Skip to main content
Erschienen in: Archives of Virology 2/2022

04.01.2022 | Original Article

Evaluation of viral load and transcriptome changes in tracheal tissue of two hybrids of commercial broiler chickens infected with avian infectious bronchitis virus: a comparative study

verfasst von: Hamzeh Ghobadian Diali, Hossein Hosseini, Mohammad Hossein Fallah Mehrabadi, Ramak Yahyaraeyat, Arash Ghalyanchilangeroudi

Erschienen in: Archives of Virology | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten

Abstract

Infectious bronchitis virus (IBV) is one of the major threats to the poultry industry, with significant economic consequences. Despite strict measures, the disease is difficult to control worldwide. Experimental evidence demonstrates that the severity of IBV is affected by the genetic background of the chicken, and the selection of appropriate breeds can increase production efficiency. Therefore, the aim of the present study was to assess the strength of the immune response to IBV in tracheal tissues of Ross 308 and Cobb 500 broiler chickens by evaluating transcriptome changes, focusing on immune responses and the viral load in tracheal tissues two days after IBV infection. We identified 899 and 1350 differentially expressed genes (DEGs) in the Cobb 500 and Ross 308 experimental groups compared to their respective control groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated the involvement of signaling pathways (Toll-like receptor [TLR], NOD-like receptor [NLR], and RIG-I-like receptor [RLR] signaling pathways). Interestingly, the RLR signaling pathway appears to be affected only in the Cobb hybrid. Furthermore, the viral loads in tracheal samples obtained from the Ross challenged group were significantly higher than those of the Cobb challenged group. The results of this study indicated that the host transcriptional response to IBV infection as well as the viral load can differ by hybrid. Furthermore, genes such as TLR-3, ChIFN-α, MDA5, LGP2, IRF-7, NF-κB, and TRIM25 may interfere with IBV proliferation.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Barjesteh N, O’Dowd K, Vahedi SM (2020) Antiviral responses against chicken respiratory infections: focus on avian influenza virus and infectious bronchitis virus. Cytokine 127:154961PubMed Barjesteh N, O’Dowd K, Vahedi SM (2020) Antiviral responses against chicken respiratory infections: focus on avian influenza virus and infectious bronchitis virus. Cytokine 127:154961PubMed
2.
Zurück zum Zitat Nawab A et al (2019) Chicken toll-like receptors and their significance in immune response and disease resistance. Int Rev Immunol 38(6):284–306PubMed Nawab A et al (2019) Chicken toll-like receptors and their significance in immune response and disease resistance. Int Rev Immunol 38(6):284–306PubMed
3.
Zurück zum Zitat Liu H et al (2017) Comparative transcriptome analysis reveals induction of apoptosis in chicken kidney cells associated with the virulence of nephropathogenic infectious bronchitis virus. Microb Pathog 113:451–459PubMedPubMedCentral Liu H et al (2017) Comparative transcriptome analysis reveals induction of apoptosis in chicken kidney cells associated with the virulence of nephropathogenic infectious bronchitis virus. Microb Pathog 113:451–459PubMedPubMedCentral
4.
Zurück zum Zitat Reddy VR et al (2015) Genetic characterization of the Belgian nephropathogenic infectious bronchitis virus (NIBV) reference strain B1648. Viruses 7(8):4488–4506PubMedPubMedCentral Reddy VR et al (2015) Genetic characterization of the Belgian nephropathogenic infectious bronchitis virus (NIBV) reference strain B1648. Viruses 7(8):4488–4506PubMedPubMedCentral
5.
