensitizers in the photodynamic therapy. Spectroscopic and kinetic study. J Photochem Photobiol A Chem 197:1–12CrossRef
32.
Zurück zum Zitat Crist BV (1999) Handbooks of monochromatic XPS spectra; Vol. 1 and 2, B. XPS International, Inc Crist BV (1999) Handbooks of monochromatic XPS spectra; Vol. 1 and 2, B. XPS International, Inc
33.
Zurück zum Zitat Green SK, Schroth MN, Cho JJ, Kominos SK, Vitanza-Jack VB (1974) Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa. Appl Microbiol 28:987–991PubMedPubMedCentral Green SK, Schroth MN, Cho JJ, Kominos SK, Vitanza-Jack VB (1974) Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa. Appl Microbiol 28:987–991PubMedPubMedCentral
34.
Zurück zum Zitat Glazebrook JS, Campbell RS, Hutchinson GW, Stallman ND (1978) Rodent zoonoses in North Queensland: the occurrence and distribution of zoonotic infections in North Queensland rodents. Aust J Exp Biol Med Sci 56:147–156CrossRefPubMed Glazebrook JS, Campbell RS, Hutchinson GW, Stallman ND (1978) Rodent zoonoses in North Queensland: the occurrence and distribution of zoonotic infections in North Queensland rodents. Aust J Exp Biol Med Sci 56:147–156CrossRefPubMed
35.
Zurück zum Zitat Williams PA, Worsey MJ (1976) Ubiquity of plasmids in coding for toluene and xylene metabolism in soil bacteria: evidence for the existence of new TOL plasmids. J Bacteriol 125:818–828PubMedPubMedCentral Williams PA, Worsey MJ (1976) Ubiquity of plasmids in coding for toluene and xylene metabolism in soil bacteria: evidence for the existence of new TOL plasmids. J Bacteriol 125:818–828PubMedPubMedCentral
36.
Zurück zum Zitat Lyczak JB, Cannon CL, Pier GB (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2:1051–1060CrossRefPubMed Lyczak JB, Cannon CL, Pier GB (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2:1051–1060CrossRefPubMed
37.
Zurück zum Zitat Wróblewska M (2006) Novel therapies of multidrug-resistant Pseudomonas aeruginosa and Acinetobacter spp.infections: the state of the art. Arch Immunol Ther Exp 54:113–120CrossRef Wróblewska M (2006) Novel therapies of multidrug-resistant Pseudomonas aeruginosa and Acinetobacter spp.infections: the state of the art. Arch Immunol Ther Exp 54:113–120CrossRef
38.
Zurück zum Zitat Kim YJ, Jun YH, Kim YR, Park KG, Park YJ, Kang JY, Kim SI (2014) Risk factors for mortality in patients with Pseudomonas aeruginosa bacteremia; retrospective study of impact of combination antimicrobial therapy. BMC Infect Dis 14:161CrossRefPubMedPubMedCentral Kim YJ, Jun YH, Kim YR, Park KG, Park YJ, Kang JY, Kim SI (2014) Risk factors for mortality in patients with Pseudomonas aeruginosa bacteremia; retrospective study of impact of combination antimicrobial therapy. BMC Infect Dis 14:161CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Tomás JG, Tubby S, Parkin IP, Narband N, Dekker L, Nair SP, Wilson M, Street C (2007) Lethal photosensitisation of Staphylococcus aureus using a toluidine blue O–tiopronin–gold nanoparticle conjugate. J Mater Chem 17:3739–3746CrossRef Tomás JG, Tubby S, Parkin IP, Narband N, Dekker L, Nair SP, Wilson M, Street C (2007) Lethal photosensitisation of Staphylococcus aureus using a toluidine blue O–tiopronin–gold nanoparticle conjugate. J Mater Chem 17:3739–3746CrossRef
40.
Zurück zum Zitat Perni S, Piccirillo C, Pratten J, Prokopovich P, Chrzanowski W, Parkin IP, Wilson M (2009) The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials 30:89–93CrossRefPubMed Perni S, Piccirillo C, Pratten J, Prokopovich P, Chrzanowski W, Parkin IP, Wilson M (2009) The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials 30:89–93CrossRefPubMed
41.
Zurück zum Zitat Maliszewska I, Leśniewska A, Olesiak-Bańska J, Matczyszyn K, Samoć M (2014) Biogenic gold nanoparticles enhance methylene blue-induced phototoxic effect on Staphylococcus epidermidis. J Nanopart Res 16:2457CrossRef Maliszewska I, Leśniewska A, Olesiak-Bańska J, Matczyszyn K, Samoć M (2014) Biogenic gold nanoparticles enhance methylene blue-induced phototoxic effect on Staphylococcus epidermidis. J Nanopart Res 16:2457CrossRef
42.
Zurück zum Zitat Spikers JD (1986) Phtalocyanines as photosensitizers in biological systems and for photodynamic therapy of tumors. Photochem Photobiol 43:691–699CrossRef Spikers JD (1986) Phtalocyanines as photosensitizers in biological systems and for photodynamic therapy of tumors. Photochem Photobiol 43:691–699CrossRef
43.
