Skip to main content
Erschienen in: Cardiovascular Drugs and Therapy 5-6/2010

01.12.2010

Erythropoietin (EPO) Affords More Potent Cardioprotection by Activation of Distinct Signaling to Mitochondrial Kinases Compared with Carbamylated EPO

verfasst von: Takahiro Sato, Masaya Tanno, Takayuki Miki, Toshiyuki Yano, Tatsuya Sato, Kazuaki Shimamoto, Tetsuji Miura

Erschienen in: Cardiovascular Drugs and Therapy | Ausgabe 5-6/2010

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Erythropoietin (EPO) and its non-erythrogenic derivative, carbarmylated EPO (CEPO), have been reported to activate different receptors (homomeric EPO receptor vs. heteromeric receptor consisting of EPO receptor monomer and common β-subunit). The aim of this study was to examine differences between EPO and CEPO in efficacy of cardioprotection against infarction and in activation of pro-survival kinases.

Methods

In isolated rat hearts, infarction was induced by global ischemia followed by reperfusion. Infarct size was determined 2 h after reperfusion, and ventricular tissues for immunoblotting were sampled at 5 min after reperfusion.

Results

Pretreatment with EPO (10 units/ml) before ischemia reduced infarct size (% of risk area; %IS/AR) from 47.0 ± 2.1% of the control after 20-min ischemia to 24.7 ± 4.3% and from 62.0 ± 3.0% after 25-min ischemia to 45.5 ± 4.1%. Desialylated EPO (asialoEPO, 100 ng/ml) mimicked the protection by EPO. However, CEPO (100 ng/ml) failed to reduce infarct size after 20-min ischemia (%IS/AR = 47.5 ± 5.9%) and that after 25-min ischemia (%IS/AR = 56.1 ± 4.2%). The infarct size-limiting effect of CEPO was not shown either by increasing CEPO dose to 500 ng/ml or by shortening ischemia to 15 min. Both EPO and CEPO enhanced phosphorylation of cytosolic GSK-3β upon reperfusion. In contrast, phosphorylation of GSK-3β, Akt, and PKC-ε in mitochondria upon reperfusion was significantly enhanced by EPO but not by CEPO.

