Skip to main content
Erschienen in: BMC Ophthalmology 1/2020

Open Access 01.12.2020 | Research article

Ex vivo anti-microbial efficacy of various formaldehyde releasers against antibiotic resistant and antibiotic sensitive microorganisms involved in infectious keratitis

verfasst von: Daeryl E. Amponin, Joanna Przybek-Skrzypecka, Mariya Zyablitskaya, Anna Takaoka, Leejee H. Suh, Takayuki Nagasaki, Stephen L. Trokel, David C. Paik

Erschienen in: BMC Ophthalmology | Ausgabe 1/2020

Abstract

Background

Corneal infections with antibiotic-resistant microorganisms are an increasingly difficult management challenge and chemically or photochemically cross-linking the cornea for therapy presents a unique approach to managing such infections since both direct microbial pathogens killing and matrix stabilization can occur simultaneously. The present study was undertaken in order to compare the anti-microbial efficacy, in vitro, of 5 candidate cross-linking solutions against 5 different microbial pathogens with relevance to infectious keratitis.

Methods

In vitro bactericidal efficacy studies were carried out using 5 different FARs [diazolidinyl urea (DAU), 1,3-bis(hydroxymethyl)-5,5-dimethylimidazolidine-2,4-dione (DMDM), sodium hydroxymethylglycinate (SMG), 2-(hydroxymethyl)-2-nitro-1,3-propanediol (NT = nitrotriol), 2-nitro-1-propanol (NP)] against 5 different microbial pathogens including two antibiotic-resistant species [methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), Pseudomonas aeruginosa (PA), and Candida albicans (CA)]. Standard in vitro antimicrobial testing methods were used.

Results

The results for MSSA were similar to those for MRSA. DAU, DMDM, and SMG all showed effectiveness with greater effects generally observed with longer incubation times and higher concentrations. Against MRSA, 40 mM SMG at 120 min showed a > 95% kill rate, p < 0.02. Against VRE, 40 mM DAU for 120 min showed a > 94% kill rate, p < 0.001. All FARs showed bactericidal effect against Pseudomonas aeruginosa, making PA the most susceptible of the strains tested. Candida showed relative resistance to these compounds, requiring high concentrations (100 mM) to achieve kill rates greater than 50%.

Conclusion

Our results show that each FAR compound has different effects against different cultures. Our antimicrobial armamentarium could potentially be broadened by DAU, DMDM, SMG and other FARs for antibiotic-resistant keratitis. Further testing in live animal models are indicated.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
BSA
Bovine Serum Albumin
CA
Candida albicans
CFU
colony-formulating units
CXL
UVA-riboflavin mediated photochemical cross-linking (also known as the Dresden protocol)
DAU
Diazolidinyl urea
DMDM
1,3-Bis(Hydroxymethyl)-5,5-dimethylimidazolidine-2,4-dione
FA
Formaldehyde
FAR(s)
Formaldehyde releasing agent(s)
MDR
Multi-drug resistant
MRSA
Methicillin-resistant Staphylococcus aureus
MSSA
Methicillin-sensitive Staphylococcus aureus
NP
2-nitro-1-propanol
NT
2-(hydroxymethyl)-2-nitro-1,3-propanediol = nitrotriol
PA
Pseudomonas aeruginosa
SMG
Sodium hydroxymethylglycinate
TXL
Therapeutic tissue cross-linking
UVA
Ultraviolet-A irradiation
VRE
Vancomycin Resistant Enterococcus

Background

Corneal scars, remnants of infectious keratitis, are one of the leading causes of blindness and visual impairment worldwide [1] and a continuous rise in the incidence of bacterial and fungal keratitis has been reported recently [2]. The US Centers for Disease Control and Prevention estimates that over 2 million people are infected with drug-resistant microbes annually in the US [3, 4]. This includes a soaring number of multi-resistant microorganisms affecting the human cornea (i.e. Pseudomonas aeruginosa (PA), methicillin- resistant Staphylococcus aureus (MRSA) and methicillin- susceptible Staphylococcus aureus (MSSA)) [5, 6]. Rising rates of resistance to first and second-line traditional antibiotic treatment, such as the fluoroquinolone ciprofloxacin, has been observed [7]. Thus, the number of blind individuals as a result of corneal infections will rise as our ability to effectively treat infectious keratitis diminishes secondary to the increasing development of microbial pathogen resistance. This underlines a need to seek alternatives to available antibiotic treatment protocols [8].
Several strategies to combat multi-drug resistance are under development. Some of the approaches include: the development of new classes of antibiotics (i.e. teixobactin, which shows activity against Staphylococcus aureus and Mycobacterium tuberculosis) [9], novel application of well-known antibiotic (i.e. chloramphenicol for fungal infection [10]), synergistic combinations of existing antibiotics [11], systemic antibiotics [12], as well as potentiator molecules (especially for gram negative bacteria) that serve to increase bacterial membrane permeability [13]. One of the potentially new approaches to multi-drug resistant keratitis treatment is riboflavin-UVA photochemical corneal cross-linking (or CXL). CXL was originally developed for the treatment of keratoconus [14]. Covalent modification of fibrillar collagens and the extracellular matrix molecules results in tissue strengthening and can halt ectatic progression [15] . A growing body of evidence shows the benefits of PACK-CXL, a trademark for application of the CXL techniques to infectious keratitis [16].
Importantly, PACK-CXL has been shown to have equal or improved bactericidal efficacy against antibiotic resistant strains of Pseudomonas, Enterococcus, and Staphylococcus aureus [17]. Furthermore, an overwhelming number of reports have shown that CXL is effective as an adjunct to standard antibiotic agents [18, 19] for bacterial keratitis. CXL has also been used with success as a primary therapy for infectious keratitis due to bacterial causes [20, 21]. That being said, it is important to note that CXL is contraindicated for the treatment of herpetic keratitis [22] and can cause reactivation of latent herpes [23]. CXL also appears to be less effective against fungal infections, where the PACK-CXL clinical literature is less convincing [24]. Other drawbacks to CXL include the potential UVA exposure risks and issues surrounding corneal epithelial debridement. For these reasons, we are investigating the use of topical therapeutic cross-linking solutions to provide a new cross-linking option for patients.
Formaldehyde releasers (FARs) are a group of over 60 chemicals widely used in the textile and cosmetics industries [25]. They differ from one another in terms of toxicity, water solubility, molecular weight, hydrophobicity, mutagenicity and bioavailability [25]. We are developing them for clinical ophthalmic use in the form of a cross-linking solution. This could provide a new option for corneal tissue stabilization in keratoconus and post –LASIK ectasias. Initial studies had focused on the nitroalcohols, a subgroup of FARs [26]. The aim of the present study was to assess the antimicrobial efficacy and identify differences between 5 selected formaldehyde-releasing agents: diazolidinyl urea (DAU), 1,3-bis(hydroxymethyl)-5,5-dimethylimidazolidine-2,4-dione (DMDM), sodium hydroxymethylglycinate (SMG), 2-(hydroxymethyl)-2-nitro-1,3-propanediol (NT = nitrotriol), and 2-nitro-1-propanol (NP) [see Table 1] against 5 different keratitis pathogens. The present study serves as an extension of our previous work using SMG only [33]. Considering the interesting results from that study, we sought to look for other FARs with potential application as topical cross-linking agents for infectious keratitis.
Table 1
Formaldehyde-releasing agents (FARs) included in the study, chemical names, acronyms, molecular weights and structure
Chemical name
Acronym
Moles of FA released per 1 mol of FAR
Molecular weight
Predicted octanol/water partition coefficient, LogP
Toxicity (LD50, dermal, rabbit)
Structure
Diazolidinyl urea (1-[3,4-bis(hydroxymethyl)-2,5-dioxoimidazolidin-4-yl]-1,3-bis(hydroxymethyl)urea)
DAU
4
278.22
−5.395 ± 0.866 [27]
> 2000 mg/kg [28]
https://static-content.springer.com/image/art%3A10.1186%2Fs12886-020-1306-8/MediaObjects/12886_2020_1306_Figa_HTML.gif
1,3-Bis(Hydroxymethyl)-5,5-dimethylimidazolidine-2,4-dione
DMDM
2
188.18
−2.3 [29]
> 2000 mg/kg [30]
https://static-content.springer.com/image/art%3A10.1186%2Fs12886-020-1306-8/MediaObjects/12886_2020_1306_Figb_HTML.gif
Sodium hydroxymethylglycinate
SMG
1
127.07
−1.197 [31]
> 2000 mg/kg [32]
https://static-content.springer.com/image/art%3A10.1186%2Fs12886-020-1306-8/MediaObjects/12886_2020_1306_Figc_HTML.gif
2-(hydroxymethyl)-2-nitro-1,3-propanediol
NT
3
151.12
−0.115 ± 0.77 [27]
NA
https://static-content.springer.com/image/art%3A10.1186%2Fs12886-020-1306-8/MediaObjects/12886_2020_1306_Figd_HTML.gif
2-nitro-1-propanol
NP
1
105.09
−0.066 ± 0.269 [27]
NA
https://static-content.springer.com/image/art%3A10.1186%2Fs12886-020-1306-8/MediaObjects/12886_2020_1306_Fige_HTML.gif
Formaldehyde
FA
 
