Skip to main content
Erschienen in: Cardiovascular Toxicology 4/2020

19.03.2020

Exendin-4 Ameliorates Cardiac Remodeling in Experimentally Induced Myocardial Infarction in Rats by Inhibiting PARP1/NF-κB Axis in A SIRT1-Dependent Mechanism

verfasst von: Refaat A. Eid, Samah A. Alharbi, Attalla Farag El-kott, Samy M. Eleawa, Mohamed Samir Ahmed Zaki, Fahmy El-Sayed, Muhammad Alaa Eldeen, Hussain Aldera, Abd Al-Rahman Salem Al-Shudiefat

Erschienen in: Cardiovascular Toxicology | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten

Abstract

Sirt1 is a potent inhibitor of both poly(ADP-ribose) polymerases1 (PARP1) and NF-kB. This study investigated the cardioprotective effect of exendin-4 on cardiac function and remodeling in rats after an expreimentally-induced myocardial infarction (MI) and explored if this protection involves SIRT1/PARP1 axis. Rats were divided into five groups (n = 10/each): sham, sham + exendin-4 (25 nmol/kg/day i.p.), MI (induced by LAD occlusion), MI + exendin-4, and sham + exendin-4 + EX527 (5 mg/2×/week) (a SIRT1 inhibitor). All treatments were given for 6 weeks post the induction of MI. In sham-operated and MI-induced rats, exendin-4 significantly upregulated Bcl-2 levels, enhanced activity, mRNA, and levels of SIRT1, inhibited activity, mRNA, and levels of PARP1, and reduced ROS generation and PARP1 acetylation. In MI-treated rats, these effects were associated with improved cardiac architectures and LV function, reduced collagen deposition, and reduced mRNA and total levels of TNF-α and IL-6, as well as, the activation of NF-κB p65. In addition, exendin-4 inhibited the interaction of PARP1 with p300, TGF-β1, Smad3, and NF-κB p65 and signficantly reduced mRNA and protein levels of collagen I/III and protein levels of MMP2/9. In conclusion, exendin-4 is a potent cardioprotective agent that prevents post-MI inflammation and cardiac remodeling by activating SIRT1-induced inhibition of PARP1.
Literatur
1.
Zurück zum Zitat Suthahar, N., Meijers, W. C., Silljé, H. H., & de Boer, R. A. (2017). From inflammation to fibrosis—Molecular and cellular mechanisms of myocardial tissue remodelling and perspectives on differential treatment opportunities. Current Heart Failure Reports,14, 235–250.PubMedPubMedCentralCrossRef Suthahar, N., Meijers, W. C., Silljé, H. H., & de Boer, R. A. (2017). From inflammation to fibrosis—Molecular and cellular mechanisms of myocardial tissue remodelling and perspectives on differential treatment opportunities. Current Heart Failure Reports,14, 235–250.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Schirone, L., Forte, M., Palmerio, S., Yee, D., Nocella, C., Angelini, F., et al. (2017). A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxidative Medicine and Cellular Longevity,2017, 3920195.PubMedPubMedCentralCrossRef Schirone, L., Forte, M., Palmerio, S., Yee, D., Nocella, C., Angelini, F., et al. (2017). A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxidative Medicine and Cellular Longevity,2017, 3920195.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Hill, J. A., & Olson, E. N. (2008). Cardiac plasticity. New England Journal of Medicine,358, 1370–1380.CrossRef Hill, J. A., & Olson, E. N. (2008). Cardiac plasticity. New England Journal of Medicine,358, 1370–1380.CrossRef
4.
Zurück zum Zitat Ohtani, T., Mohammed, S. F., Yamamoto, K., Dunlay, S. M., Weston, S. A., Sakata, Y., et al. (2012). Diastolic stiffness as assessed by diastolic wall strain is associated with adverse remodelling and poor outcomes in heart failure with preserved ejection fraction. European Heart Journal,33, 1742–1749.PubMedPubMedCentralCrossRef Ohtani, T., Mohammed, S. F., Yamamoto, K., Dunlay, S. M., Weston, S. A., Sakata, Y., et al. (2012). Diastolic stiffness as assessed by diastolic wall strain is associated with adverse remodelling and poor outcomes in heart failure with preserved ejection fraction. European Heart Journal,33, 1742–1749.PubMedPubMedCentralCrossRef
5.
