Skip to main content
Erschienen in: BMC Infectious Diseases 1/2020

Open Access 01.12.2020 | Research article

Existence of hepatitis B virus surface protein mutations and other variants: demand for hepatitis B infection control in Cambodia

verfasst von: Ko Ko, Kazuaki Takahashi, Shintaro Nagashima, Chikako Yamamoto, Vichit Ork, Aya Sugiyama, Tomoyuki Akita, Masayuki Ohisa, Channarena Chuon, Md. Shafiqul Hossain, Bunsoth Mao, Junko Tanaka

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2020

Abstract

Background

This study aimed to detect Hepatitis B virus (HBV) genome sequences and their variants as of nationwide scale using dried blood spot (DBS) samples and to provide up-to-date reference data for infection control and surveillance in Cambodia.

Method

Among 2518 children age 5–7 years and their 2023 mothers participated in 2017 Cambodia nationwide sero-survey on hepatitis B surface antigen (HBsAg) prevalence using multistage random sampling strategy, 95 mothers and 13 children positive to HBsAg were included in this study. HBV DNA was extracted from DBS, then performed polymerase chain reaction. HBV genotypes and potential variants were examined by partial and full length genomic analysis.

Results

HBsAg positive rate was 4.7% (95/2023) in mothers and 0.52% (13/2518) in their children. Genotype C (80.49%) was abundantly found throughout the whole Cambodia whilst genotype B (19.51%) was exclusively found in regions bordering Vietnam. S gene mutants of HBV were found in 24.29% of mothers and 16.67% of children with HBV DNA positive sera. Full-length genome analysis revealed the homology of 99.62–100% in each mother-child pair. Genotype B was clarified to recombinant genotype B4/C2 and B2/C2. Double (48.39%) and combination mutation (32.26%) were observed in core promoter region of HBV C1 strains.

Conclusions

This study showed the capable of DBS for large-scale molecular epidemiological study of HBV in resource limited countries. Full-genome sequences yield the better understanding of sub-genotypes, their variants and the degree of homology between strains isolated from mother-child pairs calls for effective strategies on prevention, control and surveillance of mother-to-child HBV transmission in Cambodia.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
HBV
Hepatitis B virus
DBS
Dried Blood Spot samples
HBV DNA
Hepatitis B virus Deoxyribonucleic acid
HIV
Human Immunodeficiency Virus
WHO
World Health Organization
HepB
Hepatitis B vaccine
HBsAg
Hepatitis B surface Antigen
NIP
National Immunization Program
MTCT
Mother-to-child transmission
PMTCT
Prevention of Mother-to-child transmission
HBIG
Hepatitis B Immunoglobulin
CLEA
Chemiluminescent Enzyme Immunoassay
PCR
Polymerase chain reaction
HepB-BD
Hepatitis B vaccination birth-dose

Background

Viral hepatitis infection including hepatitis B virus (HBV) is still challenging as the public health concern, having global prevalence of 3.5% and 1.34 million deaths in 2015 [1]. The prevalence of HBV infection might differ in each World Health Organization (WHO) region [2] and the high prevalence of 6.1 and 6.2% were found in Africa and Western Pacific region respectively [1].
Although the gross decrement of HBV prevalence was reported in the developed countries after discovery of effective hepatitis B vaccine (HepB) since 1981 [3], the prevalence is still high in developing countries. Mother-to-child transmission (MTCT), also known as vertical transmission, still ranks as the main route of HBV transmission in intermediate and high endemic countries. Cambodia, one of the developing countries in WHO Western Pacific Region, has been reported high hepatitis B surface antigen (HBsAg) prevalence ranging from 7.7 to 13% [4, 5]. In 2005, Cambodia started phasing-in HepB vaccine to National Immunization programme (NIP) and the coverage was achieved over 90% since 2008 [6]. After introduction of HepB vaccine in the whole Cambodia, HBsAg prevalence among ≤5 years old children markedly reduced to 3.5% in 2006 [7] and then dropped to 0.33–3.45% in three provinces of Cambodia in 2011 [5]. Recent nationwide study on HBsAg prevalence among mother-child pairs in 2017 revealed the positive rate of 0.56% among children and 4.39% among their mothers [8]. Very low HBsAg positive rate in children with its reciprocal high positive rate in mothers indicates the needs for further study on HBV in Cambodia. Moreover, the clinical outcomes of chronic HBV infection rely on HBV genotypes and sub-genotype as viral factor. Understanding HBV genotypes and sub-genotypes can predict not only liver disease progression but also the response to antiviral treatment [9]. Although there were only a few reports about HBV genotype distribution in Cambodia [4, 10], the nationwide distribution pattern of HBV genotypes was still unknown.
Additionally, the widespread use of HepB vaccine in combating HBV infection potentially threatens the emergence of mutant strains at hepatitis B surface gene. The mutation in S gene causes the amino acid substitution either single or multiple mutations in HBsAg especially a determinant region between amino acid 120 and 147 and mutation in this region reduces the sensitivity to diagnostic test, failure of response to both HepB vaccine and HBIG [11]. It is later denoted as vaccine escapes mutation and is abundantly occurred in those children who had received plasma-derived vaccines (0.3%) rather than recombinant vaccines (0.06%) [12]. The emergence of vaccine escapes mutants threatens the efficacy of HepB vaccine among infants and now raising as the public health concern in elimination pathway of HBV. Although Cambodia has a long track of using HepB vaccine over a decade, there is no study on S gene mutation of HBV meanwhile.
Therefore, this study aimed to detect HBV genome sequences and their potential mutant strains specifically mutation at S gene of HBV as of nationwide scale using dried blood spot (DBS) samples and then to provide the up-to-date reference data for consideration of prevention, control and surveillance of HBV infection in Cambodia.