30.03
0.350 ± 0.145 [27]
NA
https://static-content.springer.com/image/art%3A10.1186%2Fs12886-020-1306-8/MediaObjects/12886_2020_1306_Figf_HTML.gif
Table 2
Summary of the experimental conditions
Bacteria strain
FAR’s concentration, mM
Time of incubation, min
Microorganism concentration, CFUs
Methicillin-sensitive Staphylococcus aureus
0, 20, 40, 100
60, 120
104, 104/2
Methicillin-resistant Staphylococcus aureus
0, 20, 40, 100
60, 120
104, 104/2
Vancomycin-resistant Enterococcus
0, 20, 40, 100
60, 120
104, 104/2
Pseudomonas aeruginosa
0, 20, 40, 100
60, 120
104, 104/2
Candida albicans
0, 20, 40, 100
60, 120
104, 104/2

Methods

Chemicals

The bactericidal effect of five different formaldehyde-releasing agents were studied. Key chemicals were as follows: a) sodium hydroxymethylglycinate 50% (SMG) [Suttocide™, Ashland, Columbus OH, USA], b) 2-nitro-1-propanol (NP), c) diazolidinyl urea (DAU) [Sigma Aldrich, Saint Louis, USA], d) 1,3-bis(hydroxymethyl)-5,5-dimethyl-2,4-imidazolidinedione (DMDM) and e) 2-(hydroxymethyl)-2-nitro-1,3-propanediol (NT) [Chemistry Connection LLC, Conway AR, USA]. BBL™ Trypticase™ Soy Broth, BBL™ Trypticase™ Soy Agar, Difco™ Sabouraud Dextrose Broth, Difco D/E Neutralizing Broth [Fisher Scientific, Waltham, MA, USA] were used for bacteria growth. Adult bovine serum albumin (BSA) was bought from Sigma-Aldrich Corp. (St. Louis, MO, USA). All FARs dilutions were made with balanced salt solution, BSS Plus® [Alcon Laboratory Inc., Forth Worth, TX, USA] and were prepared within 60 min of the experiments apart from NT and NP which were prepared 24 h before the experiment due to their prolonged formaldehyde release.

Bacteria strains

The following microorganisms were obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA): methicillin-resistant Staphylococcus aureus [(MRSA) ATCC 33592], Staphylococcus aureus (ATCC 6538), Pseudomonas aeruginosa (ATCC 27853), Candida albicans (ATTC 11651). VRE was a clinical isolate #10988 from Columbia University Medical Center, Department of Surgery.

Experimental procedure

Treatment conditions (FAR concentration, incubation period and use of NB) are summarized in Table 2. Pathogens were grown from a slant in either a Trypticase Soy Broth (TSB) with 10% Albumin for MRSA, MSSA, PA, and VRE or a Difco Sabouraud Dextrose Broth (DB) with 10% BSA for CA. The optical density of each pathogen was determined using a spectrophotometer set at 600 nm and zeroed using respective broths containing 10% BSA protein. From the exponential growth phase, 50 μL of 5 × 103 to 105 colony forming units (CFU) per mL were added to a 96 well flat bottom assay plate. Each well was treated with a final concentration of 20 mM, 40 mM, 100 mM of FAR by pipetting 50 μL of FAR dissolved in a balanced salt solution (BSS) into each well. Control wells were treated with 50 μL of BSS. Following addition of FAR, the lid was placed on the assay plate, and it was gently rocked back and forth 5 times to mix the FAR and pathogen. After a 60–120 min treatment period, 200 μL of Difco D/E Neutralizing Broth (39 mg/mL) was pipetted into each well to neutralize the SMG, and mixed by pipetting up and down five times. The resulting mixture of the pathogen, FAR, and neutralizing agent was pipetted onto an BBL trypticase soy agar plate and evenly spread with an L-spreader. Plates were incubated upside down in a Forma-Steri-Cycle CO2 incubator for 20–28 h, except Candida which was incubated for a longer time period (48–58 h) due to its slower growth rate. Plates were then manually counted by the naked eye and recorded. During the counting process, each colony was marked on the bottom of the culture plate with a fine point marking pen in order to assure accurate counting.

Statistical analysis

Each final concentration of FAR (0 [control], 20 mM, 40 mM, 100 mM) was tested on 3 to 6 plates for every pathogen and every incubation time (30 min, 1 h, 2 h). The kill rate for each plate was calculated by comparing the number of colonies on the plate and the mean value of the colonies on the control plates. Two-way ANOVA was used to compare the differences in the means of the kill rate, FARs concentration, and the time of the treatment. As for the graphs, the mean kill rate for every plate for each FAR dosage were plotted and a linear regression model was generated. Wilcoxon rank sum test was applied to compare two groups. For all of the analyses p < 0.05 was considered statistically significant. The data and models were analyzed using the software STATA 13.1 (College Station, TX, USA). These computational statistical analyses were carried out with the assistance the Columbia University biostatistical core service.