Conclusion

EPO affords more potent protection against infarction than does CEPO by distinct activation of signaling leading to phosphorylation of pro-survival protein kinases in mitochondria upon reperfusion.
Literatur
1.
Zurück zum Zitat Joyeux-Faure M. Cellular protection by erythropoietin: new therapeutic implications? J Pharmacol Exp Ther. 2007;323:759–62.PubMedCrossRef Joyeux-Faure M. Cellular protection by erythropoietin: new therapeutic implications? J Pharmacol Exp Ther. 2007;323:759–62.PubMedCrossRef
2.
Zurück zum Zitat Ruifrok WP, de Boer RA, Westenbrink BD, van Veldhuisen DJ, van Gilst WH. Erythropoietin in cardiac disease: new features of an old drug. Eur J Pharmacol. 2008;585:270–7.PubMedCrossRef Ruifrok WP, de Boer RA, Westenbrink BD, van Veldhuisen DJ, van Gilst WH. Erythropoietin in cardiac disease: new features of an old drug. Eur J Pharmacol. 2008;585:270–7.PubMedCrossRef
3.
Zurück zum Zitat Jubinsky PT, Krijanovski OI, Nathan DG, Tavernier J, Sieff CA. The β chain of the interleukin-3 receptor functionally associates with the erythropoietin receptor. Blood. 1997;90:1867–73.PubMed Jubinsky PT, Krijanovski OI, Nathan DG, Tavernier J, Sieff CA. The β chain of the interleukin-3 receptor functionally associates with the erythropoietin receptor. Blood. 1997;90:1867–73.PubMed
4.
Zurück zum Zitat Chin H, Wakao H, Miyajima A, Kamiyama R, Miyasaka N, Miura O. Erythropoietin induces tyrosine phosphorylation of the interleukin-3 receptor β subunit (βIL3) and recruitment of Stat5 to possible Stat5-dokcing sites in βIL3. Blood. 1997;89:4327–36.PubMed Chin H, Wakao H, Miyajima A, Kamiyama R, Miyasaka N, Miura O. Erythropoietin induces tyrosine phosphorylation of the interleukin-3 receptor β subunit (βIL3) and recruitment of Stat5 to possible Stat5-dokcing sites in βIL3. Blood. 1997;89:4327–36.PubMed
5.
Zurück zum Zitat D’Andrea RJ, Gonda TJ. A model for assembly and activation of the GM-CSF, IL-3 and IL-5 receptors: insights from activated mutants of the common beta subunit. Exp Hematol. 2000;28:231–43.PubMedCrossRef D’Andrea RJ, Gonda TJ. A model for assembly and activation of the GM-CSF, IL-3 and IL-5 receptors: insights from activated mutants of the common beta subunit. Exp Hematol. 2000;28:231–43.PubMedCrossRef
6.
Zurück zum Zitat Fiordaliso F, Chimenti S, Staszewsky L, Bai A, Carlo E, Cuccovillo I, et al. A nonerythropoietic derivative of erythropoietin protects the myocardium from ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2005;102:2046–51.PubMedCrossRef Fiordaliso F, Chimenti S, Staszewsky L, Bai A, Carlo E, Cuccovillo I, et al. A nonerythropoietic derivative of erythropoietin protects the myocardium from ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2005;102:2046–51.PubMedCrossRef
7.
Zurück zum Zitat Leist M, Ghezzi P, Grasso G, Bianchi R, Villa P, Fratelli M, et al. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science. 2004;305:239–42.PubMedCrossRef Leist M, Ghezzi P, Grasso G, Bianchi R, Villa P, Fratelli M, et al. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science. 2004;305:239–42.PubMedCrossRef
8.
Zurück zum Zitat Sinclair AM, Coxon A, McCaffery I, Kaufman S, Paweletz K, Liu L, et al. Functional erythropoietin receptor is undetectable in endothelial, cardiac, neuronal, and renal cells. Blood. 2010;115:4264–72.PubMedCrossRef Sinclair AM, Coxon A, McCaffery I, Kaufman S, Paweletz K, Liu L, et al. Functional erythropoietin receptor is undetectable in endothelial, cardiac, neuronal, and renal cells. Blood. 2010;115:4264–72.PubMedCrossRef
9.
Zurück zum Zitat Um M, Gross AW, Lodish HF. A “classical” homodimeric erythropoietin receptor is essential for the antiapoptotic effects of erythropoietin on differentiated neuroblastoma SH-SY5Y and pheochromocytome PC-12 cells. Cell Signal. 2007;19:634–45.PubMedCrossRef Um M, Gross AW, Lodish HF. A “classical” homodimeric erythropoietin receptor is essential for the antiapoptotic effects of erythropoietin on differentiated neuroblastoma SH-SY5Y and pheochromocytome PC-12 cells. Cell Signal. 2007;19:634–45.PubMedCrossRef
10.
Zurück zum Zitat Kanellakis P, Pomilio K, Agrotis A, Gao X, Du XJ, Bobik A. Darbepoietin-mediated cardioprotection after myocardial infarction involves multiple mechanisms independent of erythropoietin receptor-common beta-chain heteroreceptor. Br J Pharmacol. 2010;160:2085–96.PubMed Kanellakis P, Pomilio K, Agrotis A, Gao X, Du XJ, Bobik A. Darbepoietin-mediated cardioprotection after myocardial infarction involves multiple mechanisms independent of erythropoietin receptor-common beta-chain heteroreceptor. Br J Pharmacol. 2010;160:2085–96.PubMed