Methods

Subjects of the study

This was the nationwide sero-epidemiological study on HBsAg prevalence among 5–7 years old children and their mothers from 25 provinces of the whole Cambodia in 2017 using the multistage stratified random sampling strategy. Its study designs was introduced previously [8] and results of HBV prevalence from this study had been accepted by WHO Western Pacific Regional Office. Dried blood spot (DBS) using HemaSpot™ (Spot on Science Inc., Austin, USA) samples were collected from 2520 children and their 2028 mothers but two children DBS samples and five mothers’ DBS samples were excluded for their insufficient amount of blood for measurement. Therefore, a total of 4541 DBS samples (2518 children and 2023 mothers) were tested for HBsAg (LumipulseII® HBsAg, Fujirebio, Japan with reported sensitivity of 100% and specificity of 99.7% [13]) by chemiluminescent enzyme immunoassay (CLEIA) using Lumipulse G1200 (Fujirebio Inc., Japan) with cut-off value of 1.0. The reported sensitivity and specificity of HBV DNA using DBS was 95% (95% CI: 83–99) and 99% (95% CI: 53–100), respectively [14, 15]. The vaccination history was taken from yellow book (the vaccination records) provided by Ministry of Health of Cambodia. The recall memory on vaccination status was also taken from the parents or guardians of those children whose yellow books were not present.

Nucleic acid extraction

HemaSpot contains 8 fins of filter papers and the nucleic acid was directly extracted from one fin of HBsAg positive DBS samples using SMITEST EX-R&D (Medical and Biological Laboratories co., LTD, MA, USA) strictly following the manufacturer’s instruction. The final pellets highly concentrated with nucleic acid were then suspended in 50 μl of distilled water and then performed the polymerase chain reaction (PCR).

Partial and full-length genomes sequencing

For full-length genome sequences, the same primers as of the previously described method were used in this study [16, 17]. The amplification was carried out by nested polymerase chain reaction (Nested-PCR) using Prime STAR®GXL polymerase (Takara Bio Inc., Shiga, Japan) and the primer set A (WA-L and WA-R and inner primers WA-L2 and WA-R2) [16]. For the missing portion of the circular HBV DNA, the extracted DNA was assigned again for the nested PCR using Prime STAR®GXL polymerase (Takara Bio Inc., Shiga, Japan) and the primer set B (S1, S2, AS1, and AS2). The obtained PCR product was directly sequenced using a 3730xl DNA sequencer (Thermo Fisher Scientific K.K., Kanagawa, Japan) and the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA).
The samples which were not detected by WA primer set, were then attempted for s-region fragment (partial genome sequence) using the primer set #S1–1 and #S1–2 and the inner primers #S2–1 and #S2–2 [18, 19]. The obtained PCR products were directly sequenced as the same way mentioned in full length sequences.