Results

In this study, we tested the anti-microbial efficacy of five FARs against 5 different relevant pathogens and a main point of this study has been to delineate potential differences in efficacy between the different compounds. The effect of FARs differed among microorganisms and compounds and their concentrations itself. SMG proved to be the most effective overall. Compared to the control group the most prominent bactericidal effect for 60 min incubations were obtained for 100 mM SMG against MRSA (kill rate 96%, SD 5%) and PA (kill rate 96%, SD 3%). This is particularly important as these two species are particularly prevalent antibiotic resistant organisms. For VRE the best effect was obtained with DMDM 100 mM at 60 min (kill rate 91%, SD 7%). As would be expected based on the relationship between contact time and kill rate, using 120 min incubation time, the kill rate exceeded 90% in 11 different means (DAU 100 mM and SMG 100 mM for all bacteria tested: MRSA, MSSA, PA, VRE; DAU 40 mM for VRE; SMG 40 mM for MRSA and DMDM 100 mM for PA) (Table 3). That being said, greater killing effects were not always observed by extending the exposure time from 60 min to 120 min for a given concentration. That is, when comparing kill rates between 60 min and 120 min at the same concentration. The reasons for this inconsistency is unclear, however, explanations include the possibility of polymerization effects occurring as a result of released free formaldehyde (i.e. formaldehyde polymerizing with itself) as well as possible reactions with the FAR products resulting in formation of either the starting material or additional reaction products. An example of this was reported previously by our group [26].
Table 3
60- and 120-min incubation time experiment: Mean Kill Rates ±SD of different compounds on five different bacterial strains and p values (p* compares 0 and the relevant dose of the same FAR for 60 min, p** compares 0 and the relevant dose of each FAR for 120 min)
Bacteria strain
Compound
Concentration (mM)
60 min
120 min
Mean Kill Rate ± SD (%)
p*
Mean Kill Rate ± SD (%)
p**
MSSA
DAU
20
64 ± 13
0.000
38 ± 15
0.239
40
55 ± 36
0.000
80 ± 10
0.017
100
92 ± 6
0.000
93 ± 5
0.006
DMDM
20
−2 ± 77
0.92
55 ± 22
0.091
40
48 ± 13
0.01
49 ± 30
0.132
100
52 ± 48
0.006
88 ± 11
0.010
SMG
20
35 ± 16
0.055
81 ± 9
0.016
40
49 ± 27
0.009
87 ± 10
0.010
100
88 ± 2
0.000
100 ± 4
0.004
NT
20
−20 ± 14
0.262
−48 ± 31
0.137
40
57 ± 36
0.003
−47 ± 108
0.150
100
52 ± 47
0.006
−60 ± 115
0.067
NP
20
39 ± 9
0.037
−66 ± 47
0.044
40
38 ± 46
0.042
−61 ± 123
0.062
100
39 ± 24
0.035
18 ± 13
0.565
MRSA
DAU
20
27 ± 29
0.042
59 ± 25
0.119
40
51 ± 12
0.000
94 ± 4
0.016
100
86 ± 16
0.000
97 ± 1
0.013
DMDM
20
−15 ± 60
0.223
75 ± 4
0.052
40
44 ± 38
0.001
85 ± 2
0.029
100
80 ± 12
0.000
88 ± 3
0.023
SMG
20
9 ± 12
0.582
83 ± 6
0.032
40
34 ± 8
0.111
95 ± 4
0.015
100
96 ± 5
0.000
100 ± 1
0.011
NT
20
20 ± 4
0.241
69 ± 17
0.073
40
51 ± 9
0.017
2 ± 57
0.964
100
62 ± 1
0.005
55 ± 45
0.144
NP
20
52 ± 7
0.003
−5 ± 35
0.892
40
44 ± 24
0.038
−59 ± 57
0.123
100
60 ± 36
0.001
122 ± 224
0.002
VRE
DAU
20
50 ± 16
0.000
68 ± 25
0.000
40
64 ± 29
0.000
94 ± 2
0.000
100
87 ± 11
0.000
98 ± 3
0.000
DMDM
20
−1 ± 100
0.925
25 ± 15
0.000
40
62 ± 15
0.000
44 ± 2
0.000
100
91 ± 7
0.000
85 ± 2
0.000
SMG
20
70 ± 7
0.001
61 ± 2
0.000
40
73 ± 7
0.000
84 ± 2
0.000
100
87 ± 9
0.000
93 ± 2
0.000
NT
20
17 ± 6
0.404
−5 ± 12
0.456
40
−4 ± 15
0.856
7 ± 2
0.29
100
−2 ± 15
0.902
18 ± 5
0.009
NP
20
−4 ± 7
0.798
65 ± 16
0.000
40
−5 ± 2
0.750
34 ± 15
0.000
100
−11 ± 12
0.517
48 ± 31
0.000
PA
DAU
20
51 ± 11
0.000
19 ± 18
0.113
40
67 ± 10
0.000
70 ± 26
0.000
100
86 ± 9
0.000
99 ± 1
0.000
DMDM
20
64 ± 33
0.000
76 ± 17
0.000
40
69 ± 10
0.000
16 ± 37
0.000
100
79 ± 12
0.000
97 ± 2
0.000
SMG
20
61 ± 3
0.000
74 ± 10
0.000
40
85 ± 2
0.000
89 ± 9
0.000
100
96 ± 3
0.000
99 ± 1
0.000
NT
20
55 ± 15
0.000
7 ± 15
0.496
40
83 ± 3
0.000
19 ± 9
0.112
100
71 ± 3
0.000
24 ± 28
0.017
NP
20
70 ± 7
0.000
52 ± 6
0.000
40
81 ± 11
0.000
78 ± 5
0.000
100
83 ± 5
0.000
86 ± 17
0.000
CA
DAU
20
24 ± 4
0.804
5 ± 10
0.290
40
20 ± 24
0.846
7 ± 8
0.163
100
72 ± 10
0.013
53 ± 8
0.000
DMDM
20
6 ± 35
0.585
23 ± 10
0.000
40
42 ± 14
0.001
37 ± 10
0.000
100
59 ± 15
0.000
60 ± 11
0.000
SMG
20
3 ± 25
0.274
0 ± 3
0.887
40
33 ± 21
0.626
2 ± 7
0.627
100
38 ± 30
0.430
4 ± 4
0.493
NT
20
16 ± 11
0.690
3 ± 18
0.525
40
53 ± 12
0.109
1 ± 5
0.790
100
42 ± 3
0.375
54 ± 4
0.000
NP
20
42 ± 20
0.333
0 ± 8
0.948
40
25 ± 2
0.934
10 ± 5
0.049
100
63 ± 13
0.039
86 ± 4
0.000
In general, the results with the nitroalcohols (NA) were not satisfactory. The two NAs tested, NT and NP demonstrated limited potential against MSSA, MRSA and VRE although both showed some effectiveness against PA at 60 min incubation. NAs tend to release free FA slowly by comparison with other FARs (unpublished data). This may account for the lack of antibacterial effectiveness shown by the NAs. Surprisingly, the NAs did fairly well against CA, an organism that proved to be troublesome for the other FARs tested. In summary, the FAR/pathogen pairings that showed the most consistent trends (that is, both dose and time dependency) were as follows: SMG against MSSA, MRSA, and PA; DAU against MRSA and VRE; DMDM against MRSA.
A description of results based on the organism tested is now included:

Staphylococcus aureus (methicillin sensitive = MSSA and methicillin resistant = MRSA) (Fig. 1a and b and Table 3)

The results for MRSA and MSSA were similar for all the compounds. In other words, the effectiveness of a given FAR was similar against either MSSA or MRSA and this is to be expected, given that they are both Staphylococcus species. DAU, DMDM, and SMG all showed some effectiveness with greater effects observed with the longer incubation time of 120 min. There was also a significant concentration dependency for these three agents with higher concentrations having greater efficacy than lower.
MSSA growth was inhibited in a dose-dependent pattern. The results obtained for DAU showed robust kill rate, mean colony count for 100 mM was 14 (SD ± 4.4; p < 0001 compared to control group), followed by mean 72 for 40 mM concentration (SD ± 27.6; p < 0.001 compared to control group) and 120 for 20 mM concentration (SD ± 50.2; p < 0.001 compared to control group). The kill rate for each compound and its concentration, as well as the statistical significance of their differences are summarized in Table 3.
Similar to MSSA, MRSA growth was inhibited in a dose-dependent manner using DAU, SMG, DMDM and NT in 60 min incubation time and for DAU, DMDM and SMG for 120 min incubation time. The mean kill rate for the 100 mM dose was: 1) SMG at 96% (SD ± 5% p < 0.0001 compared to the controls), 2) DAU at 86% (SD ± 16%, p < 0.0001 versus control) and 3) DMDM at 80% (SD ± 12% p < 0.0001 vs controls) for 60 min exposure. Additionally, statistically significant results at p < 0.01were obtained for 22 different conditions using all 5 FARs at either 60- or 120-min exposures (Table 3). Figure 1a and b depicts mean kill rates of each compound tested.

Enterococcus (vancomycin resistant = VRE) (Fig. 1c and Table 3)

For VRE, SMG and DAU were the most effective, with DAU showing time and concentration dependency with less time and concentration dependence for SMG, which showed a reasonable kill rate even at the lowest concentration (20 mM) and shortest time (60 min). A statistically significant (p < 0.01) bactericidal effect was noted for all concentrations of DAU, DMDM, and SMG against VRE although the effects were greatest with DAU and SMG. That being said, the effect with DMDM at 100 mM for 60 min presented the most robust effect among all conditions (kill rate 91%, SD ± 7, p < 0.0001 compared to control group). Contrary to the aforementioned, the NAs NT and NP did not impair bacterial growth at all following a 60 min incubation (Table 3).

Pseudomonas aeruginosa = PA (Fig. 1d and Table 3)

All FARs showed bactericidal effects against PA (p < 0.0001 for each compound concentration compared to control group) in 60- and 120-min incubations, making PA the most susceptible of the strains tested to FARs. This is important as this was the only gram-negative rod tested and as such, represents one of an important group of bacteria (i.e. gram-negative rods) with several related species also showing antibiotic resistance, (i.e. being Klebsiella, E. coli, and Enterobacter). Furthermore, PA is becoming a major problem pathogen leading to rapid corneal perforation as a result of significant collagenase production. This makes cross-linking therapy with SMG an attractive possibility for preserving tissue, since cross-linking increases the resistance of the tissue collagen to enzymatic digestion. Future studies should examine the effects against specific pseudomonal strains.
SMG was the most effective FAR. The kill rate for SMG 100 mM for a 60 min incubation was 96% (SD ± 3) and 99% (SD ± 1) for 120 min incubations. That being said, at the lowest concentration (20 mM), DMDM exerted stronger inhibition against PA than the equivalent concentration of SMG (20 mM). For the majority of compounds, the results show high effectiveness of each compound at 60- and 120-min incubations, with the longer incubation time resulting in a stronger killing effect. However, there is one FAR (NT) that showed an opposite effect in this regard with decreased killing noted during the longer exposure time. The reason for this is unclear. However, one possibility is the reversibility of the reaction as well as products of the reaction getting involved in secondary reactions [26]. The data is displayed in Fig. 1 and Table 3.

Candida albicans = CA (Fig. 1e and Table 3)

Finally, CA growth was studied under the same time frame (60, 120 min) as the previous strains of microorganisms. CA showed relative resistance to SMG, a compound with consistently good effects against the bacterial species. Although the average activity of FARs were generally lower for CA than for the bacteria strains, we did observe some trends of potential effects as follows: DAU 100 mM at 60 and 120 min (p < 0.0001), DMDM 20 mM for 120 min (p < 0.0001), DMDM 40 mM for 60 and 120 min (p < 0.0001), DMDM 100 mM for 60 and 120 min (p < 0.0001), NT 20 and 100 mM for 60 and 120 min (p < 0.0001), NP 100 mM for 120 min (p < 0.0001). The highest kill rate was obtained for NP 100 mM for 120 min (kill rate 86%, SD ± 4, p < 0.001). In addition, it is interesting to note that the NAs performed better against CA than against the other bacteria tested. Figure 1e and Table 3 show the detailed information acquired in the CA experiments.