Zurück zum Zitat Jackwood MW, Hall D, Handel A (2012) Molecular evolution and emergence of avian gammacoronaviruses. Infect Genet Evol 12(6):1305–1311PubMedPubMedCentral Jackwood MW, Hall D, Handel A (2012) Molecular evolution and emergence of avian gammacoronaviruses. Infect Genet Evol 12(6):1305–1311PubMedPubMedCentral
6.
Zurück zum Zitat Ambali A, Jones R (1990) Early pathogenesis in chicks of infection with an enterotropic strain of infectious bronchitis virus. Avian Dis 34:809–817PubMed Ambali A, Jones R (1990) Early pathogenesis in chicks of infection with an enterotropic strain of infectious bronchitis virus. Avian Dis 34:809–817PubMed
7.
Zurück zum Zitat Awad F et al (2014) An overview of infectious bronchitis virus in chickens. Worlds Poult Sci J 70(2):375–384 Awad F et al (2014) An overview of infectious bronchitis virus in chickens. Worlds Poult Sci J 70(2):375–384
8.
Zurück zum Zitat Benyeda Z et al (2009) Comparison of the pathogenicity of QX-like, M41 and 793/B infectious bronchitis strains from different pathological conditions. Avian Pathol 38(6):449–456PubMed Benyeda Z et al (2009) Comparison of the pathogenicity of QX-like, M41 and 793/B infectious bronchitis strains from different pathological conditions. Avian Pathol 38(6):449–456PubMed
9.
Zurück zum Zitat De Wit J et al (2011) Induction of cystic oviducts and protection against early challenge with infectious bronchitis virus serotype D388 (genotype QX) by maternally derived antibodies and by early vaccination. Avian Pathol 40(5):463–471PubMed De Wit J et al (2011) Induction of cystic oviducts and protection against early challenge with infectious bronchitis virus serotype D388 (genotype QX) by maternally derived antibodies and by early vaccination. Avian Pathol 40(5):463–471PubMed
10.
Zurück zum Zitat Ganapathy K et al (2012) QX-like infectious bronchitis virus isolated from cases of proventriculitis in commercial broilers in England. Vet Rec 171(23):597PubMed Ganapathy K et al (2012) QX-like infectious bronchitis virus isolated from cases of proventriculitis in commercial broilers in England. Vet Rec 171(23):597PubMed
12.
Zurück zum Zitat Raj GD, Jones R (1997) Infectious bronchitis virus: immunopathogenesis of infection in the chicken. Avian Pathol 26(4):677–706PubMed Raj GD, Jones R (1997) Infectious bronchitis virus: immunopathogenesis of infection in the chicken. Avian Pathol 26(4):677–706PubMed
13.
Zurück zum Zitat Hamzić E et al (2016) RNA sequencing-based analysis of the spleen transcriptome following infectious bronchitis virus infection of chickens selected for different mannose-binding lectin serum concentrations. BMC Genomics 17(1):1–13 Hamzić E et al (2016) RNA sequencing-based analysis of the spleen transcriptome following infectious bronchitis virus infection of chickens selected for different mannose-binding lectin serum concentrations. BMC Genomics 17(1):1–13
14.
Zurück zum Zitat Wang X et al (2006) Transcriptome of local innate and adaptive immunity during early phase of infectious bronchitis viral infection. Viral Immunol 19(4):768–774PubMed Wang X et al (2006) Transcriptome of local innate and adaptive immunity during early phase of infectious bronchitis viral infection. Viral Immunol 19(4):768–774PubMed
15.
Zurück zum Zitat Jordan B (2017) Vaccination against infectious bronchitis virus: a continuous challenge. Vet Microbiol 206:137–143PubMed Jordan B (2017) Vaccination against infectious bronchitis virus: a continuous challenge. Vet Microbiol 206:137–143PubMed
16.
Zurück zum Zitat Meir R et al (2012) Immune responses to mucosal vaccination by the recombinant S1 and N proteins of infectious bronchitis virus. Viral Immunol 25(1):55–62PubMed Meir R et al (2012) Immune responses to mucosal vaccination by the recombinant S1 and N proteins of infectious bronchitis virus. Viral Immunol 25(1):55–62PubMed
17.