6.
Zurück zum Zitat Pacher, P., Liaudet, L., Bai, P., Virag, L., Mabley, J., Hasko, G., et al. (2002). Activation of poly (ADP-ribose) polymerase contributes to development of doxorubicin-induced heart failure. Journal of Pharmacology and Experimental Therapeutics,300, 862–867.CrossRef Pacher, P., Liaudet, L., Bai, P., Virag, L., Mabley, J., Hasko, G., et al. (2002). Activation of poly (ADP-ribose) polymerase contributes to development of doxorubicin-induced heart failure. Journal of Pharmacology and Experimental Therapeutics,300, 862–867.CrossRef
7.
Zurück zum Zitat Szabo, C. (2005). Pharmacological inhibition of poly (ADP-ribose) polymerase in cardiovascular disorders: Future directions. Current Vascular Pharmacology,3, 301–303.PubMedCrossRef Szabo, C. (2005). Pharmacological inhibition of poly (ADP-ribose) polymerase in cardiovascular disorders: Future directions. Current Vascular Pharmacology,3, 301–303.PubMedCrossRef
8.
Zurück zum Zitat Wang, J., Hao, L., Wang, Y., Qin, W., Wang, X., Zhao, T., et al. (2015). Inhibition of poly (ADP-ribose) polymerase and inducible nitric oxide synthase protects against ischemic myocardial damage by reduction of apoptosis. Molecular Medicine Reports,11, 1768–1776.PubMedCrossRef Wang, J., Hao, L., Wang, Y., Qin, W., Wang, X., Zhao, T., et al. (2015). Inhibition of poly (ADP-ribose) polymerase and inducible nitric oxide synthase protects against ischemic myocardial damage by reduction of apoptosis. Molecular Medicine Reports,11, 1768–1776.PubMedCrossRef
9.
Zurück zum Zitat Sun, S., Hu, Y., Zheng, Q., Guo, Z., Sun, D., Chen, S., et al. (2019). Poly (ADP-ribose) polymerase 1 induces cardiac fibrosis by mediating mammalian target of rapamycin activity. Journal of Cellular Biochemistry,120, 4813–4826.PubMedCrossRef Sun, S., Hu, Y., Zheng, Q., Guo, Z., Sun, D., Chen, S., et al. (2019). Poly (ADP-ribose) polymerase 1 induces cardiac fibrosis by mediating mammalian target of rapamycin activity. Journal of Cellular Biochemistry,120, 4813–4826.PubMedCrossRef
10.
Zurück zum Zitat Ling, X. X., Liu, J. X., Lin, Y., Du, Y. J., Chen, S. Q., Chen, J. L., et al. (2016). Poly(ADP-ribosyl)ation of apoptosis antagonizing transcription factor involved in hydroquinone-induced DNA damage response. Biomedical and Environmental Sciences,29, 80–84.PubMed Ling, X. X., Liu, J. X., Lin, Y., Du, Y. J., Chen, S. Q., Chen, J. L., et al. (2016). Poly(ADP-ribosyl)ation of apoptosis antagonizing transcription factor involved in hydroquinone-induced DNA damage response. Biomedical and Environmental Sciences,29, 80–84.PubMed
11.
Zurück zum Zitat d’Amours, D., Desnoyers, S., d’Silva, I., & Poirier, G. G. (1999). Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochemical Journal,342, 249.PubMedCentralCrossRef d’Amours, D., Desnoyers, S., d’Silva, I., & Poirier, G. G. (1999). Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochemical Journal,342, 249.PubMedCentralCrossRef
12.
Zurück zum Zitat Rajamohan, S. B., Pillai, V. B., Gupta, M., Sundaresan, N. R., Birukov, K. G., Samant, S., et al. (2009). SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly (ADP-ribose) polymerase 1. Molecular and Cellular Biology,29, 4116–4129.PubMedPubMedCentralCrossRef Rajamohan, S. B., Pillai, V. B., Gupta, M., Sundaresan, N. R., Birukov, K. G., Samant, S., et al. (2009). SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly (ADP-ribose) polymerase 1. Molecular and Cellular Biology,29, 4116–4129.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Szabo, C., Zingarelli, B., O'Connor, M., & Salzman, A. L. (1996). DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proceedings of the National Academy of Sciences,93, 1753–1758.CrossRef Szabo, C., Zingarelli, B., O'Connor, M., & Salzman, A. L. (1996). DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proceedings of the National Academy of Sciences,93, 1753–1758.CrossRef
14.
