Skip to main content
Erschienen in: Archives of Virology 9/2017

01.09.2017 | Original Article

Evaluation of the impact of ul54 gene-deletion on the global transcription and DNA replication of pseudorabies virus

verfasst von: Zsolt Csabai, Irma F. Takács, Michael Snyder, Zsolt Boldogkői, Dóra Tombácz

Erschienen in: Archives of Virology | Ausgabe 9/2017

Einloggen, um Zugang zu erhalten

Abstract

Pseudorabies virus (PRV) is an animal alphaherpesvirus with a wide host range. PRV has 67 protein-coding genes and several non-coding RNA molecules, which can be classified into three temporal groups, immediate early, early and late classes. The ul54 gene of PRV and its homolog icp27 of herpes simplex virus have a multitude of functions, including the regulation of viral DNA synthesis and the control of the gene expression. Therefore, abrogation of PRV ul54 function was expected to exert a significant effect on the global transcriptome and on DNA replication. Real-time PCR and real-time RT-PCR platforms were used to investigate these presumed effects. Our analyses revealed a drastic impact of the ul54 mutation on the genome-wide expression of PRV genes, especially on the transcription of the true late genes. A more than two hour delay was observed in the onset of DNA replication, and the amount of synthesized DNA molecules was significantly decreased in comparison to the wild-type virus. Furthermore, in this work, we were able to successfully demonstrate the utility of long-read SMRT sequencing for genotyping of mutant viruses.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Aujeszky A (1902) A contagious disease, not readily distinguishable from rabies, with unknown origin. Veterinarius 25:387–396 (in Hungarian) Aujeszky A (1902) A contagious disease, not readily distinguishable from rabies, with unknown origin. Veterinarius 25:387–396 (in Hungarian)
2.
4.
Zurück zum Zitat Boldogkői Z, Sík A, Dénes A, Reichart A, Toldi J, Gerendai I, Kovács KJ, Palkovits M (2004) Novel tracing paradigms-genetically engineered herpesviruses as tools for mapping functional circuits within the CNS: present status and future prospects. Prog Neurobiol 72(6):417–445CrossRefPubMed Boldogkői Z, Sík A, Dénes A, Reichart A, Toldi J, Gerendai I, Kovács KJ, Palkovits M (2004) Novel tracing paradigms-genetically engineered herpesviruses as tools for mapping functional circuits within the CNS: present status and future prospects. Prog Neurobiol 72(6):417–445CrossRefPubMed
5.
Zurück zum Zitat Yang M, Card JP, Tirabassi RS, Miselis RR, Enquist LW (1999) Retrograde, transneuronal spread of pseudorabies virus in defined neuronal circuitry of the rat brain is facilitated by gE mutations that reduce virulence. J Virol 73:4350–4359PubMedPubMedCentral Yang M, Card JP, Tirabassi RS, Miselis RR, Enquist LW (1999) Retrograde, transneuronal spread of pseudorabies virus in defined neuronal circuitry of the rat brain is facilitated by gE mutations that reduce virulence. J Virol 73:4350–4359PubMedPubMedCentral
6.
Zurück zum Zitat Song CK, Enquist LW, Bartness TJ (2005) New developments in tracing neural circuits with herpesviruses. Virus Res 111:235–249CrossRefPubMed Song CK, Enquist LW, Bartness TJ (2005) New developments in tracing neural circuits with herpesviruses. Virus Res 111:235–249CrossRefPubMed
9.
Zurück zum Zitat Boldogkői Z, Balint K, Awatramani GB, Balya D, Busskamp V, Viney TJ, Lagali PS, Duebel J, Pásti E, Tombácz D, Tóth JS, Takács IF, Scherf BG, Roska B (2009) Genetically timed, activity-sensor and rainbow transsynaptic viral tools. Nat Methods 6:127–130CrossRefPubMed Boldogkői Z, Balint K, Awatramani GB, Balya D, Busskamp V, Viney TJ, Lagali PS, Duebel J, Pásti E, Tombácz D, Tóth JS, Takács IF, Scherf BG, Roska B (2009) Genetically timed, activity-sensor and rainbow transsynaptic viral tools. Nat Methods 6:127–130CrossRefPubMed
11.