Zurück zum Zitat Xu P et al (2019) A Multi-omics study of chicken infected by nephropathogenic infectious bronchitis virus. Viruses 11(11):1070PubMedCentral Xu P et al (2019) A Multi-omics study of chicken infected by nephropathogenic infectious bronchitis virus. Viruses 11(11):1070PubMedCentral
18.
Zurück zum Zitat Cong F et al (2013) Transcriptome analysis of chicken kidney tissues following coronavirus avian infectious bronchitis virus infection. BMC Genomics 14(1):1–13 Cong F et al (2013) Transcriptome analysis of chicken kidney tissues following coronavirus avian infectious bronchitis virus infection. BMC Genomics 14(1):1–13
19.
Zurück zum Zitat Lin X et al (2015) Insights into human astrocyte response to H5N1 infection by microarray analysis. Viruses 7(5):2618–2640PubMedPubMedCentral Lin X et al (2015) Insights into human astrocyte response to H5N1 infection by microarray analysis. Viruses 7(5):2618–2640PubMedPubMedCentral
20.
Zurück zum Zitat Najafi H et al (2016) Pathogenicity characteristics of an Iranian variant-2 (IS-1494) like infectious bronchitis virus in experimentally infected SPF chickens. Acta Virol 60(4):393–399PubMed Najafi H et al (2016) Pathogenicity characteristics of an Iranian variant-2 (IS-1494) like infectious bronchitis virus in experimentally infected SPF chickens. Acta Virol 60(4):393–399PubMed
21.
Zurück zum Zitat Ren G et al (2020) Pathogenicity of a QX-like avian infectious bronchitis virus isolated in China. Poult Sci 99(1):111–118PubMed Ren G et al (2020) Pathogenicity of a QX-like avian infectious bronchitis virus isolated in China. Poult Sci 99(1):111–118PubMed
22.
Zurück zum Zitat Rauw W et al (1998) Undesirable side effects of selection for high production efficiency in farm animals: a review. Livest Prod Sci 56(1):15–33 Rauw W et al (1998) Undesirable side effects of selection for high production efficiency in farm animals: a review. Livest Prod Sci 56(1):15–33
23.
Zurück zum Zitat Najafi H et al (2016) Molecular characterization of infectious bronchitis viruses isolated from broiler chicken farms in Iran, 2014–2015. Adv Virol 161(1):53–62 Najafi H et al (2016) Molecular characterization of infectious bronchitis viruses isolated from broiler chicken farms in Iran, 2014–2015. Adv Virol 161(1):53–62
24.
Zurück zum Zitat Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27(3):493–497 Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27(3):493–497
25.
Zurück zum Zitat Dobin A et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21PubMed Dobin A et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21PubMed
26.
Zurück zum Zitat Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13 Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13
27.
Zurück zum Zitat Ye J et al (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13(1):1–11 Ye J et al (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13(1):1–11
28.
Zurück zum Zitat Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time qPCR and the 2− ΔΔCT method. Methods 25(4):402–408PubMed Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time qPCR and the 2− ΔΔCT method. Methods 25(4):402–408PubMed
29.
Zurück zum Zitat Abdollahi H et al (2021) Coronavirus: proteomics analysis of chicken kidney tissue infected with variant 2 (IS-1494)-like avian infectious bronchitis virus. Adv Virol 166(1):101–113 Abdollahi H et al (2021) Coronavirus: proteomics analysis of chicken kidney tissue infected with variant 2 (IS-1494)-like avian infectious bronchitis virus. Adv Virol 166(1):101–113
30.
Zurück zum Zitat Kanehisa M et al (2019) New approach for understanding genome variations in KEGG. Nucleic Acids Res 47(D1):D590–D595PubMed Kanehisa M et al (2019) New approach for understanding genome variations in KEGG. Nucleic Acids Res 47(D1):D590–D595PubMed
31.