Zurück zum Zitat Hassa, P., & Hottiger, M. (2002). The functional role of poly (ADP-ribose) polymerase 1 as novel coactivator of NF-κB in inflammatory disorders. Cellular and Molecular Life Sciences,59, 1534–1553.PubMedCrossRef Hassa, P., & Hottiger, M. (2002). The functional role of poly (ADP-ribose) polymerase 1 as novel coactivator of NF-κB in inflammatory disorders. Cellular and Molecular Life Sciences,59, 1534–1553.PubMedCrossRef
15.
Zurück zum Zitat Yao, L., Huang, K., Huang, D., Wang, J., Guo, H., & Liao, Y. (2008). Acute myocardial infarction induced increases in plasma tumor necrosis factor-α and interleukin-10 are associated with the activation of poly (ADP-ribose) polymerase of circulating mononuclear cell. International Journal of Cardiology,123, 366–368.PubMedCrossRef Yao, L., Huang, K., Huang, D., Wang, J., Guo, H., & Liao, Y. (2008). Acute myocardial infarction induced increases in plasma tumor necrosis factor-α and interleukin-10 are associated with the activation of poly (ADP-ribose) polymerase of circulating mononuclear cell. International Journal of Cardiology,123, 366–368.PubMedCrossRef
16.
Zurück zum Zitat Halmosi, R., Deres, L., Gal, R., Eros, K., Sumegi, B., & Toth, K. (2016). PARP inhibition and postinfarction myocardial remodeling. International Journal of Cardiology,217, S52–S59.PubMedCrossRef Halmosi, R., Deres, L., Gal, R., Eros, K., Sumegi, B., & Toth, K. (2016). PARP inhibition and postinfarction myocardial remodeling. International Journal of Cardiology,217, S52–S59.PubMedCrossRef
17.
Zurück zum Zitat Jia, G., Zao, M., & Liu, X. (2017). Protective effect of diethylcarbamazine inhibits NF-κB activation in isoproterenol-induced acute myocardial infarction rat model through the PARP pathway. Molecular Medicine Reports,16, 1596–1602.PubMedCrossRef Jia, G., Zao, M., & Liu, X. (2017). Protective effect of diethylcarbamazine inhibits NF-κB activation in isoproterenol-induced acute myocardial infarction rat model through the PARP pathway. Molecular Medicine Reports,16, 1596–1602.PubMedCrossRef
18.
Zurück zum Zitat Hans, C. P., Zerfaoui, M., Naura, A. S., Catling, A., & Boulares, A. H. (2008). Differential effects of PARP inhibition on vascular cell survival and ACAT-1 expression favouring atherosclerotic plaque stability. Cardiovascular Research,78, 429–439.PubMedCrossRef Hans, C. P., Zerfaoui, M., Naura, A. S., Catling, A., & Boulares, A. H. (2008). Differential effects of PARP inhibition on vascular cell survival and ACAT-1 expression favouring atherosclerotic plaque stability. Cardiovascular Research,78, 429–439.PubMedCrossRef
19.
Zurück zum Zitat Eid, R. A., Zaki, M. S. A., Al-Shraim, M., Eleawa, S. M., El-kott, A. F., Al-Hashem, F. H., et al. (2018). Subacute ghrelin administration inhibits apoptosis and improves ultrastructural abnormalities in remote myocardium post-myocardial infarction. Biomedicine & Pharmacotherapy,101, 920–928.CrossRef Eid, R. A., Zaki, M. S. A., Al-Shraim, M., Eleawa, S. M., El-kott, A. F., Al-Hashem, F. H., et al. (2018). Subacute ghrelin administration inhibits apoptosis and improves ultrastructural abnormalities in remote myocardium post-myocardial infarction. Biomedicine & Pharmacotherapy,101, 920–928.CrossRef
20.