Discussion

The emergence of bacterial resistance to traditional antibiotics has become a serious problem in ophthalmology. The latest reports from India suggest that 80% of MRSA strains are resistant to available antibiotics, while the same is true for 20% of MSSA [34]. PA is known clinically as a rapid mutator that can lead to the development of extended spectrum B-lactamase producing variants (ESBL) [35, 36]. New strategies are actively being sought in order to address this concern. One of them, riboflavin-UVA photochemical corneal cross-linking (CXL), has been studied for over a decade now. This procedure was initially used to induce cross-linking (CXL) to stabilize the cornea in keratoconus but is now actively being used to treat corneal infections (PACK-CXL = photoactivated chromophore for keratitis-CXL). There are drawbacks, however, due primarily to the riboflavin photosensitizer and UVA light requirements (UVA risks include cataract formation and retinal degeneration, and direct keratocyte toxicity). CXL is also less effective in deep fungal corneal infections owing to a therapeutic cross-linking effect that is limited to the anterior stroma [37], and is contraindicated for herpetic keratitis, where exacerbations can occur [38, 39]. Therefore, to address these challenges, we are developing a topical approach using formaldehyde releasing compounds (FARs) with a goal of omitting UVA light exposure. In this study we evaluated the therapeutic effect of 5 FARs on 4 bacterial and 1 fungal strain.
The results indicate that different FARs have different microbicidal effects against the 5 pathogens tested. A summary of the results suggests that DAU, DMDM, and SMG all could be potentially used as Staphylococcus drugs (MRSA and MSSA). DAU and SMG, but less so DMDM, also showed promising effects on VRE and even at lower concentrations (20 mM, 40 mM).
Regarding the mechanism of the interaction between FARs and bacteria growth, it seems likely that the induced chemistry that is responsible for extracellular matrix modification could also cause microbial cytotoxicity. In our case, free FA released locally. FA is reactive and so it is likely that covalent modification of microbial target substrate molecules, including proteins with reactive groups (amines, tyrosine, cysteines, etc.), is central to the microbicidal effect [40].
DAU is an allantoin derivative, where allantoin reacts with four equivalents of formaldehyde under basic conditions to form the parent compound [41]. Thus, it has a theoretical yield of 4 mol of FA per mole of DAU. Dilution encourages the decomposition reaction, overcoming possible steric interference and facilitating the separation of the formaldehyde moiety from the mother compound. The actual FA yield of DAU is less than the expected 4 mol, however. Lehmann et al. demonstrated that DAU exists as a mixture of isomers, with “compound BHU” (1-(3,4-bis-hydroxymethyl-2,5-dioxo-imidazolidin-4-yl)-1,3-bis-hydroxymethyl-urea) as the dominant form (30–40%) [42]. It is hypothesized that the remainder consists of many polymers of allantoin-formaldehyde condensation products. Thus, this complex mixture of compounds could account for the lower than expected FA yield.
DMDM is a hydantoin with a theoretical yield of two FA moieties. For DMDM at concentrations from ~ 3 mM to ~ 1.3 M a more alkaline pH (8.5–9 as compared to pH 6–6.5 and pH 4–4.5) and a lower concentration favored higher levels of free FA, consistent with the release characteristics of DAU, which is also increased at lower concentrations [43]. Once FA is liberated from either of the nitrogen atoms of the five-membered ring, the resulting negative charge on the nitrogen atom is delocalized into the π-system provided by both of the adjacent carbonyl moieties. The formation of intramolecular hydrogen bonds between local DMDM molecules stabilizes any additional negative charge.
SMG has a theoretical yield of one mole of FA per mole of SMG. In spite of this lower ratio when compared to the other FARs of this study, SMG appears to release FA more readily than other FARs with strong tissue cross-linking effects [25] and behaves differently from the other FARs in certain regards. Solutions of SMG in water tend to be highly alkaline (Fig. 1) but can be modulated downward with the addition dilute neutral buffers. The other FARs produce neutral solutions and the FA release can be facilitated by the addition of base [44]. It has a molecular weight of 127.07 g/mol. Its small size facilitates its ability to pass through the epithelial barrier to induce cross-linking. In aqueous solutions, SMG decomposes entirely to formaldehyde and its parent compound, sodium glycinate, which is not considered harmful [45].
FARs do not tend to induce microbial resistance in the same manner as traditional antibiotics albeit resistance can occur. A review of this topic has been previously published [46]. Furthermore, because they are broad-spectrum agents, these agents could have unique efficacy against emerging pathogens such as MRSA, VRE, and extended beta-lactamase (EBL)-resistant strains of Pseudomonas. Of note, there is precedent for using broad spectrum anti-septic agents such as these for treating infectious keratitis. Human trials indicate that antiseptic agents can be used topically for the treatment of infected tissue fields [46]. Chlorhexidine has been used for Acanthameoba, Staphylococcus aureus and Pseudomonas aeruginosa keratitis [47], iodine for fungal keratitis [48], and hypochlorous acid has been used for infected wounds [49, 50]. Developing single broad-spectrum agents that could take the place of multi-agent therapy for infectious keratitis could be of great patient benefit and is the driving force behind these studies.
Finally, this study only considers direct microbicidal effects and does not account for the potential effects upon the extracellular matrix that induce a resistance to enzymatic digestion. Thus, it is difficult to predict which agents will be most effective in vivo, since different FARs have different protein cross-linking capabilities, in addition to the direct microbicidal effects. Another study limitations are of our concern: FAR toxicity [25], interaction between FARs and other topical drugs, risk of a scar formation. Once again, we emphasize that this is an in vitro study and the effects and considerations for in vivo use can be very different. That being said, these studies do serve as an initial guide to further development and should prompt the testing of these compounds in live animal studies. The results of such future studies hold the promise of significantly increasing our armamentarium against threatening infections caused by highly resistant micro-organisms.

Conclusions

Our results show that each FAR compound has different effects against different cultures, including antibiotic resistant strains such as MRSA, VRE, and pseudomonas. Thus, the clinically useful antimicrobial armamentarium could be broadened by the addition of DAU, DMDM, SMG and other FARs. These agents could be particularly helpful for treating antibiotic-resistant tissue infections of the cornea (i.e. infectious keratitis) as well as other types of tissue infections. Further testing in live animal models are indicated, as well as trials of compassionate human use.