Zurück zum Zitat Chhabra R, Chantrey J, Ganapathy K (2015) Immune responses to virulent and vaccine strains of infectious bronchitis viruses in chickens. Viral Immunol 28(9):478–488PubMed Chhabra R, Chantrey J, Ganapathy K (2015) Immune responses to virulent and vaccine strains of infectious bronchitis viruses in chickens. Viral Immunol 28(9):478–488PubMed
32.
Zurück zum Zitat Paul MS et al (2013) Immunostimulatory properties of Toll-like receptor ligands in chickens. Vet Immunol Immunopathol 152(3–4):191–199 Paul MS et al (2013) Immunostimulatory properties of Toll-like receptor ligands in chickens. Vet Immunol Immunopathol 152(3–4):191–199
33.
Zurück zum Zitat Bowie AG, Haga IR (2005) The role of Toll-like receptors in the host response to viruses. Mol Immunol 42(8):859–867PubMed Bowie AG, Haga IR (2005) The role of Toll-like receptors in the host response to viruses. Mol Immunol 42(8):859–867PubMed
34.
Zurück zum Zitat Okabayashi T et al (2006) Cytokine regulation in SARS coronavirus infection compared to other respiratory virus infections. J Med Virol 78(4):417–424PubMedPubMedCentral Okabayashi T et al (2006) Cytokine regulation in SARS coronavirus infection compared to other respiratory virus infections. J Med Virol 78(4):417–424PubMedPubMedCentral
35.
Zurück zum Zitat Le Goffic R et al (2007) Cutting Edge: Influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral responses in human lung epithelial cells. J Immunol 178(6):3368–3372PubMed Le Goffic R et al (2007) Cutting Edge: Influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral responses in human lung epithelial cells. J Immunol 178(6):3368–3372PubMed
36.
Zurück zum Zitat Liu P et al (2007) Retinoic acid-inducible gene I mediates early antiviral response and Toll-like receptor 3 expression in respiratory syncytial virus-infected airway epithelial cells. J Virol 81(3):1401–1411PubMed Liu P et al (2007) Retinoic acid-inducible gene I mediates early antiviral response and Toll-like receptor 3 expression in respiratory syncytial virus-infected airway epithelial cells. J Virol 81(3):1401–1411PubMed
37.
Zurück zum Zitat Guo X et al (2008) Molecular mechanisms of primary and secondary mucosal immunity using avian infectious bronchitis virus as a model system. Vet Immunol Immunopathol 121(3–4):332–343PubMed Guo X et al (2008) Molecular mechanisms of primary and secondary mucosal immunity using avian infectious bronchitis virus as a model system. Vet Immunol Immunopathol 121(3–4):332–343PubMed
38.
Zurück zum Zitat Kameka AM et al (2014) Induction of innate immune response following infectious bronchitis corona virus infection in the respiratory tract of chickens. Virology 450:114–121PubMed Kameka AM et al (2014) Induction of innate immune response following infectious bronchitis corona virus infection in the respiratory tract of chickens. Virology 450:114–121PubMed
39.
Zurück zum Zitat Chen S, Cheng A, Wang M (2013) Innate sensing of viruses by pattern recognition receptors in birds. Vet Res 44(1):1–12 Chen S, Cheng A, Wang M (2013) Innate sensing of viruses by pattern recognition receptors in birds. Vet Res 44(1):1–12
40.
Zurück zum Zitat Matsumoto M, Seya T (2008) TLR3: interferon induction by double-stranded RNA including poly (I: C). Adv Drug Deliv Rev 60(7):805–812PubMed Matsumoto M, Seya T (2008) TLR3: interferon induction by double-stranded RNA including poly (I: C). Adv Drug Deliv Rev 60(7):805–812PubMed
41.
Zurück zum Zitat Fulton R et al (1997) Effect of Cytoxan®-induced heteropenia on the response of specific-pathogen-free chickens to infectious bronchitis. Avian Dis 41:511–518PubMed Fulton R et al (1997) Effect of Cytoxan®-induced heteropenia on the response of specific-pathogen-free chickens to infectious bronchitis. Avian Dis 41:511–518PubMed
42.
Zurück zum Zitat Dar A et al (2005) Transcriptional analysis of avian embryonic tissues following infection with avian infectious bronchitis virus. Virus Res 110(1–2):41–55PubMedPubMedCentral Dar A et al (2005) Transcriptional analysis of avian embryonic tissues following infection with avian infectious bronchitis virus. Virus Res 110(1–2):41–55PubMedPubMedCentral