Zurück zum Zitat Drucker, D. J. (2016). The cardiovascular biology of glucagon-like peptide-1. Cell Metabolism,24, 15–30.PubMedCrossRef Drucker, D. J. (2016). The cardiovascular biology of glucagon-like peptide-1. Cell Metabolism,24, 15–30.PubMedCrossRef
21.
Zurück zum Zitat Timmers, L., Henriques, J. P., de Kleijn, D. P., DeVries, J. H., Kemperman, H., Steendijk, P., et al. (2009). Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. Journal of the American College of Cardiology,53, 501–510.PubMedCrossRef Timmers, L., Henriques, J. P., de Kleijn, D. P., DeVries, J. H., Kemperman, H., Steendijk, P., et al. (2009). Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. Journal of the American College of Cardiology,53, 501–510.PubMedCrossRef
22.
Zurück zum Zitat Woo, J. S., Kim, W., Ha, S. J., Kim, J. B., Kim, S.-J., Kim, W.-S., et al. (2013). Cardioprotective effects of exenatide in patients with ST-segment–elevation myocardial infarction undergoing primary percutaneous coronary intervention: Results of exenatide myocardial protection in revascularization study. Arteriosclerosis, Thrombosis, and Vascular Biology,33, 2252–2260.PubMedCrossRef Woo, J. S., Kim, W., Ha, S. J., Kim, J. B., Kim, S.-J., Kim, W.-S., et al. (2013). Cardioprotective effects of exenatide in patients with ST-segment–elevation myocardial infarction undergoing primary percutaneous coronary intervention: Results of exenatide myocardial protection in revascularization study. Arteriosclerosis, Thrombosis, and Vascular Biology,33, 2252–2260.PubMedCrossRef
23.
Zurück zum Zitat Noyan-Ashraf, M. H., Shikatani, E. A., Schuiki, I., Mukovozov, I., Wu, J., Li, R.-K., et al. (2013). A glucagon-like peptide-1 analog reverses the molecular pathology and cardiac dysfunction of a mouse model of obesity. Circulation,127, 74–85.PubMedCrossRef Noyan-Ashraf, M. H., Shikatani, E. A., Schuiki, I., Mukovozov, I., Wu, J., Li, R.-K., et al. (2013). A glucagon-like peptide-1 analog reverses the molecular pathology and cardiac dysfunction of a mouse model of obesity. Circulation,127, 74–85.PubMedCrossRef
24.
Zurück zum Zitat Aravindhan, K., Bao, W., Harpel, M. R., Willette, R. N., Lepore, J. J., & Jucker, B. M. (2015). Cardioprotection resulting from glucagon-like peptide-1 administration involves shifting metabolic substrate utilization to increase energy efficiency in the rat heart. PLoS ONE,10, e0130894.PubMedPubMedCentralCrossRef Aravindhan, K., Bao, W., Harpel, M. R., Willette, R. N., Lepore, J. J., & Jucker, B. M. (2015). Cardioprotection resulting from glucagon-like peptide-1 administration involves shifting metabolic substrate utilization to increase energy efficiency in the rat heart. PLoS ONE,10, e0130894.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Li, J., Zheng, J., Wang, S., Lau, H. K., Fathi, A., & Wang, Q. (2017). Cardiovascular benefits of native GLP-1 and its metabolites: An indicator for GLP-1-therapy strategies. Frontiers in Physiology,8, 15.PubMedPubMedCentral Li, J., Zheng, J., Wang, S., Lau, H. K., Fathi, A., & Wang, Q. (2017). Cardiovascular benefits of native GLP-1 and its metabolites: An indicator for GLP-1-therapy strategies. Frontiers in Physiology,8, 15.PubMedPubMedCentral
26.
Zurück zum Zitat Robinson, E., Cassidy, R. S., Tate, M., Zhao, Y., Lockhart, S., Calderwood, D., et al. (2015). Exendin-4 protects against post-myocardial infarction remodelling via specific actions on inflammation and the extracellular matrix. Basic Research in Cardiology,110, 20.PubMedPubMedCentralCrossRef Robinson, E., Cassidy, R. S., Tate, M., Zhao, Y., Lockhart, S., Calderwood, D., et al. (2015). Exendin-4 protects against post-myocardial infarction remodelling via specific actions on inflammation and the extracellular matrix. Basic Research in Cardiology,110, 20.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Tate, M., Robinson, E., Green, B. D., McDermott, B. J., & Grieve, D. J. (2016). Exendin-4 attenuates adverse cardiac remodelling in streptozocin-induced diabetes via specific actions on infiltrating macrophages. Basic Research in Cardiology,111, 1.PubMedCrossRef Tate, M., Robinson, E., Green, B. D., McDermott, B. J., & Grieve, D. J. (2016). Exendin-4 attenuates adverse cardiac remodelling in streptozocin-induced diabetes via specific actions on infiltrating macrophages. Basic Research in Cardiology,111, 1.PubMedCrossRef
28.