Acknowledgments

The authors wish to thank Dr. Shanta Modak of Columbia University for her guidance and for providing pathogen strain materials; and Mr. Jimmy Duong from the Design and Biostatistics Resource of the Biostatistical Core Facility of the Irving Institute at Columbia University Medical Center for biostatistical consultation. Joanna Przybek-Skrzypecka wishes to thank the Kościuszko Foundation for a research travel grant to study in the U.S. at Columbia University.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
3.
Zurück zum Zitat Austin A, Lietman T, Rose-Nussbaumer J. Update on the Management of Infectious Keratitis. Ophthalmol. 2017;124:1678–89.CrossRef Austin A, Lietman T, Rose-Nussbaumer J. Update on the Management of Infectious Keratitis. Ophthalmol. 2017;124:1678–89.CrossRef
4.
Zurück zum Zitat Eurosurveillance editorial team C. CDC publishes report on antibiotic resistance threats in the United States for the first time. Eurosurveillance. 2013;18:20588. Eurosurveillance editorial team C. CDC publishes report on antibiotic resistance threats in the United States for the first time. Eurosurveillance. 2013;18:20588.
5.
Zurück zum Zitat Teweldemedhin M, Gebreyesus H, Atsbaha AH, Asgedom SW, Saravanan M. Bacterial profile of ocular infections: a systematic review. BMC Ophthalmol. 2017;17:212.CrossRef Teweldemedhin M, Gebreyesus H, Atsbaha AH, Asgedom SW, Saravanan M. Bacterial profile of ocular infections: a systematic review. BMC Ophthalmol. 2017;17:212.CrossRef
6.
Zurück zum Zitat Peng MY, Cevallos V, McLeod SD, Lietman TM, Rose-Nussbaumer J. Bacterial keratitis: isolated organisms and antibiotic resistance patterns in San Francisco. Cornea. 2018;37:84–7.CrossRef Peng MY, Cevallos V, McLeod SD, Lietman TM, Rose-Nussbaumer J. Bacterial keratitis: isolated organisms and antibiotic resistance patterns in San Francisco. Cornea. 2018;37:84–7.CrossRef
7.
Zurück zum Zitat Shalchi Z, Gurbaxani A, Baker M, Nash J. Antibiotic resistance in microbial keratitis: ten-year experience of corneal scrapes in the United Kingdom. Ophthalmol. 2011;118:2161–5.CrossRef Shalchi Z, Gurbaxani A, Baker M, Nash J. Antibiotic resistance in microbial keratitis: ten-year experience of corneal scrapes in the United Kingdom. Ophthalmol. 2011;118:2161–5.CrossRef
8.
Zurück zum Zitat Drug Resistance in Infectious Agents. A Global Threat to Humanity. G-SCIENCE ACADEMIES STATEMENTS; 2013. p. 2013. Drug Resistance in Infectious Agents. A Global Threat to Humanity. G-SCIENCE ACADEMIES STATEMENTS; 2013. p. 2013.
9.
Zurück zum Zitat Parmar A, Lakshminarayanan R, Iyer A, et al. Design and syntheses of highly potent Teixobactin analogues against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and Vancomycin-resistant enterococci (VRE) in vitro and in vivo. J Med Chem. 2018;61:2009–17.CrossRef Parmar A, Lakshminarayanan R, Iyer A, et al. Design and syntheses of highly potent Teixobactin analogues against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and Vancomycin-resistant enterococci (VRE) in vitro and in vivo. J Med Chem. 2018;61:2009–17.CrossRef
10.
Zurück zum Zitat Joseph MR, Al-Hakami AM, Assiry MM, et al. In vitro anti-yeast activity of chloramphenicol: a preliminary report. J Mycol Med. 2015;25:17–22.CrossRef Joseph MR, Al-Hakami AM, Assiry MM, et al. In vitro anti-yeast activity of chloramphenicol: a preliminary report. J Mycol Med. 2015;25:17–22.CrossRef
11.
Zurück zum Zitat Blanco AR, Nostro A, D'Angelo V, D'Arrigo M, Mazzone MG, Marino A. Efficacy of a fixed combination of tetracycline, chloramphenicol, and Colistimethate sodium for treatment of Candida albicans keratitis. Invest Ophthalmol Vis Sci. 2017;58:4292–8.CrossRef Blanco AR, Nostro A, D'Angelo V, D'Arrigo M, Mazzone MG, Marino A. Efficacy of a fixed combination of tetracycline, chloramphenicol, and Colistimethate sodium for treatment of Candida albicans keratitis. Invest Ophthalmol Vis Sci. 2017;58:4292–8.CrossRef
12.
Zurück zum Zitat Spierer O, Miller D, O'Brien TP. Comparative activity of antimicrobials against Pseudomonas aeruginosa, Achromobacter xylosoxidans and Stenotrophomonas maltophilia keratitis isolates. Br J Ophthalmol. 2018;102:708–12.CrossRef Spierer O, Miller D, O'Brien TP. Comparative activity of antimicrobials against Pseudomonas aeruginosa, Achromobacter xylosoxidans and Stenotrophomonas maltophilia keratitis isolates. Br J Ophthalmol. 2018;102:708–12.CrossRef
13.
Zurück zum Zitat Zabawa TP, Pucci MJ, Parr TR Jr, Lister T. Treatment of gram-negative bacterial infections by potentiation of antibiotics. Curr Opin Microbiol. 2016;33:7–12.CrossRef Zabawa TP, Pucci MJ, Parr TR Jr, Lister T. Treatment of gram-negative bacterial infections by potentiation of antibiotics. Curr Opin Microbiol. 2016;33:7–12.CrossRef
14.
Zurück zum Zitat Coskunseven E, Jankov MR 2nd, Hafezi F. Contralateral eye study of corneal collagen cross-linking with riboflavin and UVA irradiation in patients with keratoconus. J Refract Surg. 2009;25:371–6.CrossRef Coskunseven E, Jankov MR 2nd, Hafezi F. Contralateral eye study of corneal collagen cross-linking with riboflavin and UVA irradiation in patients with keratoconus. J Refract Surg. 2009;25:371–6.CrossRef
15.
Zurück zum Zitat Hafezi F, Kanellopoulos J, Wiltfang R, Seiler T. Corneal collagen crosslinking with riboflavin and ultraviolet a to treat induced keratectasia after laser in situ keratomileusis. J Cataract Refract Surg. 2007;33:2035–40.CrossRef Hafezi F, Kanellopoulos J, Wiltfang R, Seiler T. Corneal collagen crosslinking with riboflavin and ultraviolet a to treat induced keratectasia after laser in situ keratomileusis. J Cataract Refract Surg. 2007;33:2035–40.CrossRef
16.
Zurück zum Zitat Hafezi F. Significant visual increase following infectious keratitis after collagen cross-linking. J Refract Surg. 2012;28:587–8.CrossRef Hafezi F. Significant visual increase following infectious keratitis after collagen cross-linking. J Refract Surg. 2012;28:587–8.CrossRef
17.
Zurück zum Zitat Makdoumi K, Backman A. Photodynamic UVA-riboflavin bacterial elimination in antibiotic-resistant bacteria. Clin Exp Ophthalmol. 2016;44:582–6.CrossRef Makdoumi K, Backman A. Photodynamic UVA-riboflavin bacterial elimination in antibiotic-resistant bacteria. Clin Exp Ophthalmol. 2016;44:582–6.CrossRef
18.
Zurück zum Zitat Said DG, Elalfy MS, Gatzioufas Z, et al. Collagen cross-linking with Photoactivated riboflavin (PACK-CXL) for the treatment of advanced infectious keratitis with corneal melting. Ophthalmol. 2014;121:1377–82.CrossRef Said DG, Elalfy MS, Gatzioufas Z, et al. Collagen cross-linking with Photoactivated riboflavin (PACK-CXL) for the treatment of advanced infectious keratitis with corneal melting. Ophthalmol. 2014;121:1377–82.CrossRef
19.
Zurück zum Zitat Price MO, Tenkman LR, Schrier A, Fairchild KM, Trokel SL, Price FW Jr. Photoactivated riboflavin treatment of infectious keratitis using collagen cross-linking technology. J Refract Surg. 2012;28:706–13.CrossRef Price MO, Tenkman LR, Schrier A, Fairchild KM, Trokel SL, Price FW Jr. Photoactivated riboflavin treatment of infectious keratitis using collagen cross-linking technology. J Refract Surg. 2012;28:706–13.CrossRef
20.
Zurück zum Zitat Makdoumi K, Mortensen J, Sorkhabi O, Malmvall BE, Crafoord S. UVA-riboflavin photochemical therapy of bacterial keratitis: a pilot study. Graefes Arch Clin Exp Ophthalmol. 2012;250:95–102.CrossRef Makdoumi K, Mortensen J, Sorkhabi O, Malmvall BE, Crafoord S. UVA-riboflavin photochemical therapy of bacterial keratitis: a pilot study. Graefes Arch Clin Exp Ophthalmol. 2012;250:95–102.CrossRef
21.
Zurück zum Zitat Kymionis GD, Kouroupaki AI, Liakopoulos DA, Arandjelovic IR, Tsoulnaras KI. Multiorganism, drug-resistant keratitis treated by corneal crosslinking. Eur J Ophthalmol 2016;26:0.CrossRef Kymionis GD, Kouroupaki AI, Liakopoulos DA, Arandjelovic IR, Tsoulnaras KI. Multiorganism, drug-resistant keratitis treated by corneal crosslinking. Eur J Ophthalmol 2016;26:0.CrossRef
22.
Zurück zum Zitat Chan TC, Lau TW, Lee JW, Wong IY, Jhanji V, Wong RL. Corneal collagen cross-linking for infectious keratitis: an update of clinical studies. Acta Ophthalmol. 2015;93:689–96.CrossRef Chan TC, Lau TW, Lee JW, Wong IY, Jhanji V, Wong RL. Corneal collagen cross-linking for infectious keratitis: an update of clinical studies. Acta Ophthalmol. 2015;93:689–96.CrossRef
23.
Zurück zum Zitat Papaioannou L, Miligkos M, Papathanassiou M. Corneal collagen cross-linking for infectious keratitis: a systematic review and meta-analysis. Cornea. 2016;35:62–71.CrossRef Papaioannou L, Miligkos M, Papathanassiou M. Corneal collagen cross-linking for infectious keratitis: a systematic review and meta-analysis. Cornea. 2016;35:62–71.CrossRef
24.
Zurück zum Zitat Uddaraju M, Mascarenhas J, Das MR, et al. Corneal cross-linking as an adjuvant therapy in the Management of Recalcitrant Deep Stromal Fungal Keratitis: a randomized trial. Am J Ophthalmol. 2015;160:131–4 e135.CrossRef Uddaraju M, Mascarenhas J, Das MR, et al. Corneal cross-linking as an adjuvant therapy in the Management of Recalcitrant Deep Stromal Fungal Keratitis: a randomized trial. Am J Ophthalmol. 2015;160:131–4 e135.CrossRef
25.
Zurück zum Zitat Babar N, Kim M, Cao K, et al. Cosmetic preservatives as therapeutic corneal and scleral tissue cross-linking agents. Invest Ophthalmol Vis Sci. 2015;56:1274–82.CrossRef Babar N, Kim M, Cao K, et al. Cosmetic preservatives as therapeutic corneal and scleral tissue cross-linking agents. Invest Ophthalmol Vis Sci. 2015;56:1274–82.CrossRef