Zurück zum Zitat Prorok J, Kovács PP, Kristóf AA, Nagy N, Tombácz D, Tóth JS, Ördög B, Jost N, Virág L, Papp JG, Varró A, Tóth A, Boldogkői Z (2009) Herpesvirus-mediated delivery of a genetically encoded fluorescent Ca(2+) sensor to canine cardiomyocytes. J Biomed Biotechnol. doi:10.1155/2009/361795 PubMedPubMedCentral Prorok J, Kovács PP, Kristóf AA, Nagy N, Tombácz D, Tóth JS, Ördög B, Jost N, Virág L, Papp JG, Varró A, Tóth A, Boldogkői Z (2009) Herpesvirus-mediated delivery of a genetically encoded fluorescent Ca(2+) sensor to canine cardiomyocytes. J Biomed Biotechnol. doi:10.​1155/​2009/​361795 PubMedPubMedCentral
12.
Zurück zum Zitat Boldogkői Z, Nógrádi A (2003) Gene and cancer therapy—pseudorabies virus: a novel research and therapeutic tool? Curr Gene Ther 3:155–182CrossRefPubMed Boldogkői Z, Nógrádi A (2003) Gene and cancer therapy—pseudorabies virus: a novel research and therapeutic tool? Curr Gene Ther 3:155–182CrossRefPubMed
13.
Zurück zum Zitat Zhu L, Yi Y, Xu Z, Cheng L, Tang S, Guo W (2011) Growth, physicochemical properties, and morphogenesis of Chinese wild-type PRV Fa and its gene-deleted mutant strain PRV SA215. Virol J 8:272CrossRefPubMedPubMedCentral Zhu L, Yi Y, Xu Z, Cheng L, Tang S, Guo W (2011) Growth, physicochemical properties, and morphogenesis of Chinese wild-type PRV Fa and its gene-deleted mutant strain PRV SA215. Virol J 8:272CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Maresch C, Lange E, Teifke JP, Fuchs W, Klupp B, Müller T, Mettenleiter TC, Vahlenkamp TW (2012) Oral immunization of wild boar and domestic pigs with attenuated live vaccine protects against pseudorabies virus infection. Vet Microbiol 161:20–25CrossRefPubMed Maresch C, Lange E, Teifke JP, Fuchs W, Klupp B, Müller T, Mettenleiter TC, Vahlenkamp TW (2012) Oral immunization of wild boar and domestic pigs with attenuated live vaccine protects against pseudorabies virus infection. Vet Microbiol 161:20–25CrossRefPubMed
15.
Zurück zum Zitat Klingbeil K, Lange E, Teifke JP, Mettenleiter TC, Fuchs W (2014) Immunization of pigs with an attenuated pseudorabies virus recombinant expressing the hemagglutinin of pandemic swine origin H1N1 influenza A virus. J Gen Virol 95:948–959CrossRefPubMed Klingbeil K, Lange E, Teifke JP, Mettenleiter TC, Fuchs W (2014) Immunization of pigs with an attenuated pseudorabies virus recombinant expressing the hemagglutinin of pandemic swine origin H1N1 influenza A virus. J Gen Virol 95:948–959CrossRefPubMed
16.
Zurück zum Zitat Tombácz D, Sharon D, Oláh P, Csabai Z, Snyder M, Boldogkői Z (2014) Strain kaplan of pseudorabies virus genome sequenced by PacBio single-molecule real-time sequencing technology. Genome Announc. doi:10.1128/genomeA.00628-14 Tombácz D, Sharon D, Oláh P, Csabai Z, Snyder M, Boldogkői Z (2014) Strain kaplan of pseudorabies virus genome sequenced by PacBio single-molecule real-time sequencing technology. Genome Announc. doi:10.​1128/​genomeA.​00628-14
19.