Zurück zum Zitat Hsu, C.-P., Zhai, P., Yamamoto, T., Maejima, Y., Matsushima, S., Hariharan, N., et al. (2010). Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation,122, 2170–2182.PubMedPubMedCentralCrossRef Hsu, C.-P., Zhai, P., Yamamoto, T., Maejima, Y., Matsushima, S., Hariharan, N., et al. (2010). Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation,122, 2170–2182.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Mao, S., Chen, P., Li, T., Guo, L., & Zhang, M. (2018). Tongguan capsule mitigates post-myocardial infarction remodeling by promoting autophagy and inhibiting apoptosis: Role of Sirt1. Frontiers in Physiology,9, 589.PubMedPubMedCentralCrossRef Mao, S., Chen, P., Li, T., Guo, L., & Zhang, M. (2018). Tongguan capsule mitigates post-myocardial infarction remodeling by promoting autophagy and inhibiting apoptosis: Role of Sirt1. Frontiers in Physiology,9, 589.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Minematsu, T., Huang, L., Ibuki, A., Nakagami, G., Akase, T., Sugama, J., et al. (2012). Altered expression of matrix metalloproteinases and their tissue inhibitors in matured rat adipocytes in vitro. Biological Research for Nursing,14, 242–249.PubMedCrossRef Minematsu, T., Huang, L., Ibuki, A., Nakagami, G., Akase, T., Sugama, J., et al. (2012). Altered expression of matrix metalloproteinases and their tissue inhibitors in matured rat adipocytes in vitro. Biological Research for Nursing,14, 242–249.PubMedCrossRef
31.
Zurück zum Zitat Bai, J., Zhang, N., Hua, Y., Wang, B., Ling, L., Ferro, A., et al. (2013). Metformin inhibits angiotensin II-induced differentiation of cardiac fibroblasts into myofibroblasts. PLoS ONE,8, e72120.PubMedPubMedCentralCrossRef Bai, J., Zhang, N., Hua, Y., Wang, B., Ling, L., Ferro, A., et al. (2013). Metformin inhibits angiotensin II-induced differentiation of cardiac fibroblasts into myofibroblasts. PLoS ONE,8, e72120.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Sun, L., Liu, C., Xu, X., Ying, Z., Maiseyeu, A., Wang, A., et al. (2013). Ambient fine particulate matter and ozone exposures induce inflammation in epicardial and perirenal adipose tissues in rats fed a high fructose diet. Particle and Fibre Toxicology,10, 43.PubMedPubMedCentralCrossRef Sun, L., Liu, C., Xu, X., Ying, Z., Maiseyeu, A., Wang, A., et al. (2013). Ambient fine particulate matter and ozone exposures induce inflammation in epicardial and perirenal adipose tissues in rats fed a high fructose diet. Particle and Fibre Toxicology,10, 43.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Seo, S., Lee, M.-S., Chang, E., Shin, Y., Oh, S., Kim, I.-H., et al. (2015). Rutin increases muscle mitochondrial biogenesis with AMPK activation in high-fat diet-induced obese rats. Nutrients,7, 8152–8169.PubMedPubMedCentralCrossRef Seo, S., Lee, M.-S., Chang, E., Shin, Y., Oh, S., Kim, I.-H., et al. (2015). Rutin increases muscle mitochondrial biogenesis with AMPK activation in high-fat diet-induced obese rats. Nutrients,7, 8152–8169.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Yan, N., Liu, Y., Liu, S., Cao, S., Wang, F., Wang, Z., et al. (2016). Fluoride-induced neuron apoptosis and expressions of inflammatory factors by activating microglia in rat brain. Molecular Neurobiology,53, 4449–4460.PubMedCrossRef Yan, N., Liu, Y., Liu, S., Cao, S., Wang, F., Wang, Z., et al. (2016). Fluoride-induced neuron apoptosis and expressions of inflammatory factors by activating microglia in rat brain. Molecular Neurobiology,53, 4449–4460.PubMedCrossRef
35.