26.
Zurück zum Zitat Paik DC, Solomon MR, Wen Q, Turro NJ, Trokel SL. Aliphatic beta-nitroalcohols for therapeutic corneoscleral cross-linking: chemical mechanisms and higher order nitroalcohols. Invest Ophthalmol Vis Sci. 2010;51:836–43.CrossRef Paik DC, Solomon MR, Wen Q, Turro NJ, Trokel SL. Aliphatic beta-nitroalcohols for therapeutic corneoscleral cross-linking: chemical mechanisms and higher order nitroalcohols. Invest Ophthalmol Vis Sci. 2010;51:836–43.CrossRef
27.
Zurück zum Zitat SciFinder. Chemical Abstracts Service. SciFinder. Chemical Abstracts Service.
28.
Zurück zum Zitat Sigma-Aldrich. Diazolidinyl urea [Material Safety Data Sheet]. Sigma-Aldrich. Diazolidinyl urea [Material Safety Data Sheet].
29.
Zurück zum Zitat ACME-Hardesty C. DMDM hydantoin [Material safety data sheet]. ACME-Hardesty C. DMDM hydantoin [Material safety data sheet].
30.
Zurück zum Zitat Isenberg SJ, Apt L, Valenton M, Sharma S, Garg P, Thomas PA, Parmar P, Kaliamurthy J, Reyes JM, Ong D, Christenson PD, Del Signore M, Holland GN. Prospective, Randomized Clinical Trial of Povidone-Iodine 1.25% Solution Versus Topical Antibiotics for Treatment of Bacterial Keratitis. Am J Ophthalmol. 2017;176:244–53. Isenberg SJ, Apt L, Valenton M, Sharma S, Garg P, Thomas PA, Parmar P, Kaliamurthy J, Reyes JM, Ong D, Christenson PD, Del Signore M, Holland GN. Prospective, Randomized Clinical Trial of Povidone-Iodine 1.25% Solution Versus Topical Antibiotics for Treatment of Bacterial Keratitis. Am J Ophthalmol. 2017;176:244–53.
31.
Zurück zum Zitat Sigma-Aldrich. Sodium hydroxymethylglycinate [Material Safety Data Sheet]. Sigma-Aldrich. Sodium hydroxymethylglycinate [Material Safety Data Sheet].
32.
Zurück zum Zitat Products IS. Sodium hydroxymethylglycinate [Material Safety Data Sheet]. Products IS. Sodium hydroxymethylglycinate [Material Safety Data Sheet].
33.
Zurück zum Zitat Rapuano PB, Scanameo AH, Amponin DE, et al. Antimicrobial studies using the therapeutic tissue cross-linking agent, sodium Hydroxymethylglycinate: implication for treating infectious keratitis. Invest Ophthalmol Vis Sci. 2018;59:332–7.CrossRef Rapuano PB, Scanameo AH, Amponin DE, et al. Antimicrobial studies using the therapeutic tissue cross-linking agent, sodium Hydroxymethylglycinate: implication for treating infectious keratitis. Invest Ophthalmol Vis Sci. 2018;59:332–7.CrossRef
34.
Zurück zum Zitat Lalitha P, Manoharan G, Karpagam R, et al. Trends in antibiotic resistance in bacterial keratitis isolates from South India. Br J Ophthalmol. 2017;101:108–13.CrossRef Lalitha P, Manoharan G, Karpagam R, et al. Trends in antibiotic resistance in bacterial keratitis isolates from South India. Br J Ophthalmol. 2017;101:108–13.CrossRef
35.
Zurück zum Zitat Weldhagen GF, Poirel L, Nordmann P. Ambler class a extended-spectrum beta-lactamases in Pseudomonas aeruginosa: novel developments and clinical impact. Antimicrob Agents Chemother. 2003;47:2385–92.CrossRef Weldhagen GF, Poirel L, Nordmann P. Ambler class a extended-spectrum beta-lactamases in Pseudomonas aeruginosa: novel developments and clinical impact. Antimicrob Agents Chemother. 2003;47:2385–92.CrossRef
36.
Zurück zum Zitat Sacha P, Wieczorek P, Hauschild T, Zorawski M, Olszanska D, Tryniszewska E. Metallo-beta-lactamases of Pseudomonas aeruginosa--a novel mechanism resistance to beta-lactam antibiotics. Folia Histochem Cytobiol. 2008;46:137–42.CrossRef Sacha P, Wieczorek P, Hauschild T, Zorawski M, Olszanska D, Tryniszewska E. Metallo-beta-lactamases of Pseudomonas aeruginosa--a novel mechanism resistance to beta-lactam antibiotics. Folia Histochem Cytobiol. 2008;46:137–42.CrossRef
37.
Zurück zum Zitat Dias J, Diakonis VF, Kankariya VP, Yoo SH, Ziebarth NM. Anterior and posterior corneal stroma elasticity after corneal collagen crosslinking treatment. Exp Eye Res. 2013;116:58–62.CrossRef Dias J, Diakonis VF, Kankariya VP, Yoo SH, Ziebarth NM. Anterior and posterior corneal stroma elasticity after corneal collagen crosslinking treatment. Exp Eye Res. 2013;116:58–62.CrossRef
38.
Zurück zum Zitat Perna JJ, Mannix ML, Rooney JF, Notkins AL, Straus SE. Reactivation of latent herpes simplex virus infection by ultraviolet light: a human model. J Am Acad Dermatol. 1987;17:473–8.CrossRef Perna JJ, Mannix ML, Rooney JF, Notkins AL, Straus SE. Reactivation of latent herpes simplex virus infection by ultraviolet light: a human model. J Am Acad Dermatol. 1987;17:473–8.CrossRef
39.
Zurück zum Zitat Rooney JF, Straus SE, Mannix ML, Wohlenberg CR, Banks S, Jagannath S Brauer JE, Notkins AL. UV light-induced reactivation of herpes simplex virus type 2 and prevention by acyclovir. J Infect Dis. 1992;166:500–6.CrossRef Rooney JF, Straus SE, Mannix ML, Wohlenberg CR, Banks S, Jagannath S Brauer JE, Notkins AL. UV light-induced reactivation of herpes simplex virus type 2 and prevention by acyclovir. J Infect Dis. 1992;166:500–6.CrossRef
40.
Zurück zum Zitat Conaway CC, Whysner J, Verna LK, Williams GM. Formaldehyde mechanistic data and risk assessment: endogenous protection from DNA adduct formation. Pharmacol Ther. 1996;71:29–55.CrossRef Conaway CC, Whysner J, Verna LK, Williams GM. Formaldehyde mechanistic data and risk assessment: endogenous protection from DNA adduct formation. Pharmacol Ther. 1996;71:29–55.CrossRef
41.
Zurück zum Zitat Flyvholm MA. Preservatives in registered chemical products. Contact Dermatitis. 2005;53:27–32.CrossRef Flyvholm MA. Preservatives in registered chemical products. Contact Dermatitis. 2005;53:27–32.CrossRef
42.
Zurück zum Zitat Lehmann SV, Hoeck U, Breinholdt J, Olsen CE, Kreilgaard B. Characterization and chemistry of imidazolidinyl urea and diazolidinyl urea. Contact Dermatitis. 2006;54:50–8.CrossRef Lehmann SV, Hoeck U, Breinholdt J, Olsen CE, Kreilgaard B. Characterization and chemistry of imidazolidinyl urea and diazolidinyl urea. Contact Dermatitis. 2006;54:50–8.CrossRef
43.
Zurück zum Zitat Emeis D, Anker W, Wittern KP. Quantitative 13C NMR spectroscopic studies on the equilibrium of formaldehyde with its releasing cosmetic preservatives. Anal Chem. 2007;79:2096–100.CrossRef Emeis D, Anker W, Wittern KP. Quantitative 13C NMR spectroscopic studies on the equilibrium of formaldehyde with its releasing cosmetic preservatives. Anal Chem. 2007;79:2096–100.CrossRef
44.
Zurück zum Zitat Solomon MR, O'Connor NA, Paik DC, Turro NJ. Nitroalcohol induced hydrogel formation in amine-functionalized polymers. J Appl Polym Sci. 2010;117:1193–6.CrossRef Solomon MR, O'Connor NA, Paik DC, Turro NJ. Nitroalcohol induced hydrogel formation in amine-functionalized polymers. J Appl Polym Sci. 2010;117:1193–6.CrossRef
46.
Zurück zum Zitat McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev. 1999;12(1):147–79.CrossRef McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev. 1999;12(1):147–79.CrossRef
47.
Zurück zum Zitat Bu P, Riske PS, Zaya NE, Carey R, Bouchard CS. A comparison of topical chlorhexidine, ciprofloxacin, and fortified tobramycin/cefazolin in rabbit models of Staphylococcus and Pseudomonas keratitis. J Ocul Pharmacol Ther. 2007;23(3):213–20.CrossRef Bu P, Riske PS, Zaya NE, Carey R, Bouchard CS. A comparison of topical chlorhexidine, ciprofloxacin, and fortified tobramycin/cefazolin in rabbit models of Staphylococcus and Pseudomonas keratitis. J Ocul Pharmacol Ther. 2007;23(3):213–20.CrossRef
48.
Zurück zum Zitat Isenberg SJ, Apt L, Valenton M, et al. Prospective, randomized clinical trial of Povidone-iodine 1.25% solution versus topical antibiotics for treatment of bacterial keratitis. Am J Ophthalmol. 2017;176:244–53.CrossRef Isenberg SJ, Apt L, Valenton M, et al. Prospective, randomized clinical trial of Povidone-iodine 1.25% solution versus topical antibiotics for treatment of bacterial keratitis. Am J Ophthalmol. 2017;176:244–53.CrossRef
49.
Zurück zum Zitat Robson MC, Payne WG, Ko F, Mentis M, Donati G, Shafii SM, Culverhouse S, Wang L, Khosrovi B, Najafi R, Cooper DM, Bassiri M. Hypochlorous acid as a potential wound care agent: part II Stabilized Hypochlorous Acid: Its Role in Decreasing Tissue Bacterial Bioburden and Overcoming the Inhibition of Infection on Wound Healing. J Burns Wounds. 2007;6:e6. Robson MC, Payne WG, Ko F, Mentis M, Donati G, Shafii SM, Culverhouse S, Wang L, Khosrovi B, Najafi R, Cooper DM, Bassiri M. Hypochlorous acid as a potential wound care agent: part II Stabilized Hypochlorous Acid: Its Role in Decreasing Tissue Bacterial Bioburden and Overcoming the Inhibition of Infection on Wound Healing. J Burns Wounds. 2007;6:e6.
50.
Zurück zum Zitat Odorcic S, Haas W, Gilmore MS, Dohlman CH. Fungal infections after Boston type 1 Keratoprosthesis implantation: literature review and in vitro antifungal activity of Hypochlorous acid. Cornea. 2015;34(12):1599–605.CrossRef Odorcic S, Haas W, Gilmore MS, Dohlman CH. Fungal infections after Boston type 1 Keratoprosthesis implantation: literature review and in vitro antifungal activity of Hypochlorous acid. Cornea. 2015;34(12):1599–605.CrossRef
Metadaten
Titel
Ex vivo anti-microbial efficacy of various formaldehyde releasers against antibiotic resistant and antibiotic sensitive microorganisms involved in infectious keratitis
verfasst von
Daeryl E. Amponin
Joanna Przybek-Skrzypecka
Mariya Zyablitskaya
Anna Takaoka
Leejee H. Suh
Takayuki Nagasaki
Stephen L. Trokel
David C. Paik
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Ophthalmology / Ausgabe 1/2020
Elektronische ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-020-1306-8