Zurück zum Zitat Flori L, Rogel-Gaillard C, Cochet M, Lemonnier G, Hugot K, Chardon P, Robin S, Lefèvre F (2008) Transcriptomic analysis of the dialogue between Pseudorabies virus and porcine epithelial cells during infection. BMC Genomics. doi:10.1186/1471-2164-9-123 PubMedPubMedCentral Flori L, Rogel-Gaillard C, Cochet M, Lemonnier G, Hugot K, Chardon P, Robin S, Lefèvre F (2008) Transcriptomic analysis of the dialogue between Pseudorabies virus and porcine epithelial cells during infection. BMC Genomics. doi:10.​1186/​1471-2164-9-123 PubMedPubMedCentral
21.
Zurück zum Zitat Anderson K, Costa RH, Holland LE, Wagner EK (1980) Characterization of herpes simplex virus type 1 RNA. Present in the absence of de novo protein synthesis. J Virol 34(1):9–27PubMedPubMedCentral Anderson K, Costa RH, Holland LE, Wagner EK (1980) Characterization of herpes simplex virus type 1 RNA. Present in the absence of de novo protein synthesis. J Virol 34(1):9–27PubMedPubMedCentral
22.
Zurück zum Zitat Mackem S, Roizman B (1980) Regulation of herpesvirus macromolecular synthesis: transcription-initiation sites and domains of α genes. Proc Natl Acad Sci USA 77(12):7122–7126CrossRefPubMedPubMedCentral Mackem S, Roizman B (1980) Regulation of herpesvirus macromolecular synthesis: transcription-initiation sites and domains of α genes. Proc Natl Acad Sci USA 77(12):7122–7126CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Ihara S, Feldman L, Watanabe S, Ben-Porat T (1983) Characterization of the immediate-early functions of pseudorabies virus. Virology 131:437–454CrossRefPubMed Ihara S, Feldman L, Watanabe S, Ben-Porat T (1983) Characterization of the immediate-early functions of pseudorabies virus. Virology 131:437–454CrossRefPubMed
24.
Zurück zum Zitat Cheung AK (1991) Cloning of the latency gene and the early protein 0 gene of pseudorabies virus. J Virol 65:5260–5271PubMedPubMedCentral Cheung AK (1991) Cloning of the latency gene and the early protein 0 gene of pseudorabies virus. J Virol 65:5260–5271PubMedPubMedCentral
25.
Zurück zum Zitat Huang C, Wu CY (2004) Characterization and expression of the pseudorabies virus early gene UL54. J Virol Methods 119:129–136CrossRefPubMed Huang C, Wu CY (2004) Characterization and expression of the pseudorabies virus early gene UL54. J Virol Methods 119:129–136CrossRefPubMed
26.
Zurück zum Zitat Fuchs W, Ehrlich C, Klupp BG, Mettenleiter TC (2000) Characterization of the replication origin (Ori(S)) and adjoining parts of the inverted repeat sequences of the pseudorabies virus genome. J Gen Virol 81:1539–1543CrossRefPubMed Fuchs W, Ehrlich C, Klupp BG, Mettenleiter TC (2000) Characterization of the replication origin (Ori(S)) and adjoining parts of the inverted repeat sequences of the pseudorabies virus genome. J Gen Virol 81:1539–1543CrossRefPubMed
27.
Zurück zum Zitat Zhang G, Leader DP (1990) The structure of the pseudorabies virus genome at the end of the inverted repeat sequences proximal to the junction with the short unique region. J Gen Virol 71:2433–2441CrossRefPubMed Zhang G, Leader DP (1990) The structure of the pseudorabies virus genome at the end of the inverted repeat sequences proximal to the junction with the short unique region. J Gen Virol 71:2433–2441CrossRefPubMed
28.
Zurück zum Zitat Baumeister J, Klupp BG, Mettenleiter TC (1995) Pseudorabies virus and equine herpesvirus 1 share a nonessential gene which is absent in other herpesviruses and located adjacent to a highly conserved gene cluster. J Virol 6(9):5560–5567 Baumeister J, Klupp BG, Mettenleiter TC (1995) Pseudorabies virus and equine herpesvirus 1 share a nonessential gene which is absent in other herpesviruses and located adjacent to a highly conserved gene cluster. J Virol 6(9):5560–5567
29.