Zurück zum Zitat Fusegawa, Y., Hashizume, H., Okumura, T., Deguchi, Y., Shina, Y., Ikari, Y., et al. (2006). Hypertensive patients with carotid artery plaque exhibit increased platelet aggregability. Thrombosis Research,117, 615–622.PubMedCrossRef Fusegawa, Y., Hashizume, H., Okumura, T., Deguchi, Y., Shina, Y., Ikari, Y., et al. (2006). Hypertensive patients with carotid artery plaque exhibit increased platelet aggregability. Thrombosis Research,117, 615–622.PubMedCrossRef
36.
Zurück zum Zitat Zhao, H., Zhang, J., & Hong, G. (2018). Minocycline improves cardiac function after myocardial infarction in rats by inhibiting activation of PARP-1. Biomedicine & Pharmacotherapy,97, 1119–1124.CrossRef Zhao, H., Zhang, J., & Hong, G. (2018). Minocycline improves cardiac function after myocardial infarction in rats by inhibiting activation of PARP-1. Biomedicine & Pharmacotherapy,97, 1119–1124.CrossRef
37.
Zurück zum Zitat Harvey, A. P., & Grieve, D. J. (2014). Reactive oxygen species (ROS) signaling in cardiac remodeling and failure. In I. Laher (Ed.), Systems biology of free radicals and antioxidants (pp. 951–992). Berlin: Springer.CrossRef Harvey, A. P., & Grieve, D. J. (2014). Reactive oxygen species (ROS) signaling in cardiac remodeling and failure. In I. Laher (Ed.), Systems biology of free radicals and antioxidants (pp. 951–992). Berlin: Springer.CrossRef
38.
Zurück zum Zitat Bai, S., He, C., Zhang, K., Ding, X., Zeng, Q., Wang, J., et al. (2019). Effects of dietary inclusion of Radix Bupleuri and Radix Astragali extracts on the performance, intestinal inflammatory cytokines expression, and hepatic antioxidant capacity in broilers exposed to high temperature. Animal Feed Science and Technology,259, 114288.CrossRef Bai, S., He, C., Zhang, K., Ding, X., Zeng, Q., Wang, J., et al. (2019). Effects of dietary inclusion of Radix Bupleuri and Radix Astragali extracts on the performance, intestinal inflammatory cytokines expression, and hepatic antioxidant capacity in broilers exposed to high temperature. Animal Feed Science and Technology,259, 114288.CrossRef
39.
Zurück zum Zitat Shou, Y., Li, N., Li, L., Borowitz, J. L., & Isom, G. E. (2002). NF-κB-mediated up-regulation of Bcl-XS and Bax contributes to cytochrome c release in cyanide-induced apoptosis. Journal of Neurochemistry,81, 842–852.PubMedCrossRef Shou, Y., Li, N., Li, L., Borowitz, J. L., & Isom, G. E. (2002). NF-κB-mediated up-regulation of Bcl-XS and Bax contributes to cytochrome c release in cyanide-induced apoptosis. Journal of Neurochemistry,81, 842–852.PubMedCrossRef
40.
Zurück zum Zitat Gupta, S., Afaq, F., & Mukhtar, H. (2002). Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene,21, 3727.PubMedCrossRef Gupta, S., Afaq, F., & Mukhtar, H. (2002). Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene,21, 3727.PubMedCrossRef
41.
Zurück zum Zitat Matsuzawa, A., Nishitoh, H., Tobiume, K., Takeda, K., & Ichijo, H. (2002). Physiological roles of ASK1-mediated signal transduction in oxidative stress-and endoplasmic reticulum stress-induced apoptosis: Advanced findings from ASK1 knockout mice. Antioxidants and Redox Signaling,4, 415–425.PubMedCrossRef Matsuzawa, A., Nishitoh, H., Tobiume, K., Takeda, K., & Ichijo, H. (2002). Physiological roles of ASK1-mediated signal transduction in oxidative stress-and endoplasmic reticulum stress-induced apoptosis: Advanced findings from ASK1 knockout mice. Antioxidants and Redox Signaling,4, 415–425.PubMedCrossRef
42.
