Skip to main content
Erschienen in: Annals of Hematology 10/2007

Open Access 01.10.2007 | Original Article

Erroneously elevated immature reticulocyte counts in leukemic patients determined using a Sysmex XE-2100 hematology analyzer

verfasst von: Jungwon Huh, Heewon Moon, Whasoon Chung

Erschienen in: Annals of Hematology | Ausgabe 10/2007

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

The immature reticulocyte fraction (IRF) in peripheral blood, as determined by automated reticulocyte analysis, is calculated using the sum of medium and highly fluorescent reticulocyte numbers and provides information about erythropoietic activity in bone marrow. The purpose of this study was to investigate erroneously elevated IRF in leukemic patients, as determined using a Sysmex XE-2100 hematology analyzer (Sysmex, Kobe, Japan). Normal reticulocyte scattergram patterns show regions corresponding to reticulocytes located between matured RBCs and an upper particle (UPP) region, which show a continuum of non-separated fraction. The UPP represents erythroblasts and some immature reticulocytes. As a control group, peripheral blood was taken from patients with benign hematologic diseases, and their reticulocyte scattergrams all showed a normal pattern; UPP values were all less than 100. However, the reticulocyte scattergrams of 5 of 11 leukemia patients showed abnormal patterns and displayed a gap between RBC and reticulocyte regions. Three patients showed a flag with a message such as “RET Abn Scattergram”. IRF results were elevated in these five patients, and their UPP values were above 100. For the remaining six leukemia patients with a normal reticulocyte scattergram pattern, immature reticulocytes were not markedly increased, and UPP values were less than 100. The findings of the present study demonstrate that IRF results may be erroneously elevated in leukemia patients and indicate that hematologists should examine reticulocyte scattergrams and UPP values carefully.

Introduction

Reticulocyte counts provide useful information about bone marrow erythropoietic activity, the rate of reticulocyte delivery from bone marrow into peripheral blood, and the rate of reticulocyte maturation [1].
Automated reticulocyte enumeration based on flow cytometry is rapid and objective and requires less technical labor than manual slide-based techniques. Furthermore, automated reticulocyte enumeration also provides accurate information on the age distribution of the reticulocyte population. The reticulocyte population is divided into fractions, which show low, medium, or high RNA fluorescence intensities. Young and immature reticulocytes are highly fluorescent due to their high RNA contents, whereas old and maturing reticulocytes show low levels of fluorescence.
The immature reticulocyte fraction (IRF) represents the sum of medium and highly fluorescent reticulocytes. Moreover, an elevation in IRF may be the first sign of hematologic recovery in the majority of patients receiving chemotherapy or of engraftment in those that have undergone bone marrow transplantation [24].
As the fluorescence intensities of reticulocytes form a continuum, accurate analysis of fluorescence scattergrams is critical for reticulocyte enumeration. However, the fluorescence of reticulocytes may be affected by interferences from cellular elements, cellular inclusions, RBC autofluorescence, and others [1].
Interestingly, we discovered a small number of leukemia cases with markedly elevated IRF values. Accordingly, we undertook this study to investigate erroneously elevated IRF in leukemia patients using a Sysmex XE-2100 hematology analyzer (Sysmex, Kobe, Japan).

Materials and method

This study group was composed of 11 patients diagnosed as having leukemia between January 2005 and August 2006. The control group included 39 peripheral blood specimens from patients with benign hematologic diseases. Their nucleated RBC counts per 100 WBC were from 0 to 15, total reticulocytes from 0.5 to 9.6%, and immature reticulocytes from 4.2 to 50.6%.
For reticulocyte analysis of peripheral blood, we used a Sysmex XE-2100 hematology analyzer (Sysmex, Kobe, Japan) using a flow cytometry method utilizing a semiconductor laser. The normal reference range of our laboratory was as follows: total reticulocyte count from 0.6 to 2.4% and IRF from 1.5 to 11.3%.
In reticulocyte scattergrams, the x-axis represents the intensity of lateral fluorescent light and the y-axis the intensity of the forward scattered light (Fig. 1a). The differentiation of reticulocytes in mature red blood cell is based on RNA levels because RNA is lost during differentiation into mature RBCs. Therefore, reticulocytes are identified and enumerated within a gated red blood cell population based on fluorescence intensity.
A normal reticulocyte scattergram pattern is composed of a region of reticulocytes located between regions of mature RBCs and an upper particle (UPP) region. Moreover, these fractions form a continuous non-separated distribution (Fig. 1a). Thus, UPP values indicate primarily erythroblast numbers and include some immature reticulocytes (Fig. 1b).
The dye used for reticulocyte analysis stains leukocytes, but leukocytes are not usually shown in reticulocyte scattergrams because of their high fluorescence. In extended reticulocyte scattergrams, the leukocyte region is just to the right of the UPP region, and the WBC region indicates the number of leukocytes (Fig. 1a, b).