Zurück zum Zitat Huang YJ, Chien MS, Wu CY, Huang C (2005) Mapping of functional regions conferring nuclear localization and RNA-binding activity of pseudorabies virus early protein UL54. J Virol Methods 130(1–2):102–107CrossRefPubMed Huang YJ, Chien MS, Wu CY, Huang C (2005) Mapping of functional regions conferring nuclear localization and RNA-binding activity of pseudorabies virus early protein UL54. J Virol Methods 130(1–2):102–107CrossRefPubMed
30.
Zurück zum Zitat Sacks WR, Greene CC, Aschman DP, Schaffer PA (1985) Herpes simplex virus type 1 ICP27 is an essential regulatory protein. J Virol 55:796–805PubMedPubMedCentral Sacks WR, Greene CC, Aschman DP, Schaffer PA (1985) Herpes simplex virus type 1 ICP27 is an essential regulatory protein. J Virol 55:796–805PubMedPubMedCentral
31.
Zurück zum Zitat Gruffat H, Batisse J, Pich D, Neuhierl B, Manet E, HammerschmidtW Sergeant A (2002) Epstein-Barr virus mRNA export factor EB2 is essential for production of infectious virus. J Virol 76(19):9635–9644CrossRefPubMedPubMedCentral Gruffat H, Batisse J, Pich D, Neuhierl B, Manet E, HammerschmidtW Sergeant A (2002) Epstein-Barr virus mRNA export factor EB2 is essential for production of infectious virus. J Virol 76(19):9635–9644CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Sato B, Sommer M, Ito H, Arvin AM (2003) Requirement of varicella-zoster virus immediate-early 4 protein for viral replication. J Virol 77(22):12369–12372CrossRefPubMedPubMedCentral Sato B, Sommer M, Ito H, Arvin AM (2003) Requirement of varicella-zoster virus immediate-early 4 protein for viral replication. J Virol 77(22):12369–12372CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Schwartz JA, Brittle EE, Reynolds AE, Enquist LW, Silverstein SJ (2006) UL54-null pseudorabies virus is attenuated in mice but productively infects cells in culture. J Virol 80(2):769–784CrossRefPubMedPubMedCentral Schwartz JA, Brittle EE, Reynolds AE, Enquist LW, Silverstein SJ (2006) UL54-null pseudorabies virus is attenuated in mice but productively infects cells in culture. J Virol 80(2):769–784CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Hardwicke MA, Sandri-Goldin RM (1994) The herpes simplex virus regulatory protein ICP27 contributes to the decrease in cellular mRNA levels during infection. J Virol 68:4797–4810PubMedPubMedCentral Hardwicke MA, Sandri-Goldin RM (1994) The herpes simplex virus regulatory protein ICP27 contributes to the decrease in cellular mRNA levels during infection. J Virol 68:4797–4810PubMedPubMedCentral
35.
Zurück zum Zitat McGregor F, Phelan A, Dunlop J, Clements JB (1996) Regulation of herpes simplex virus poly(A) site usage and the action of immediate-early protein IE63 in the early-late switch. J Virol 70(3):1931–1940PubMedPubMedCentral McGregor F, Phelan A, Dunlop J, Clements JB (1996) Regulation of herpes simplex virus poly(A) site usage and the action of immediate-early protein IE63 in the early-late switch. J Virol 70(3):1931–1940PubMedPubMedCentral
36.
Zurück zum Zitat Hayashi ML, Blankenship C, Shenk T (2000) Human cytomegalovirus UL69 protein is required for efficient accumulation of infected cells in the G1 phase of the cell cycle. Proc Natl Acad Sci USA 97:2692–2696CrossRefPubMedPubMedCentral Hayashi ML, Blankenship C, Shenk T (2000) Human cytomegalovirus UL69 protein is required for efficient accumulation of infected cells in the G1 phase of the cell cycle. Proc Natl Acad Sci USA 97:2692–2696CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Li M, Wang S, Cai M, Guo H, Zheng C (2011) Characterization of molecular determinants for nucleocytoplasmic shuttling of PRV UL54. Virology 417(2):385–393CrossRefPubMed Li M, Wang S, Cai M, Guo H, Zheng C (2011) Characterization of molecular determinants for nucleocytoplasmic shuttling of PRV UL54. Virology 417(2):385–393CrossRefPubMed
38.
