Skip to main content
Erschienen in: Annals of Nuclear Medicine 10/2011

01.12.2011 | Original article

Evaluation of organ-specific glucose metabolism by 18F-FDG in insulin receptor substrate-1 (IRS-1) knockout mice as a model of insulin resistance

verfasst von: Chao Cheng, Akinobu Nakamura, Ryogo Minamimoto, Kazuaki Shinoda, Ukihide Tateishi, Atsushi Goto, Takashi Kadowaki, Yasuo Terauchi, Tomio Inoue

Erschienen in: Annals of Nuclear Medicine | Ausgabe 10/2011

Einloggen, um Zugang zu erhalten

Abstract

Objective

Insulin resistance (IR) is a physiological condition in which the body produces insulin but does not result in a sufficient biological effect. Insulin resistance is usually asymptomatic but is associated with health problems and is a factor in the metabolic syndrome. The aim of the present study is to clarify organ-specific insulin resistance in normal daily conditions using [18F]-2-fluoro-2-deoxy-d-glucose ([18F]-FDG).

Methods

The biodistribution of [18F]-FDG was examined in insulin receptor substrate-1 (IRS-1) knockout mice, an animal model of skeletal muscle insulin resistance, and C57BL/6J (wild-type) mice with and without insulin loading. Mice received 0.5 MBq of [18F]-FDG injected into the tail vein, immediately followed by nothing (control cohorts) or an intraperitoneal injection of 1.5 mU/g body weight of human insulin as an insulin loading test. Blood glucose concentrations for all of the experimental animals were assessed at 0, 20, 40, and 60 min post-injection. The mice were subsequently killed, and tissue was collected for evaluation of [18F]-FDG biodistribution. The radioactivity of each organ was measured using a gamma counter.

Results

In the absence of insulin, the blood glucose concentrations of wild-type mice (132 ± 26 mg/dl) and IRS-1 knockout mice (134 ± 18 mg/dl) were not significantly different. Blood glucose concentrations decreased following insulin administration, with lower concentrations in wild-type mice than in knockout mice at 20, 40, and 60 min. A statistically significant difference in [18F]-FDG uptake between wild-type mice and IRS-1 knockout mice was confirmed in the heart, abdominal muscle, and femoral muscle. With insulin loading, [18F]-FDG uptake in the heart, back muscle, and abdominal muscle was significantly increased compared to without insulin loading in both wild-type mice and knockout mice.