Molecular evolutionary analysis

The sequence data were analyzed by GENTYX-MAC Version 18 software (Genetyx Corporation, Tokyo, Japan). Genotypes B1-B9 and C1-C16 obtained from GenBank were assigned as reference standard strains for sequencing. The further analysis of genotype C1 was done by the neighbor-joining method [20] and then the evolutionary analysis of Texa was employed in MEGA7 [21].

Detection of HBV genome recombination

The recombination of circular HBV DNA was detected using the SimPlot program and boost scanning analysis [22] with jumping profile Hidden Markov Model (jpHMM) for recombination detection in circular genomes [23]. 11 HBV genotype B strains from this study were employed for the determination of HBV genome recombination and visualized in a circular form using the software package Circos [24].

Statistical analysis

The statistical analysis was performed using JMP version 10 (SAS Institute Inc., Cary, NC). The χ2 and Fisher’s exact test were used appropriately to compare between groups. The statistical significance was set at p < 0.05.

Results

Study participants

Of 2023 mothers and 2518 children aged 5–7 years, HBsAg positive rate was 4.7% (95/2023) in mothers and 0.52% (13/2518) in their children and all HBsAg positive samples were included in this study. The mean age of mothers was 32.36 ± 6.01 years. 69.2% of children were 5 years old and 30.8% were 6 years old. Among 95 HBsAg positive mothers, nine of their children were positive for HBsAg giving MTCT rate of 9.5% (9/95). The detail of background demography were already discussed by Vichit et al. [8]. In this study, we present the outcomes from genome sequences analysis.

Nucleic acid extraction and HBV genomes amplification

HBV DNA amplified by WA region primer set was detected in 52 samples (41 mothers and 11 children) from which the full genome sequences having 3 k base pairs (3kbp) could perform in 78.1% (32/41) of mothers and 90.9% (10/11) of children. After another trial of amplification to those samples undetected by WA primers, the partial sequencing using s-region primers was achieved in the HBV DNA positive samples of 29 mothers and 1 child. Therefore, HBV DNA was extracted from 73.7% (70/95) of mothers and 92.3% (12/13) of children who were positive for HBsAg and all these 82 samples were able to classify HBV genotypes in Cambodia. (Table 1).
Table 1
Prevalence of HBsAg and a determinant Variants in Cambodia
https://static-content.springer.com/image/art%3A10.1186%2Fs12879-020-05025-3/MediaObjects/12879_2020_5025_Tab1_HTML.png
*: p < 0.001, 1: p = 0.5657, 2: p = 0.21, 3: p = 0.8223, 4: p = 0.9333, 5: p = 0.5191

Nationwide HBV genotype distribution and phylogenetic tree

HBV genotype was determined by the s-region of each detected strain using the neighbor-joining method. HBV genotype C was abundantly found in 84.3% (59/70) of mothers and 58.3% (7/12) of children. HBV genotype B was found in 15.7% of mothers (11/70) and 36.3% of children (5/12). As the phylogenetic tree was constructed by the strains having 823 base pairs from nt111-nt933, 53 out of 82 HBV DNA positive samples could assign. Almost all HBV genotype C were sub-grouped to C1 and were gathered in the same cluster of China, Hong Kong, Thailand, Laos, Malaysia, Myanmar and India except one (C173433) which is sub-genotype C 8 and is much closed to Indonesian strain (Fig. 1). Only a small portion of HBV genotype B was circulated in Cambodia and is in the same cluster to Vietnam in phylogenetic tree except one (C170329) which is adjacent to Taiwanese strain (Fig. 1).

Homology of genome sequences in 7 mother-child pairs

Of 9 HBsAg positive mother-child pairs, 2 pairs were excluded for mothers’ refusal to participate. Among them, only one pair could amplify 2630 bp. The rate of base sequences match (homology) in six mother-child pairs ranged from 99.62 to 100%. The analysis of 2630 bp (nt1929-nt1343) detected from one mother-child pair (C171408m and C171407c) showed a 99.96% homology in their nucleotide sequence. (Table 2).
Table 2
Homology of the detected full length HBV strains isolated from 6 mother-child pairs Identity (%)
Isolate Name
C171228c
C171229m
C171360c
C171361m
C174334c
C174335m
C174347c
C174348m
C174492c
C174493m
C174537c
gC1 C171229m
99.62
          