Zurück zum Zitat Vaziri, H., Dessain, S. K., Eaton, E. N., Imai, S.-I., Frye, R. A., Pandita, T. K., et al. (2001). hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell,107, 149–159.PubMedCrossRef Vaziri, H., Dessain, S. K., Eaton, E. N., Imai, S.-I., Frye, R. A., Pandita, T. K., et al. (2001). hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell,107, 149–159.PubMedCrossRef
43.
Zurück zum Zitat Chong, A.-Y., & Lip, G. Y. (2002). Hormone replacement therapy and cardiovascular risk. Treatments in Endocrinology,1, 95–103.PubMedCrossRef Chong, A.-Y., & Lip, G. Y. (2002). Hormone replacement therapy and cardiovascular risk. Treatments in Endocrinology,1, 95–103.PubMedCrossRef
44.
Zurück zum Zitat Kim, H. J., Joe, Y., Yu, J. K., Chen, Y., Jeong, S. O., Mani, N., et al. (2015). Carbon monoxide protects against hepatic ischemia/reperfusion injury by modulating the miR-34a/SIRT1 pathway. Biochimica et Biophysica Acta,1852, 1550–1559.PubMedCrossRef Kim, H. J., Joe, Y., Yu, J. K., Chen, Y., Jeong, S. O., Mani, N., et al. (2015). Carbon monoxide protects against hepatic ischemia/reperfusion injury by modulating the miR-34a/SIRT1 pathway. Biochimica et Biophysica Acta,1852, 1550–1559.PubMedCrossRef
45.
Zurück zum Zitat Di, W., Lv, J., Jiang, S., Lu, C., Yang, Z., Ma, Z., et al. (2018). PGC-1: The energetic regulator in cardiac metabolism. Current Issues in Molecular Biology,28, 29–46.PubMedCrossRef Di, W., Lv, J., Jiang, S., Lu, C., Yang, Z., Ma, Z., et al. (2018). PGC-1: The energetic regulator in cardiac metabolism. Current Issues in Molecular Biology,28, 29–46.PubMedCrossRef
46.
Zurück zum Zitat Fredj, S., Bescond, J., Louault, C., Delwail, A., & LecronPotreau, J. C. D. (2005). Role of interleukin-6 in cardiomyocyte/cardiac fibroblast interactions during myocyte hypertrophy and fibroblast proliferation. Journal of Cellular Physiology,204, 428–436.PubMedCrossRef Fredj, S., Bescond, J., Louault, C., Delwail, A., & LecronPotreau, J. C. D. (2005). Role of interleukin-6 in cardiomyocyte/cardiac fibroblast interactions during myocyte hypertrophy and fibroblast proliferation. Journal of Cellular Physiology,204, 428–436.PubMedCrossRef
47.
Zurück zum Zitat Pellman, J., Zhang, J., & Sheikh, F. (2016). Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: Mechanisms and model systems. Journal of Molecular and Cellular Cardiology,94, 22–31.PubMedPubMedCentralCrossRef Pellman, J., Zhang, J., & Sheikh, F. (2016). Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: Mechanisms and model systems. Journal of Molecular and Cellular Cardiology,94, 22–31.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Bujak, M., & Frangogiannis, N. G. (2007). The role of TGF-β signaling in myocardial infarction and cardiac remodeling. Cardiovascular Research,74, 184–195.PubMedCrossRef Bujak, M., & Frangogiannis, N. G. (2007). The role of TGF-β signaling in myocardial infarction and cardiac remodeling. Cardiovascular Research,74, 184–195.PubMedCrossRef
49.