Conclusion

Our results showed that IR significantly affected [18F]-FDG uptake in the heart in normal daily conditions. IR was associated with decreased [18F]-FDG uptake in the heart and was readily observed in the absence of insulin loading. [18F]-FDG-positron emission tomography (PET) could be a useful tool for evaluating insulin resistance in images by investigating tissue-specific differences in [18F]-FDG uptake.
Literatur
1.
Zurück zum Zitat Fonseca VA. Management of diabetes mellitus and insulin resistance in patients with cardiovascular disease. Am J Cardiol. 2003;92:50J–60J.PubMedCrossRef Fonseca VA. Management of diabetes mellitus and insulin resistance in patients with cardiovascular disease. Am J Cardiol. 2003;92:50J–60J.PubMedCrossRef
3.
Zurück zum Zitat Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27:1487–95.PubMedCrossRef Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27:1487–95.PubMedCrossRef
4.
Zurück zum Zitat DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979;237:E214–23.PubMed DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979;237:E214–23.PubMed
5.
Zurück zum Zitat Cusi K, Maezono K, Osman A, Pendergrass M, Patti ME, Pratipanawatr T, et al. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest. 2000;105:311–20.PubMedCrossRef Cusi K, Maezono K, Osman A, Pendergrass M, Patti ME, Pratipanawatr T, et al. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest. 2000;105:311–20.PubMedCrossRef
6.
Zurück zum Zitat Krook A, Bjornholm M, Galuska D, Jiang XJ, Fahlman R, Myers MG Jr, et al. Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients. Diabetes. 2000;49:284–92.PubMedCrossRef Krook A, Bjornholm M, Galuska D, Jiang XJ, Fahlman R, Myers MG Jr, et al. Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients. Diabetes. 2000;49:284–92.PubMedCrossRef
7.
Zurück zum Zitat White MF. IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab. 2002;283:E413–22.PubMed White MF. IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab. 2002;283:E413–22.PubMed
9.
Zurück zum Zitat Yamauchi T, Tobe K, Tamemoto H, Ueki K, Kaburagi Y, Yamamoto-Honda R, et al. Insulin signalling and insulin actions in the muscles and livers of insulin-resistant, insulin receptor substrate 1-deficient mice. Mol Cell Biol. 1996;16:3074–84.PubMed Yamauchi T, Tobe K, Tamemoto H, Ueki K, Kaburagi Y, Yamamoto-Honda R, et al. Insulin signalling and insulin actions in the muscles and livers of insulin-resistant, insulin receptor substrate 1-deficient mice. Mol Cell Biol. 1996;16:3074–84.PubMed
10.
Zurück zum Zitat Taniguchi CM, Ueki K, Kahn R. Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. J Clin Invest. 2005;115:718–27.PubMed Taniguchi CM, Ueki K, Kahn R. Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. J Clin Invest. 2005;115:718–27.PubMed
11.
Zurück zum Zitat Voipio-Pulkki LM, Nuutila P, Knuuti MJ, Ruotsalainen U, Haaparanta M, Teras M, et al. Heart and skeletal muscle glucose disposal in type 2 diabetic patients as determined by positron emission tomography. J Nucl Med. 1993;34:2064–7.PubMed Voipio-Pulkki LM, Nuutila P, Knuuti MJ, Ruotsalainen U, Haaparanta M, Teras M, et al. Heart and skeletal muscle glucose disposal in type 2 diabetic patients as determined by positron emission tomography. J Nucl Med. 1993;34:2064–7.PubMed
12.
Zurück zum Zitat Ohtake T, Yokoyama I, Watanabe T, Momose T, Serezawa T, Nishikawa J, et al. Myocardial glucose metabolism in noninsulin-dependent diabetes mellitus patients evaluated by FDG-PET. J Nucl Med. 1995;36:456–63.PubMed Ohtake T, Yokoyama I, Watanabe T, Momose T, Serezawa T, Nishikawa J, et al. Myocardial glucose metabolism in noninsulin-dependent diabetes mellitus patients evaluated by FDG-PET. J Nucl Med. 1995;36:456–63.PubMed
13.
Zurück zum Zitat Utriainen T, Takala T, Luotolahti M, Ronnemaa T, Laine H, Ruotsalainen U, et al. Insulin resistance characterizes glucose uptake in skeletal muscle but not in the heart in NIDDM. Diabetologia. 1998;41:555–9.PubMedCrossRef Utriainen T, Takala T, Luotolahti M, Ronnemaa T, Laine H, Ruotsalainen U, et al. Insulin resistance characterizes glucose uptake in skeletal muscle but not in the heart in NIDDM. Diabetologia. 1998;41:555–9.PubMedCrossRef
14.