Zurück zum Zitat Li M, Wang S, Cai M, Zheng C (2011) Identification of nuclear and nucleolar localization signals of pseudorabies virus (PRV) early protein UL54 reveals that its nuclear targeting is required for efficient production of PRV. J Virol 85(19):10239–10251CrossRefPubMedPubMedCentral Li M, Wang S, Cai M, Zheng C (2011) Identification of nuclear and nucleolar localization signals of pseudorabies virus (PRV) early protein UL54 reveals that its nuclear targeting is required for efficient production of PRV. J Virol 85(19):10239–10251CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Elhai J, Wolk CP (1988) A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene 68(1):119–138CrossRefPubMed Elhai J, Wolk CP (1988) A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene 68(1):119–138CrossRefPubMed
42.
Zurück zum Zitat Roizman B (1996) The function of herpes simplex virus genes: A primer for genetic engineering of novel vectors. Proc Nat Acad Sci USA 93:11307–11312CrossRefPubMedPubMedCentral Roizman B (1996) The function of herpes simplex virus genes: A primer for genetic engineering of novel vectors. Proc Nat Acad Sci USA 93:11307–11312CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Roizman B, Campadelli-Fiume G (2007) Alphaherpes viral genes and their functions. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (eds) Human herpesviruses—biology, therapy and immunoprophylaxis, 1st edn. Cambridge University Press, Cambridge, pp 70–92CrossRef Roizman B, Campadelli-Fiume G (2007) Alphaherpes viral genes and their functions. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (eds) Human herpesviruses—biology, therapy and immunoprophylaxis, 1st edn. Cambridge University Press, Cambridge, pp 70–92CrossRef
44.
Zurück zum Zitat Tombácz D, Balázs Z, Csabai Z, Moldován N, Szűcs A, Sharon D, Snyder M, Boldogkői Z (2017) Characterization of the dynamic transcriptome of a herpesvirus with long-read single molecule real-time sequencing. Sci Rep. doi:10.1038/srep43751 Tombácz D, Balázs Z, Csabai Z, Moldován N, Szűcs A, Sharon D, Snyder M, Boldogkői Z (2017) Characterization of the dynamic transcriptome of a herpesvirus with long-read single molecule real-time sequencing. Sci Rep. doi:10.​1038/​srep43751
45.
46.
Zurück zum Zitat Bras F, Dezelee S, Simonet B, Nguyen X, Vende P, Flamand A, Masse MJ (1999) The left border of the genomic inversion of pseudorabies virus contains genes homologous to the UL46 and UL47 genes of herpes simplex virus type 1, but no UL45 gene. Virus Res 60:29–40CrossRefPubMed Bras F, Dezelee S, Simonet B, Nguyen X, Vende P, Flamand A, Masse MJ (1999) The left border of the genomic inversion of pseudorabies virus contains genes homologous to the UL46 and UL47 genes of herpes simplex virus type 1, but no UL45 gene. Virus Res 60:29–40CrossRefPubMed
47.
Zurück zum Zitat Pomeranz LE, Reynolds AE, Hengartner CJ (2005) Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 69(3):462–500CrossRefPubMedPubMedCentral Pomeranz LE, Reynolds AE, Hengartner CJ (2005) Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 69(3):462–500CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Reynolds AE, Fan Y, Baines JD (2000) Characterization of the UL33 gene product of herpes simplex virus 1. Virology 266:310–318CrossRefPubMed Reynolds AE, Fan Y, Baines JD (2000) Characterization of the UL33 gene product of herpes simplex virus 1. Virology 266:310–318CrossRefPubMed
49.
Zurück zum Zitat Klupp BG, Fuchs W, Granzow H, Nixdorf R, Mettenleiter TC (2002) Pseudorabies virus UL36 tegument protein physically interacts with the UL37 protein. J Virol 76:3065–3071CrossRefPubMedPubMedCentral Klupp BG, Fuchs W, Granzow H, Nixdorf R, Mettenleiter TC (2002) Pseudorabies virus UL36 tegument protein physically interacts with the UL37 protein. J Virol 76:3065–3071CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Ambagala AP, Hinkley S, Srikumaran S (2000) An early pseudorabies virus protein down-regulates porcine MHC class I expression by inhibition of transporter associated with antigen processing (TAP). J Immunol 164:93–99CrossRefPubMed Ambagala AP, Hinkley S, Srikumaran S (2000) An early pseudorabies virus protein down-regulates porcine MHC class I expression by inhibition of transporter associated with antigen processing (TAP). J Immunol 164:93–99CrossRefPubMed
51.