11.
Zurück zum Zitat Hausenloy DJ, Yellon DM. Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart Fail Rev. 2007;12:217–34.PubMedCrossRef Hausenloy DJ, Yellon DM. Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart Fail Rev. 2007;12:217–34.PubMedCrossRef
12.
Zurück zum Zitat Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, et al. Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest. 2004;113:1535–49.PubMed Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, et al. Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest. 2004;113:1535–49.PubMed
13.
Zurück zum Zitat Nishihara M, Miura T, Miki T, Tanno M, Yano T, Naitoh K, et al. Modulation of the mitochondrial permeability transition pore complex in GSK-3beta-mediated myocardial protection. J Mol Cell Cardiol. 2007;43:564–70.PubMedCrossRef Nishihara M, Miura T, Miki T, Tanno M, Yano T, Naitoh K, et al. Modulation of the mitochondrial permeability transition pore complex in GSK-3beta-mediated myocardial protection. J Mol Cell Cardiol. 2007;43:564–70.PubMedCrossRef
14.
Zurück zum Zitat Ohori K, Miura T, Tanno M, Miki T, Sato T, Ishikawa S, et al. Ser9 phosphorylation of mitochondrial GSK-3beta is a primary mechanism of cardiomyocyte protection by erythropoietin against oxidant-induced apoptosis. Am J Physiol Heart Circ Physiol. 2008;295:H2079–86.PubMedCrossRef Ohori K, Miura T, Tanno M, Miki T, Sato T, Ishikawa S, et al. Ser9 phosphorylation of mitochondrial GSK-3beta is a primary mechanism of cardiomyocyte protection by erythropoietin against oxidant-induced apoptosis. Am J Physiol Heart Circ Physiol. 2008;295:H2079–86.PubMedCrossRef
15.
Zurück zum Zitat Nishihara M, Miura T, Miki T, Sakamoto J, Tanno M, Kobayashi H, et al. Erythropoietin affords additional cardioprotection to preconditioned hearts by enhanced phosphorylation of glycogen synthase kinase-3 beta. Am J Physiol Heart Circ Physiol. 2006;291:H748–55.PubMedCrossRef Nishihara M, Miura T, Miki T, Sakamoto J, Tanno M, Kobayashi H, et al. Erythropoietin affords additional cardioprotection to preconditioned hearts by enhanced phosphorylation of glycogen synthase kinase-3 beta. Am J Physiol Heart Circ Physiol. 2006;291:H748–55.PubMedCrossRef
16.
Zurück zum Zitat Kobayashi H, Miura T, Ishida H, Miki T, Tanno M, Yano T, et al. Limitation of infarct size by erythropoietin is associated with translocation of Akt to the mitochondria after reperfusion. Clin Exp Pharmacol Physiol. 2008;35:812–9.PubMedCrossRef Kobayashi H, Miura T, Ishida H, Miki T, Tanno M, Yano T, et al. Limitation of infarct size by erythropoietin is associated with translocation of Akt to the mitochondria after reperfusion. Clin Exp Pharmacol Physiol. 2008;35:812–9.PubMedCrossRef
17.
Zurück zum Zitat Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S, Sollott SJ. Role of glycogen synthase kinase-3beta in cardioprotection. Circ Res. 2009;104:1240–52.PubMedCrossRef Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S, Sollott SJ. Role of glycogen synthase kinase-3beta in cardioprotection. Circ Res. 2009;104:1240–52.PubMedCrossRef
18.
Zurück zum Zitat Miura T, Miki T. GSK-3beta, a therapeutic target for cardiomyocyte protection. Circ J. 2009;73:1184–92.PubMedCrossRef Miura T, Miki T. GSK-3beta, a therapeutic target for cardiomyocyte protection. Circ J. 2009;73:1184–92.PubMedCrossRef
19.
Zurück zum Zitat Miki T, Miura T, Tanno M, Nishihara M, Naitoh K, Sato T, et al. Impairment of cardioprotective PI3K-Akt signaling by post-infarct ventricular remodeling is compensated by an ERK-mediated pathway. Basic Res Cardiol. 2007;102:163–70.PubMedCrossRef Miki T, Miura T, Tanno M, Nishihara M, Naitoh K, Sato T, et al. Impairment of cardioprotective PI3K-Akt signaling by post-infarct ventricular remodeling is compensated by an ERK-mediated pathway. Basic Res Cardiol. 2007;102:163–70.PubMedCrossRef
20.
Zurück zum Zitat Miura T, Yano T, Naitoh K, Nishihara M, Miki T, Tanno M, et al. Delta-opioid receptor activation before ischemia reduces gap junction permeability in ischemic myocardium by PKC-epsilon-mediated phosphorylation of connexin 43. Am J Physiol Heart Circ Physiol. 2007;293:H1425–31.PubMedCrossRef Miura T, Yano T, Naitoh K, Nishihara M, Miki T, Tanno M, et al. Delta-opioid receptor activation before ischemia reduces gap junction permeability in ischemic myocardium by PKC-epsilon-mediated phosphorylation of connexin 43. Am J Physiol Heart Circ Physiol. 2007;293:H1425–31.PubMedCrossRef
21.