43.
Zurück zum Zitat Matthijs MG et al (2009) Course of infection and immune responses in the respiratory tract of IBV infected broilers after superinfection with E. coli. Vet Immunol Immunopathol 127(1–2):77–84PubMed Matthijs MG et al (2009) Course of infection and immune responses in the respiratory tract of IBV infected broilers after superinfection with E. coli. Vet Immunol Immunopathol 127(1–2):77–84PubMed
44.
Zurück zum Zitat Garceau V et al (2010) Pivotal Advance: Avian colony-stimulating factor 1 (CSF-1), interleukin-34 (IL-34), and CSF-1 receptor genes and gene products. J Leukoc Biol 87(5):753–764PubMed Garceau V et al (2010) Pivotal Advance: Avian colony-stimulating factor 1 (CSF-1), interleukin-34 (IL-34), and CSF-1 receptor genes and gene products. J Leukoc Biol 87(5):753–764PubMed
45.
Zurück zum Zitat Dunkelberger JR, Song W-C (2010) Complement and its role in innate and adaptive immune responses. Cell Res 20(1):34–50PubMed Dunkelberger JR, Song W-C (2010) Complement and its role in innate and adaptive immune responses. Cell Res 20(1):34–50PubMed
46.
Zurück zum Zitat Liniger M et al (2012) Chicken cells sense influenza A virus infection through MDA5 and CARDIF signaling involving LGP2. J Virol 86(2):705–717PubMedPubMedCentral Liniger M et al (2012) Chicken cells sense influenza A virus infection through MDA5 and CARDIF signaling involving LGP2. J Virol 86(2):705–717PubMedPubMedCentral
48.
Zurück zum Zitat Keestra AM et al (2013) Unique features of chicken Toll-like receptors. Dev Comp Immunol 41(3):316–323PubMed Keestra AM et al (2013) Unique features of chicken Toll-like receptors. Dev Comp Immunol 41(3):316–323PubMed
49.
Zurück zum Zitat Barber MR et al (2010) Association of RIG-I with innate immunity of ducks to influenza. Proc Natl Acad Sci 107(13):5913–5918PubMedPubMedCentral Barber MR et al (2010) Association of RIG-I with innate immunity of ducks to influenza. Proc Natl Acad Sci 107(13):5913–5918PubMedPubMedCentral
50.
Zurück zum Zitat Yang X et al (2018) Induction of innate immune response following introduction of infectious bronchitis virus (IBV) in the trachea and renal tissues of chickens. Microb Pathog 116:54–61PubMed Yang X et al (2018) Induction of innate immune response following introduction of infectious bronchitis virus (IBV) in the trachea and renal tissues of chickens. Microb Pathog 116:54–61PubMed
51.
Zurück zum Zitat Rajsbaum R et al (2012) Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. PLoS Pathog 8(11):e1003059PubMedPubMedCentral Rajsbaum R et al (2012) Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. PLoS Pathog 8(11):e1003059PubMedPubMedCentral
Metadaten
Titel
Evaluation of viral load and transcriptome changes in tracheal tissue of two hybrids of commercial broiler chickens infected with avian infectious bronchitis virus: a comparative study
verfasst von
Hamzeh Ghobadian Diali
Hossein Hosseini
Mohammad Hossein Fallah Mehrabadi
Ramak Yahyaraeyat
Arash Ghalyanchilangeroudi
Publikationsdatum
04.01.2022
Verlag
Springer Vienna
Erschienen in
Archives of Virology / Ausgabe 2/2022
Print ISSN: 0304-8608
Elektronische ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-021-05322-5

Weitere Artikel der Ausgabe 2/2022

Archives of Virology 2/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

ADT zur Radiatio nach Prostatektomie: Wenn, dann wohl länger

24.05.2024 Prostatakarzinom Nachrichten

Welchen Nutzen es trägt, wenn die Strahlentherapie nach radikaler Prostatektomie um eine Androgendeprivation ergänzt wird, hat die RADICALS-HD-Studie untersucht. Nun liegen die Ergebnisse vor. Sie sprechen für länger dauernden Hormonentzug.

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.