Zurück zum Zitat de Wind N, Berns A, Gielkens A, Kimman T (1993) Ribonucleotide reductase-deficient mutants of pseudorabies virus are avirulent for pigs and induce partial protective immunity. J Gen Virol 74:351–359CrossRefPubMed de Wind N, Berns A, Gielkens A, Kimman T (1993) Ribonucleotide reductase-deficient mutants of pseudorabies virus are avirulent for pigs and induce partial protective immunity. J Gen Virol 74:351–359CrossRefPubMed
52.
Zurück zum Zitat Powers L, Wilkinson KS, Ryan P (1994) Characterization of the prv43 gene of pseudorabies virus and demonstration that it is not required for virus growth in cell culture. Virology 199:81–88CrossRefPubMed Powers L, Wilkinson KS, Ryan P (1994) Characterization of the prv43 gene of pseudorabies virus and demonstration that it is not required for virus growth in cell culture. Virology 199:81–88CrossRefPubMed
53.
Zurück zum Zitat Robbins AK, Watson RJ, Whealy ME, Hays WW, Enquist LW (1986) Characterization of a pseudorabies virus glycoprotein gene with homology to herpes simplex virus type 1 and type 2 glycoprotein. J Virol 58(2):339–347PubMedPubMedCentral Robbins AK, Watson RJ, Whealy ME, Hays WW, Enquist LW (1986) Characterization of a pseudorabies virus glycoprotein gene with homology to herpes simplex virus type 1 and type 2 glycoprotein. J Virol 58(2):339–347PubMedPubMedCentral
54.
Zurück zum Zitat Dezélée S, Bras F, Vende P, Simonet B, Nguyen X, Flamand A, Masse MJ (1996) The BamHI fragment 9 of pseudorabies virus contains genes homologous to the UL24, UL25, UL26, and UL 26.5 genes of herpes simplex virus type 1. Virus Res 42:27–39CrossRefPubMed Dezélée S, Bras F, Vende P, Simonet B, Nguyen X, Flamand A, Masse MJ (1996) The BamHI fragment 9 of pseudorabies virus contains genes homologous to the UL24, UL25, UL26, and UL 26.5 genes of herpes simplex virus type 1. Virus Res 42:27–39CrossRefPubMed
55.
Zurück zum Zitat Tombácz D, Csabai Z, Oláh P, Havelda Z, Sharon D, Snyder M, Boldogkői Z (2015) Characterization of novel transcripts in pseudorabies virus. Viruses 7(5):2727–2744CrossRefPubMedPubMedCentral Tombácz D, Csabai Z, Oláh P, Havelda Z, Sharon D, Snyder M, Boldogkői Z (2015) Characterization of novel transcripts in pseudorabies virus. Viruses 7(5):2727–2744CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Yamada S, Imada T, Watanabe W, Honda Y, Nakajima-Iijima S, Shimizu Y, Sekikawa K (1991) Nucleotide sequence and transcriptional mapping of the major capsid protein gene of pseudorabies virus. Virology 185:56–66CrossRefPubMed Yamada S, Imada T, Watanabe W, Honda Y, Nakajima-Iijima S, Shimizu Y, Sekikawa K (1991) Nucleotide sequence and transcriptional mapping of the major capsid protein gene of pseudorabies virus. Virology 185:56–66CrossRefPubMed
57.
Zurück zum Zitat Dijkstra JM, Fuchs W, Mettenleiter TC, Klupp BG (1997) Identification and transcriptional analysis of pseudorabies virus UL6 to UL12 genes. Arch Virol 142:17–35CrossRefPubMed Dijkstra JM, Fuchs W, Mettenleiter TC, Klupp BG (1997) Identification and transcriptional analysis of pseudorabies virus UL6 to UL12 genes. Arch Virol 142:17–35CrossRefPubMed
58.