Zurück zum Zitat Erbayraktar S, Grasso G, Sfacteria A, Xie QW, Coleman T, Kreilgaard M, et al. Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc Natl Acad Sci U S A. 2003;100:6741–6.PubMedCrossRef Erbayraktar S, Grasso G, Sfacteria A, Xie QW, Coleman T, Kreilgaard M, et al. Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc Natl Acad Sci U S A. 2003;100:6741–6.PubMedCrossRef
22.
Zurück zum Zitat Moon C, Krawczyk M, Paik D, Coleman T, Brines M, Juhaszova M, et al. Erythropoietin, modified to not stimulate red blood cell production, retains its cardioprotective properties. J Pharmacol Exp Ther. 2006;316:999–1005.PubMedCrossRef Moon C, Krawczyk M, Paik D, Coleman T, Brines M, Juhaszova M, et al. Erythropoietin, modified to not stimulate red blood cell production, retains its cardioprotective properties. J Pharmacol Exp Ther. 2006;316:999–1005.PubMedCrossRef
23.
Zurück zum Zitat Xu X, Cao Z, Cao B, Li J, Guo L, Que L, et al. Carbamylated erythropoietin protects the myocardium from acute ischemia/reperfusion injury through a PI3K/Akt-dependent mechanism. Surgery. 2009;146:506–14.PubMedCrossRef Xu X, Cao Z, Cao B, Li J, Guo L, Que L, et al. Carbamylated erythropoietin protects the myocardium from acute ischemia/reperfusion injury through a PI3K/Akt-dependent mechanism. Surgery. 2009;146:506–14.PubMedCrossRef
24.
Zurück zum Zitat Ramirez R, Carracedo J, Nogueras S, Buendia P, Merino A, Cañadillas S, et al. Carbamylated darbepoetin derivative prevents endothelial progenitor cell damage with no effect on angiogenesis. J Mol Cell Cardiol. 2009;47:781–8.PubMedCrossRef Ramirez R, Carracedo J, Nogueras S, Buendia P, Merino A, Cañadillas S, et al. Carbamylated darbepoetin derivative prevents endothelial progenitor cell damage with no effect on angiogenesis. J Mol Cell Cardiol. 2009;47:781–8.PubMedCrossRef
25.
Zurück zum Zitat Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM. Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol. 2005;288:H971–6.PubMedCrossRef Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM. Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol. 2005;288:H971–6.PubMedCrossRef
26.
Zurück zum Zitat Yang XM, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV. Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol. 2004;44:1103–10.PubMedCrossRef Yang XM, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV. Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol. 2004;44:1103–10.PubMedCrossRef
27.
Zurück zum Zitat Downey JM, Davis AM, Cohen MV. Signaling pathways in ischemic preconditioning. Heart Fail Rev. 2007;12:181–8.PubMedCrossRef Downey JM, Davis AM, Cohen MV. Signaling pathways in ischemic preconditioning. Heart Fail Rev. 2007;12:181–8.PubMedCrossRef
28.
Zurück zum Zitat Hausenloy DJ, Ong SB, Yellon DM. The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic Res Cardiol. 2009;104:189–202.PubMedCrossRef Hausenloy DJ, Ong SB, Yellon DM. The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic Res Cardiol. 2009;104:189–202.PubMedCrossRef
29.
Zurück zum Zitat Gomez L, Paillard M, Thibault H, Derumeaux G, Ovize M. Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion. Circulation. 2008;117:2761–8.PubMedCrossRef Gomez L, Paillard M, Thibault H, Derumeaux G, Ovize M. Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion. Circulation. 2008;117:2761–8.PubMedCrossRef
30.
Zurück zum Zitat Bullard AJ, Yellon DM. Chronic erythropoietin treatment limits infarct-size in the myocardium in vitro. Cardiovasc Drugs Ther. 2005;19:333–6.PubMedCrossRef Bullard AJ, Yellon DM. Chronic erythropoietin treatment limits infarct-size in the myocardium in vitro. Cardiovasc Drugs Ther. 2005;19:333–6.PubMedCrossRef
31.
Zurück zum Zitat Baker JE, Kozik D, Hsu AK, Fu X, Tweddell JS, Gross GJ. Darbepoetin alfa protects the rat heart against infarction: dose-response, phase of action, and mechanisms. J Cardiovasc Pharmacol. 2007;49:337–45.PubMedCrossRef Baker JE, Kozik D, Hsu AK, Fu X, Tweddell JS, Gross GJ. Darbepoetin alfa protects the rat heart against infarction: dose-response, phase of action, and mechanisms. J Cardiovasc Pharmacol. 2007;49:337–45.PubMedCrossRef
32.
Zurück zum Zitat Baines CP, Zhang J, Wang GW, Zheng YT, Xiu JX, Cardwell EM, et al. Mitochondrial PKCε and MAPK form signaling modules in the murine heart. Enhanced mitochondrial PKCε-MAPK interactions and differential MAPK activation in PKCε-induced cardioprotection. Circ Res. 2002;90:390–7.PubMedCrossRef Baines CP, Zhang J, Wang GW, Zheng YT, Xiu JX, Cardwell EM, et al. Mitochondrial PKCε and MAPK form signaling modules in the murine heart. Enhanced mitochondrial PKCε-MAPK interactions and differential MAPK activation in PKCε-induced cardioprotection. Circ Res. 2002;90:390–7.PubMedCrossRef