Zurück zum Zitat Glassberg E, Lewandowski L, Lask G, Uitto J (1990) Laser-induced photodynamic therapy with aluminum phthalocyanine tetrasulfonate as the photosensitizer: differential phototoxicity in normal and malignant human cells in vitro. J Invest Dermtol 94:604–610CrossRef Glassberg E, Lewandowski L, Lask G, Uitto J (1990) Laser-induced photodynamic therapy with aluminum phthalocyanine tetrasulfonate as the photosensitizer: differential phototoxicity in normal and malignant human cells in vitro. J Invest Dermtol 94:604–610CrossRef
44.
Zurück zum Zitat Iqbal CJ, Chen Z, Huang M (2015) Phtalocyanine-biomolecule conjugated photosensitizers for targeted photodynamic therapy and imaging. Curr Drug Metabol 16:816–832CrossRef Iqbal CJ, Chen Z, Huang M (2015) Phtalocyanine-biomolecule conjugated photosensitizers for targeted photodynamic therapy and imaging. Curr Drug Metabol 16:816–832CrossRef
45.
Zurück zum Zitat Liz-Marzan LM (2004) Nanometals formation and color. Mater Today 7:26–31CrossRef Liz-Marzan LM (2004) Nanometals formation and color. Mater Today 7:26–31CrossRef
46.
Zurück zum Zitat Mahl D, Diendorf J, Ristig S, Greulich C, Li Z-A, Farle M, Koöller M, Epple M (2012) Silver, gold, and alloyed silver–gold nanoparticles: characterization and comparative cell-biologic action. J Nanopart Res 14:1153CrossRef Mahl D, Diendorf J, Ristig S, Greulich C, Li Z-A, Farle M, Koöller M, Epple M (2012) Silver, gold, and alloyed silver–gold nanoparticles: characterization and comparative cell-biologic action. J Nanopart Res 14:1153CrossRef
47.
Zurück zum Zitat Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502CrossRefPubMed Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502CrossRefPubMed
48.
Zurück zum Zitat Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small 1:517–520CrossRefPubMed Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small 1:517–520CrossRefPubMed
49.
Zurück zum Zitat Kittler S, Greulich C, Diendorf J, Köller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–4554CrossRef Kittler S, Greulich C, Diendorf J, Köller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–4554CrossRef
50.
Zurück zum Zitat Li T, Albee B, Alemayehu M, Diaz R, Ingham L, Kamal S, Rodriguez M, Bishnoi SW (2010) Comparative toxicity study of Ag, Au, and Ag–Au bimetallic nanoparticles on Daphnia magna. Anal Bioanal Chem 398:689–700CrossRefPubMed Li T, Albee B, Alemayehu M, Diaz R, Ingham L, Kamal S, Rodriguez M, Bishnoi SW (2010) Comparative toxicity study of Ag, Au, and Ag–Au bimetallic nanoparticles on Daphnia magna. Anal Bioanal Chem 398:689–700CrossRefPubMed
51.
Zurück zum Zitat Greulich C, Braun D, Peetsch A, Diendorf J, Siebers B, Epple M, Koller M (2012) The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Adv 2:6981–6987CrossRef Greulich C, Braun D, Peetsch A, Diendorf J, Siebers B, Epple M, Koller M (2012) The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Adv 2:6981–6987CrossRef
52.
Zurück zum Zitat Kuruppuarachchi M, Savoie H, Lowry A, Alonso C, Boyle RW (2011) Polyacrylamide nanoparticles as a delivery system in photodynamic therapy. Mol Pharm 8:920–931CrossRefPubMed Kuruppuarachchi M, Savoie H, Lowry A, Alonso C, Boyle RW (2011) Polyacrylamide nanoparticles as a delivery system in photodynamic therapy. Mol Pharm 8:920–931CrossRefPubMed
53.
Zurück zum Zitat Li L, Zhao J-F, Won N, Jin H, Kim S, Chen J-Y (2012) Quantum dot-aluminum phthalocyanine conjugates perform photodynamic reactions to kill cancer cells via fluorescence resonance energy transfer. Nanoscale Res Lett 7:386CrossRefPubMedPubMedCentral Li L, Zhao J-F, Won N, Jin H, Kim S, Chen J-Y (2012) Quantum dot-aluminum phthalocyanine conjugates perform photodynamic reactions to kill cancer cells via fluorescence resonance energy transfer. Nanoscale Res Lett 7:386CrossRefPubMedPubMedCentral
Metadaten
Titel
Enhancement of photo-bactericidal effect of tetrasulfonated hydroxyaluminum phthalocyanine on Pseudomonas aeruginosa
verfasst von
Irena Maliszewska
Wojciech Kałas
Edyta Wysokińska
Włodzimierz Tylus
Natalia Pietrzyk
Katarzyna Popko
Krystyna Palewska
Publikationsdatum
06.10.2017
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 1/2018
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-017-2337-0

Weitere Artikel der Ausgabe 1/2018

Lasers in Medical Science 1/2018 Zur Ausgabe