Zurück zum Zitat Virtanen KA, Peltoniemi P, Marjamaki P, Asola M, Strindberg L, Parkkola R, et al. Human adipose tissue glucose uptake determined using [(18)F]-fluoro-deoxy-glucose ([(18)F]FDG) and PET in combination with microdialysis. Diabetologia. 2001;44:2171–9.PubMedCrossRef Virtanen KA, Peltoniemi P, Marjamaki P, Asola M, Strindberg L, Parkkola R, et al. Human adipose tissue glucose uptake determined using [(18)F]-fluoro-deoxy-glucose ([(18)F]FDG) and PET in combination with microdialysis. Diabetologia. 2001;44:2171–9.PubMedCrossRef
15.
Zurück zum Zitat Bingham EM, Hopkins D, Smith D, Pernet A, Hallett W, Reed L, et al. The role of insulin in human brain glucose metabolism: an 18fluoro-deoxyglucose positron emission tomography study. Diabetes. 2002;51:3384–90.PubMedCrossRef Bingham EM, Hopkins D, Smith D, Pernet A, Hallett W, Reed L, et al. The role of insulin in human brain glucose metabolism: an 18fluoro-deoxyglucose positron emission tomography study. Diabetes. 2002;51:3384–90.PubMedCrossRef
16.
Zurück zum Zitat Lee KH, Ko BH, Paik JY, Jung KH, Choe YS, Choi Y, et al. Effects of anesthetic agents and fasting duration on 18F-FDG biodistribution and insulin levels in tumor-bearing mice. J Nucl Med. 2005;46:1531–6.PubMed Lee KH, Ko BH, Paik JY, Jung KH, Choe YS, Choi Y, et al. Effects of anesthetic agents and fasting duration on 18F-FDG biodistribution and insulin levels in tumor-bearing mice. J Nucl Med. 2005;46:1531–6.PubMed
17.
Zurück zum Zitat Vanttinen M, Nuutila P, Kuulasmaa T, Pihlajamaki J, Hallsten K, Virtanen KA, et al. Single nucleotide polymorphisms in the peroxisome proliferator-activated receptor delta gene are associated with skeletal muscle glucose uptake. Diabetes. 2005;54:3587–91.PubMedCrossRef Vanttinen M, Nuutila P, Kuulasmaa T, Pihlajamaki J, Hallsten K, Virtanen KA, et al. Single nucleotide polymorphisms in the peroxisome proliferator-activated receptor delta gene are associated with skeletal muscle glucose uptake. Diabetes. 2005;54:3587–91.PubMedCrossRef
18.
Zurück zum Zitat Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature. 1994;372:182–6.PubMedCrossRef Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature. 1994;372:182–6.PubMedCrossRef
19.
Zurück zum Zitat Terauchi Y, Iwamoto K, Tamemoto H, Komeda K, Ishii C, Kanazawa Y, et al. Development of non-insulin-dependent diabetes mellitus in the double knockout mice with disruption of insulin receptor substrate-1 and beta cell glucokinase genes. Genetic reconstitution of diabetes as a polygenic disease. J Clin Invest. 1997;99:861–6.PubMedCrossRef Terauchi Y, Iwamoto K, Tamemoto H, Komeda K, Ishii C, Kanazawa Y, et al. Development of non-insulin-dependent diabetes mellitus in the double knockout mice with disruption of insulin receptor substrate-1 and beta cell glucokinase genes. Genetic reconstitution of diabetes as a polygenic disease. J Clin Invest. 1997;99:861–6.PubMedCrossRef
20.
Zurück zum Zitat Hamacher K, Coenen H, Stocklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-d-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med. 1986;27:235–8.PubMed Hamacher K, Coenen H, Stocklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-d-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med. 1986;27:235–8.PubMed
21.
Zurück zum Zitat Kido Y, Burks DJ, Withers D, Bruning JC, Kahn CR, White MF, et al. Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J Clin Invest. 2000;105:199–205.PubMedCrossRef Kido Y, Burks DJ, Withers D, Bruning JC, Kahn CR, White MF, et al. Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J Clin Invest. 2000;105:199–205.PubMedCrossRef
22.
Zurück zum Zitat Araki E, Lipes MA, Patti ME, Bruning JC, Haag B 3rd, Johnson RS, et al. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature. 1994;372:186–90.PubMedCrossRef Araki E, Lipes MA, Patti ME, Bruning JC, Haag B 3rd, Johnson RS, et al. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature. 1994;372:186–90.PubMedCrossRef
23.
Zurück zum Zitat Yokoyama I, Yonekura K, Ohtake T, Kawamura H, Matsumoto A, Inoue Y, et al. Role of insulin resistance in heart and skeletal muscle F-18 fluorodeoxyglucose uptake in patients with non-insulin-dependent diabetes mellitus. J Nucl Cardiol. 2000;7:242–8.PubMedCrossRef Yokoyama I, Yonekura K, Ohtake T, Kawamura H, Matsumoto A, Inoue Y, et al. Role of insulin resistance in heart and skeletal muscle F-18 fluorodeoxyglucose uptake in patients with non-insulin-dependent diabetes mellitus. J Nucl Cardiol. 2000;7:242–8.PubMedCrossRef
24.