Results

The reticulocyte scattergrams obtained from the control samples all showed a normal pattern with UPP values from 0 to 21. However, the reticulocyte scattergrams of 5 of the 11 leukemia patients (Table 1, case nos. 1–5) showed an abnormal pattern, i.e., a clear gap was present between the RBC and reticulocyte regions. Moreover, the reticulocyte region was separated from the RBC region (Fig. 1c-e), whereas normal scattergrams showed a reticulocyte region located just to the right of the RBC region without a gap (Fig. 1a). Three patients (Table 1, case nos. 1, 2, 4) showed the flag with the message of “RET Abn Scattergram”. Immature reticulocyte levels were all elevated in these five patients (Table 1, case nos. 1–5), and their UPP values were above 100. In particular, three of these five patients showed a spurious IRF (case nos. 1, 2, 5) increases. In one patient (case no. 2-1), reticulocyte counts determined by the automated and manual methylene blue stain methods differed (7.4 vs 2%, respectively). IRF and UPP values were reduced with decrease of WBC counts in three patients (case nos. 2–4) who received therapeutic leukapheresis.
Table 1
Data of reticulocyte analysis in leukemic patients
Case no.
Age/sex
Dx
TR (%)
IRF (%)
Reticulocyte scattergram
Flaga
UPP value
NRBC (/100 WBC)
WBC-area value
WBC (×109/l)
Leukemic cells (%)
1
9/M
AML
0.9
82.3
Abnormal
+
810
0
1,739
268
95
2-1
59/M
AML
7.4
78.0
Abnormal
+
713
2
295
174
100
2-2b
  
0.4
35.6
Abnormal
46
0
54
12
nc
3-1
33/F
AML
1.1
38.4
Abnormal
174
1
969
106
30
3-2b
  
0.6
0.6
Normal
0
0
16
1
0
4-1
38/M
AML
2.8
42.4
Abnormal
+
310
1
357
75
90
4-2b
  
0.8
38.4
Abnormal
111
0
146
25
nc
5
29/F
ALL
1.7
98.3
Abnormal
nc
nc
0
nc
30
85
6
72/F
AML
0.3
13.7
Normal
15
0
71
7
80
7
30/M
AML
0.7
10.0
Normal
76
0
454
49
95
8
64/M
AML
0.8
8.1
Normal
1
1
29
2
44
9
63/M
AML
1.3
22.5
Normal
83
1
146
22
88
10
31/F
AML
1.1
18.6
Normal
46
0
113
15
60
11
64/M
CLL
0.5
12.6
Normal
3
0
5,321
440
100
Dx Diagnosis, TR total reticulocyte, IRF immature reticulocyte fraction, UPP upper particle region, nc not checked
aFlag displaying the message of “RET Abn Scattergram”
bData after therapeutic leukapheresis
Among the six leukemia patients with normal reticulocyte scattergram patterns (cases no. 6-11), immature reticulocytes were not markedly increased, and UPP values were less than 100. One patient with CLL (case no. 11) showed a markedly elevated total WBC count and a low UPP.