Weitere Artikel der Ausgabe 1/2020

BMC Ophthalmology 1/2020 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Ophthalmika in der Schwangerschaft

Die Verwendung von Ophthalmika in der Schwangerschaft und Stillzeit stellt immer eine Off-label-Anwendung dar. Ein Einsatz von Arzneimitteln muss daher besonders sorgfältig auf sein Risiko-Nutzen-Verhältnis bewertet werden. In der vorliegenden …

Operative Therapie und Keimnachweis bei endogener Endophthalmitis

Vitrektomie Originalie

Die endogene Endophthalmitis ist eine hämatogen fortgeleitete, bakterielle oder fungale Infektion, die über choroidale oder retinale Gefäße in den Augapfel eingeschwemmt wird [ 1 – 3 ]. Von dort infiltrieren die Keime in die Netzhaut, den …

Bakterielle endogene Endophthalmitis

Vitrektomie Leitthema

Eine endogene Endophthalmitis stellt einen ophthalmologischen Notfall dar, der umgehender Diagnostik und Therapie bedarf. Es sollte mit geeigneten Methoden, wie beispielsweise dem Freiburger Endophthalmitis-Set, ein Keimnachweis erfolgen. Bei der …

So erreichen Sie eine bestmögliche Wundheilung der Kornea

Die bestmögliche Wundheilung der Kornea, insbesondere ohne die Ausbildung von lichtstreuenden Narben, ist oberstes Gebot, um einer dauerhaften Schädigung der Hornhaut frühzeitig entgegenzuwirken und die Funktion des Auges zu erhalten.   

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.