Zurück zum Zitat MacLean PS, Zheng D, Jones JP, Olson AL, Dohm GL. Exercise-induced transcription of the muscle glucose transporter (GLUT 4) gene. Biochem Biophys Res Commun. 2002;292:409–14.PubMedCrossRef MacLean PS, Zheng D, Jones JP, Olson AL, Dohm GL. Exercise-induced transcription of the muscle glucose transporter (GLUT 4) gene. Biochem Biophys Res Commun. 2002;292:409–14.PubMedCrossRef
25.
Zurück zum Zitat Turcotte E, Leblanc M, Carpentier A, Benard F. Optimization of whole-body positron emission tomography imaging by using delayed 2-deoxy-2-[F-18]fluoro-d-glucose Injection following I.V. Insulin in diabetic patients. Mol Imaging Biol. 2006;8:348–54.PubMedCrossRef Turcotte E, Leblanc M, Carpentier A, Benard F. Optimization of whole-body positron emission tomography imaging by using delayed 2-deoxy-2-[F-18]fluoro-d-glucose Injection following I.V. Insulin in diabetic patients. Mol Imaging Biol. 2006;8:348–54.PubMedCrossRef
26.
Zurück zum Zitat Kelley DE, Mintun MA, Watkins SC, Simoneau JA, Jadali F, Fredrickson A, et al. The effect of non-insulin-dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle. J Clin Invest. 1996;97:2705–13.PubMedCrossRef Kelley DE, Mintun MA, Watkins SC, Simoneau JA, Jadali F, Fredrickson A, et al. The effect of non-insulin-dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle. J Clin Invest. 1996;97:2705–13.PubMedCrossRef
27.
Zurück zum Zitat Yi Z, Langlais P, De Filippis EA, Luo M, Flynn CR, Schroeder S, et al. Global assessment of regulation of phosphorylation of insulin receptor substrate-1 by insulin in vivo in human muscle. Diabetes. 2007;56:1508–16.PubMedCrossRef Yi Z, Langlais P, De Filippis EA, Luo M, Flynn CR, Schroeder S, et al. Global assessment of regulation of phosphorylation of insulin receptor substrate-1 by insulin in vivo in human muscle. Diabetes. 2007;56:1508–16.PubMedCrossRef
28.
Zurück zum Zitat DeFronzo RA, Ferrannini E, Sato Y, Felig P, Wahren J. Synergistic interaction between exercise and insulin on peripheral glucose uptake. J Clin Invest. 1981;68:1468–74.PubMedCrossRef DeFronzo RA, Ferrannini E, Sato Y, Felig P, Wahren J. Synergistic interaction between exercise and insulin on peripheral glucose uptake. J Clin Invest. 1981;68:1468–74.PubMedCrossRef
29.
Zurück zum Zitat Baron AD. Hemodynamic actions of insulin. Am J Physiol. 1994;267:E187–202.PubMed Baron AD. Hemodynamic actions of insulin. Am J Physiol. 1994;267:E187–202.PubMed
30.
Zurück zum Zitat Klip A, Ramlal T, Young DA, Holloszy JO. Insulin-induced translocation of glucose transporters in rat hindlimb muscles. FEBS Lett. 1987;224:224–30.PubMedCrossRef Klip A, Ramlal T, Young DA, Holloszy JO. Insulin-induced translocation of glucose transporters in rat hindlimb muscles. FEBS Lett. 1987;224:224–30.PubMedCrossRef
31.
Zurück zum Zitat Huitink JM, Visser FC, van Leeuwen GR, van Lingen A, Bax JJ, Heine RJ, et al. Influence of high and low plasma insulin levels on the uptake of fluorine-18 fluorodeoxyglucose in myocardium and femoral muscle, assessed by planar imaging. Eur J Nucl Med. 1995;22:1141–8.PubMedCrossRef Huitink JM, Visser FC, van Leeuwen GR, van Lingen A, Bax JJ, Heine RJ, et al. Influence of high and low plasma insulin levels on the uptake of fluorine-18 fluorodeoxyglucose in myocardium and femoral muscle, assessed by planar imaging. Eur J Nucl Med. 1995;22:1141–8.PubMedCrossRef
32.
Zurück zum Zitat Peltoniemi P, Lonnroth P, Laine H, Oikonen V, Tolvanen T, Gronroos T, et al. Lumped constant for [(18)F]fluorodeoxyglucose in skeletal muscles of obese and nonobese humans. Am J Physiol Endocrinol Metab. 2000;279:E1122–30.PubMed Peltoniemi P, Lonnroth P, Laine H, Oikonen V, Tolvanen T, Gronroos T, et al. Lumped constant for [(18)F]fluorodeoxyglucose in skeletal muscles of obese and nonobese humans. Am J Physiol Endocrinol Metab. 2000;279:E1122–30.PubMed
Metadaten
Titel
Evaluation of organ-specific glucose metabolism by 18F-FDG in insulin receptor substrate-1 (IRS-1) knockout mice as a model of insulin resistance
verfasst von
Chao Cheng
Akinobu Nakamura
Ryogo Minamimoto
Kazuaki Shinoda
Ukihide Tateishi
Atsushi Goto
Takashi Kadowaki
Yasuo Terauchi
Tomio Inoue
Publikationsdatum
01.12.2011
Verlag
Springer Japan
Erschienen in
Annals of Nuclear Medicine / Ausgabe 10/2011
Print ISSN: 0914-7187
Elektronische ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-011-0522-y

Weitere Artikel der Ausgabe 10/2011

Annals of Nuclear Medicine 10/2011 Zur Ausgabe