Zurück zum Zitat Gong, D., Shi, W., Yi, S.-J., Chen, H., Groffen, J., & Heisterkamp, N. (2012). TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunology,13, 31.PubMedPubMedCentralCrossRef Gong, D., Shi, W., Yi, S.-J., Chen, H., Groffen, J., & Heisterkamp, N. (2012). TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunology,13, 31.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat DeLeon-Pennell, K. Y., Meschiari, C. A., Jung, M., & Lindsey, M. L. (2017). Matrix metalloproteinases in myocardial infarction and heart failure. Progress in Molecular Biology and Translational Science,147, 75–100.PubMedPubMedCentralCrossRef DeLeon-Pennell, K. Y., Meschiari, C. A., Jung, M., & Lindsey, M. L. (2017). Matrix metalloproteinases in myocardial infarction and heart failure. Progress in Molecular Biology and Translational Science,147, 75–100.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Kawano, S., Kubota, T., Monden, Y., Tsutsumi, T., Inoue, T., Kawamura, N., et al. (2006). Blockade of NF-κB improves cardiac function and survival after myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology,291, H1337–H1344.PubMedCrossRef Kawano, S., Kubota, T., Monden, Y., Tsutsumi, T., Inoue, T., Kawamura, N., et al. (2006). Blockade of NF-κB improves cardiac function and survival after myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology,291, H1337–H1344.PubMedCrossRef
52.
Zurück zum Zitat Guo, C., Huang, T., Chen, A., Chen, X., Wang, L., Shen, F., et al. (2016). Glucagon-like peptide 1 improves insulin resistance in vitro through anti-inflammation of macrophages. Brazilian Journal of Medical and Biological Research,49(12), e5826.PubMedPubMedCentralCrossRef Guo, C., Huang, T., Chen, A., Chen, X., Wang, L., Shen, F., et al. (2016). Glucagon-like peptide 1 improves insulin resistance in vitro through anti-inflammation of macrophages. Brazilian Journal of Medical and Biological Research,49(12), e5826.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Iwaya, C., Nomiyama, T., Komatsu, S., Kawanami, T., Tsutsumi, Y., Hamaguchi, Y., et al. (2017). Exendin-4, a glucagonlike peptide-1 receptor agonist, attenuates breast cancer growth by inhibiting NF-κ B activation. Endocrinology,158, 4218–4232.PubMedCrossRef Iwaya, C., Nomiyama, T., Komatsu, S., Kawanami, T., Tsutsumi, Y., Hamaguchi, Y., et al. (2017). Exendin-4, a glucagonlike peptide-1 receptor agonist, attenuates breast cancer growth by inhibiting NF-κ B activation. Endocrinology,158, 4218–4232.PubMedCrossRef
54.
Zurück zum Zitat De Flora, A., Zocchi, E., Guida, L., Franco, L., & Bruzzone, S. (2004). Autocrine and paracrine calcium signaling by the CD38/NAD+/cyclic ADP-ribose system. Annals of the New York Academy of Sciences,1028, 176–191.PubMed De Flora, A., Zocchi, E., Guida, L., Franco, L., & Bruzzone, S. (2004). Autocrine and paracrine calcium signaling by the CD38/NAD+/cyclic ADP-ribose system. Annals of the New York Academy of Sciences,1028, 176–191.PubMed
55.
Zurück zum Zitat Kauppinen, T. M., Gan, L., & Swanson, R. A. (2013). Poly(ADP-ribose) polymerase-1-induced NAD+ depletion promotes nuclear factor-κB transcriptional activity by preventing p65 de-acetylation. Biochimica et Biophysica Acta,1833, 1985–1991.PubMedPubMedCentralCrossRef Kauppinen, T. M., Gan, L., & Swanson, R. A. (2013). Poly(ADP-ribose) polymerase-1-induced NAD+ depletion promotes nuclear factor-κB transcriptional activity by preventing p65 de-acetylation. Biochimica et Biophysica Acta,1833, 1985–1991.PubMedPubMedCentralCrossRef
Metadaten
Titel
Exendin-4 Ameliorates Cardiac Remodeling in Experimentally Induced Myocardial Infarction in Rats by Inhibiting PARP1/NF-κB Axis in A SIRT1-Dependent Mechanism
verfasst von
Refaat A. Eid
Samah A. Alharbi
Attalla Farag El-kott
Samy M. Eleawa
Mohamed Samir Ahmed Zaki
Fahmy El-Sayed
Muhammad Alaa Eldeen
Hussain Aldera
Abd Al-Rahman Salem Al-Shudiefat
Publikationsdatum
19.03.2020
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 4/2020
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-020-09567-5

Weitere Artikel der Ausgabe 4/2020

Cardiovascular Toxicology 4/2020 Zur Ausgabe