33.
Zurück zum Zitat Baines CP, Song CX, Zheng YT, Wang GW, Zhang J, Wang OL, et al. Protein kinase Cε interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res. 2003;92:873–80.PubMedCrossRef Baines CP, Song CX, Zheng YT, Wang GW, Zhang J, Wang OL, et al. Protein kinase Cε interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res. 2003;92:873–80.PubMedCrossRef
34.
Zurück zum Zitat Rasola A, Sciacovelli M, Chiara F, Pantic B, Brusilow WS, Bernardi P. Activation of mitochondrial ERK protects cancer cells from death through inhibition of the permeability transition. Proc Natl Acad Sci. 2010;107:726–31.PubMedCrossRef Rasola A, Sciacovelli M, Chiara F, Pantic B, Brusilow WS, Bernardi P. Activation of mitochondrial ERK protects cancer cells from death through inhibition of the permeability transition. Proc Natl Acad Sci. 2010;107:726–31.PubMedCrossRef
35.
Zurück zum Zitat Miki T, Miura T, Hotta H, Tanno M, Yano T, Sato T, et al. Endoplasmic reticulum stress in diabetic hearts abolishes erythropoietin-induced myocardial protection by impairment of phospho-glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeability transition. Diabetes. 2009;58:2863–72.PubMedCrossRef Miki T, Miura T, Hotta H, Tanno M, Yano T, Sato T, et al. Endoplasmic reticulum stress in diabetic hearts abolishes erythropoietin-induced myocardial protection by impairment of phospho-glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeability transition. Diabetes. 2009;58:2863–72.PubMedCrossRef
36.
Zurück zum Zitat Zorov DB, Juhaszova M, Yaniv Y, Nuss HB, Wang S, Sollott SJ. Regulation and pharmacology of the mitochondrial permeability transition pore. Cardiovasc Res. 2009;83:213–25.PubMedCrossRef Zorov DB, Juhaszova M, Yaniv Y, Nuss HB, Wang S, Sollott SJ. Regulation and pharmacology of the mitochondrial permeability transition pore. Cardiovasc Res. 2009;83:213–25.PubMedCrossRef
37.
Zurück zum Zitat Sun L, Shurkair S, Naik TJ, Moazed F, Ardehali H. Glucose phophorylation and mitochondrial binding are required for the protective effects of hexokinases I and II. Mol Cell Biol. 2008;28:1007–17.PubMedCrossRef Sun L, Shurkair S, Naik TJ, Moazed F, Ardehali H. Glucose phophorylation and mitochondrial binding are required for the protective effects of hexokinases I and II. Mol Cell Biol. 2008;28:1007–17.PubMedCrossRef
38.
Zurück zum Zitat Costa ADT, Garlid KD. Intramitochondrial signaling: interactions among mitoKATP, PKCε, ROS, and MPT. Am J Physiol Heart Circ Physiol. 2008;295:H879–82.CrossRef Costa ADT, Garlid KD. Intramitochondrial signaling: interactions among mitoKATP, PKCε, ROS, and MPT. Am J Physiol Heart Circ Physiol. 2008;295:H879–82.CrossRef
39.
Zurück zum Zitat Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, et al. Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res. 2005;97:329–36.PubMedCrossRef Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, et al. Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res. 2005;97:329–36.PubMedCrossRef
40.
Zurück zum Zitat Nishino Y, Webb IG, Davidson SM, Ahmed AI, Clark JE, Jacquet S, et al. Glycogen synthase kinase-3 inactivation is not required for ischemic preconditioning or postconditioning in the mouse. Circ Res. 2008;103:307–14.PubMedCrossRef Nishino Y, Webb IG, Davidson SM, Ahmed AI, Clark JE, Jacquet S, et al. Glycogen synthase kinase-3 inactivation is not required for ischemic preconditioning or postconditioning in the mouse. Circ Res. 2008;103:307–14.PubMedCrossRef
41.
Zurück zum Zitat Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, et al. Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res. 2009;104:15–8.PubMedCrossRef Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, et al. Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res. 2009;104:15–8.PubMedCrossRef
Metadaten
Titel
Erythropoietin (EPO) Affords More Potent Cardioprotection by Activation of Distinct Signaling to Mitochondrial Kinases Compared with Carbamylated EPO
verfasst von
Takahiro Sato
Masaya Tanno
Takayuki Miki
Toshiyuki Yano
Tatsuya Sato
Kazuaki Shimamoto
Tetsuji Miura
Publikationsdatum
01.12.2010
Verlag
Springer US
Erschienen in
Cardiovascular Drugs and Therapy / Ausgabe 5-6/2010
Print ISSN: 0920-3206
Elektronische ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-010-6265-5

Weitere Artikel der Ausgabe 5-6/2010

Cardiovascular Drugs and Therapy 5-6/2010 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.