Zurück zum Zitat Dean H, Cheung AK (1993) A 3’coterminal gene cluster in pseudorabies virus contains herpes simplex virus UL1, UL2, UL3 gene homologs and a unique UL3.5 open reading frame. J Virol 67:5955–5961PubMedPubMedCentral Dean H, Cheung AK (1993) A 3’coterminal gene cluster in pseudorabies virus contains herpes simplex virus UL1, UL2, UL3 gene homologs and a unique UL3.5 open reading frame. J Virol 67:5955–5961PubMedPubMedCentral
59.
Zurück zum Zitat Krause PR, Croen KD, Ostrove JM, Straus SE (1990) Structural and kinetic analyses of herpes simplex virus type I latencyassociated transcripts in human trigeminal ganglia and in cell culture. J Clin Invest 86(1):235–241CrossRefPubMedPubMedCentral Krause PR, Croen KD, Ostrove JM, Straus SE (1990) Structural and kinetic analyses of herpes simplex virus type I latencyassociated transcripts in human trigeminal ganglia and in cell culture. J Clin Invest 86(1):235–241CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Brideau AD, Banfield BW, Enquist LW (1998) The Us9 gene product of pseudorabies virus, an alphaherpesvirus, is a phosphorylated, tail-anchored type II membrane protein. J Virol 72:4560–4570PubMedPubMedCentral Brideau AD, Banfield BW, Enquist LW (1998) The Us9 gene product of pseudorabies virus, an alphaherpesvirus, is a phosphorylated, tail-anchored type II membrane protein. J Virol 72:4560–4570PubMedPubMedCentral
61.
Zurück zum Zitat Tombácz D, Tóth JS, Boldogkoi Z (2011) Deletion of the virion host shut: off gene of pseudorabies virus results in selective upregulation of the expression of early viral genes in the late stage of infection. Genomics 98(1):15–25CrossRefPubMed Tombácz D, Tóth JS, Boldogkoi Z (2011) Deletion of the virion host shut: off gene of pseudorabies virus results in selective upregulation of the expression of early viral genes in the late stage of infection. Genomics 98(1):15–25CrossRefPubMed
62.
Zurück zum Zitat Campbell AM, Heyer LJ (2007) Basic research with DNA microarray. In: Winslow S (ed) Discovering genomics proteomics and bioinformatics, 2nd edn. CSHL Press, San Francisco, pp 238–241 Campbell AM, Heyer LJ (2007) Basic research with DNA microarray. In: Winslow S (ed) Discovering genomics proteomics and bioinformatics, 2nd edn. CSHL Press, San Francisco, pp 238–241
64.
Zurück zum Zitat Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW (2010) A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res. doi:10.1093/nar/gkq543 Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW (2010) A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res. doi:10.​1093/​nar/​gkq543
65.
Zurück zum Zitat Clark TA, Murray IA, Morgan RD, Kislyuk AO, Spittle KE, Boitano M, Fomenkov A, Roberts RJ, Korlach J (2012) Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. Nucleic Acids Res. doi:10.1093/nar/gkr1146 Clark TA, Murray IA, Morgan RD, Kislyuk AO, Spittle KE, Boitano M, Fomenkov A, Roberts RJ, Korlach J (2012) Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. Nucleic Acids Res. doi:10.​1093/​nar/​gkr1146
66.
Zurück zum Zitat Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14(2):178–192CrossRefPubMed Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14(2):178–192CrossRefPubMed
67.
Zurück zum Zitat Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA (2012) Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28(4):464–469CrossRefPubMed Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA (2012) Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28(4):464–469CrossRefPubMed
70.
Metadaten
Titel
Evaluation of the impact of ul54 gene-deletion on the global transcription and DNA replication of pseudorabies virus
verfasst von
Zsolt Csabai
Irma F. Takács
Michael Snyder
Zsolt Boldogkői
Dóra Tombácz
Publikationsdatum
01.09.2017
Verlag
Springer Vienna
Erschienen in
Archives of Virology / Ausgabe 9/2017
Print ISSN: 0304-8608
Elektronische ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-017-3420-3

Weitere Artikel der Ausgabe 9/2017

Archives of Virology 9/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.