Discussion

We found that IRF values were markedly elevated in some leukemia patients with abnormal reticulocyte scattergrams. These elevated IRF values could suggest increased erythropoietic activity of bone marrow. However, we consider that increased IRF in leukemic patients is not a true result because increased hematopoiesis in leukemic patients is unlikely [5].
Fluorescence scattergrams of reticulocytes may be affected by interferences such as cellular elements, cellular inclusions, RBC autofluorescence, and others [1]. One author reported that reticulocyte counting by flow cytometry might be influenced by white cells, which may be erroneously identified as reticulocytes, and demonstrated a positive correlation between highly fluorescent reticulocytes and leukocytosis [6].
However, our results demonstrate that patients with leukocytosis do not always show an erroneously increased IRF value, although IRF values tend to be elevated in patients with leukocytosis. For two patients with leukocytosis (case nos. 7, 11), scattergram patterns were normal, and IRF values were not elevated. Interestingly, we found that the patients with an erroneously increased IRF had elevated UPP values and an abnormal scattergram. UPP values indicate erythroblast numbers and include some immature reticulocytes. Moreover, cases with an erroneously increased IRF had few normoblasts (zero to two normoblasts per 100 WBCs). All patients with an abnormal scattergram had a UPP value of more than 100, while the UPP values of controls, which all had normal scattergram patterns, were less than 100. WBC values depended on individual WBC counts. The flag message was less sensitive than abnormal reticulocyte scattergram in terms of the detection of a falsely increased IRF, because only three cases showed the flag (case nos. 1, 2, 4).
The dye used for reticulocyte analysis stains leukocytes and reticulocytes. Generally, leukocytes do not overlap with reticulocyte regions because of their high fluorescence. We hypothesized that insufficiently stained leukocytes of leukemic patients would have lower fluorescence than normal specimens and would be displayed in the UPP region and reticulocyte fraction. These low fluorescing leukocytes displayed in reticulocyte regions may be misidentified as immature reticulocytes, and thus, falsely elevated immature reticulocyte numbers.
In conclusion, leukocytes of leukemic patients that are insufficiently stained may have lower fluorescence, and thus, may be misidentified as immature reticulocytes and cause erroneously elevated IRF values in leukemia patients. The present study shows that in leukemia patients, when a reticulocyte scattergram pattern is abnormal and the UPP value is high, the IRF value may be erroneously high.
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://​creativecommons.​org/​licenses/​by-nc/​2.​0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Riley RS, Ben-Ezra JM, Tidwell A, Romagnoli G (2002) Reticulocyte analysis by flow cytometry and other techniques. Hematol Oncol Clin North Am 16:373–420PubMedCrossRef Riley RS, Ben-Ezra JM, Tidwell A, Romagnoli G (2002) Reticulocyte analysis by flow cytometry and other techniques. Hematol Oncol Clin North Am 16:373–420PubMedCrossRef
2.
Zurück zum Zitat Chang CC, Kass L (1997) Clinical significance of immature reticulocyte fraction determined by automated reticulocyte counting. Am J Clin Pathol 108:69–73PubMed Chang CC, Kass L (1997) Clinical significance of immature reticulocyte fraction determined by automated reticulocyte counting. Am J Clin Pathol 108:69–73PubMed
3.
Zurück zum Zitat Noronha JF, De Souza CA, Vigorito AC, Aranha FJ, Zulli R, Miranda EC, Grotto HZ (2003) Immature reticulocytes as an early predictor of engraftment in autologous andallogeneic bone marrow transplantation. Clin Lab Haematol 25:47–54PubMedCrossRef Noronha JF, De Souza CA, Vigorito AC, Aranha FJ, Zulli R, Miranda EC, Grotto HZ (2003) Immature reticulocytes as an early predictor of engraftment in autologous andallogeneic bone marrow transplantation. Clin Lab Haematol 25:47–54PubMedCrossRef
4.
Zurück zum Zitat Das R, Rawal A, Garewal G, Marwaha RK, Vohra H (2006) Automated reticulocyte response is a good predictor of bone-marrow recovery in pediatric malignancies. Pediatr Hematol Oncol 23:299–305PubMedCrossRef Das R, Rawal A, Garewal G, Marwaha RK, Vohra H (2006) Automated reticulocyte response is a good predictor of bone-marrow recovery in pediatric malignancies. Pediatr Hematol Oncol 23:299–305PubMedCrossRef
5.
Zurück zum Zitat Choi JW, Pai SH (2003) Erythropoietic activities in acute leukemia and in malignant lymphoma with or without bone marrow involvement. Ann Clin Lab Sci 33:407–410PubMed Choi JW, Pai SH (2003) Erythropoietic activities in acute leukemia and in malignant lymphoma with or without bone marrow involvement. Ann Clin Lab Sci 33:407–410PubMed
6.
Zurück zum Zitat Villamor N, Kirsch A, Huhn D, Vives-Corrons JL, Serke S (1996) Interference of blood leucocytes in the measurements of immature red cells(reticulocytes) by two different semi-automated flow-cytometry technologies. Clin Lab Haematol 18:89–94PubMedCrossRef Villamor N, Kirsch A, Huhn D, Vives-Corrons JL, Serke S (1996) Interference of blood leucocytes in the measurements of immature red cells(reticulocytes) by two different semi-automated flow-cytometry technologies. Clin Lab Haematol 18:89–94PubMedCrossRef
Metadaten
Titel
Erroneously elevated immature reticulocyte counts in leukemic patients determined using a Sysmex XE-2100 hematology analyzer
verfasst von
Jungwon Huh
Heewon Moon
Whasoon Chung
Publikationsdatum
01.10.2007
Verlag
Springer-Verlag
Erschienen in
Annals of Hematology / Ausgabe 10/2007
Print ISSN: 0939-5555
Elektronische ISSN: 1432-0584
DOI
https://doi.org/10.1007/s00277-007-0314-6

Weitere Artikel der Ausgabe 10/2007

Annals of Hematology 10/2007 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

ADT zur Radiatio nach Prostatektomie: Wenn, dann wohl länger

24.05.2024 Prostatakarzinom Nachrichten

Welchen Nutzen es trägt, wenn die Strahlentherapie nach radikaler Prostatektomie um eine Androgendeprivation ergänzt wird, hat die RADICALS-HD-Studie untersucht. Nun liegen die Ergebnisse vor. Sie sprechen für länger dauernden Hormonentzug.

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.