gC1 C171360c
98.53
98.25
         
gC1 C171361m
98.35
98.25
99.78
        
gB4/C C174334c
91.91
92.02
91.84
91.78
       
gB4/C C174335m
91.94
92.05
91.87
91.81
99.9
      
gB4/C C174347c
91.75
91.93
91.69
91.63
98.25
98.28
     
gB4/C C174348m
91.78
91.96
91.72
91.66
98.28
98.32
99.96
    
gC1 C174492c
98.38
98.25
98.22
98.25
92.06
92.09
92.03
92.6
   
gC1 C174493m
98.38
98.25
98.22
98.25
92.06
92.09
92.03
92.6
100
  
gC1 C174537c
98.5
98.16
98.56
98.41
91.81
91.85
91.75
91.81
98.28
98.28
 
gC1 C174538m
98.47
98.13
98.53
98.44
91.78
91.81
91.72
91.75
98.25
98.25
99.87
The base sequence of the detected HBV strains from 6 mother-child pairs has homology from 99.62–100%
Analysis of up to 2630 bp (nt1929-nt1343) detected from the mother (C171408m) and child (C171407c) showed a 99.96% homology in the nucleotide sequence
gC1: HBV sub-genotype C1, gB4/C: recombinant HBV genotype B4/C, The isolate ID ends in “m” represents for mother and that ends in “c” represents for child

Occurrence of S gene mutant strains of HBV in Cambodia

The determination of mutation was confined to the area specific for “a determinant region of hepatitis B surface antigen (nt121- nt149) [25]. S gene mutant strains of HBV were detected in 17 mothers and 2 children and were recognized at P120S, T/I126N, P127S/T/A, T131I/N, M133T, F134 and G145R/A. In children, one for each aa120 (P120S) and aa127 (P127S) were found (Table 3). But in mothers, the predominant mutation was found at aa127 (P127S/T/A: 5/17) and aa131 (T131I/N/P: 4/17) and aa145 (G145R/A: 4/17), aa126 (T/I126N: 3/17) and aa133 (M133T: 3/17), aa134 (F134L: 1/17) (Fig. 2). The overall S gene mutation rate among HBV DNA positive sera was 24.3% (17/70) in mothers and 16.7% (2/12) in children (p = 0.5657). The S gene mutation rate of HBV by the entire participants was 0.8% (17/2023) in mothers and 0.08% (2/2518) in children (p < 0.001). Among 17 mothers infected with S gene mutant of HBV, two children (11.7%) were found to be HBsAg positive. Among 53 mothers infected with wild type HBV, 7 children (13.2%) were positive to HBsAg (Table 4, Fig. 2).
Table 3
HBV Genotype, Mutation and Vaccination status of 13 HBsAg positive children and their mothers
  
Children
Mother
No.
Province
Sample ID
HBV DNA
Genotype
Mutation
Vaccination status
Sample ID
HBsAg
HBV DNA
Genotype
Mutation
1.
Pursat
c171228c
+
C
3 Penta
c171229m
+
+
C
G145R
2.
Kampong Thom
c174492c
+
C
P127S
3 Penta
c174493m
+
+
C
P127S
3.
Tbong Khmum
c174334c
+
B/C
P120S
HB-BD +
3 Penta
c174335m
+
+
B/C
4.
Preah Sihanouk
c174425c
+
B/C
HB-BD +
3 Penta
c174426m
5.
Phnom Penh
c171360c
+
C
No vaccination
c171361m
+
+
C
6.
Ratanak Kiri
c172147c
+
C
No vaccination
c172148m
7.
Stung Treng
c173863c
+
C
No vaccination
c173864m
+
+
C
8.
Preah Vihear
c174537c
+
C
No vaccination
c174538m
+
+
C
9.
Kampong Speu
c171407c
+
C
HB-BD +
2 Penta
c171408m
+
+
C
10.
Tbong Khmum
c174347c
+
B/C
HB-BD +
3 Penta
c174348m
+
+
B/C
11.
Ratanak Kiri
c172153c
ND
No vaccination
c172154m
+
+
C
12.
Svay Rieng
c171594c
+
B/C
HB-BD +
3 Penta
Not participated
13.
Phnom Penh
c171367c
+
B/C
1 Penta
Not participated
ND: not detected, B: HBV genotype B, C: HBV genotype C, HB-BD: birth dose hepatitis B vaccine, Penta: pentavalent vaccine including hepatitis B vaccine
Table 4
a” determinant Variants of Mother and their corresponding child’s HBV and Immunization status
Mother
Child
Notes
Isolate ID
Age class
HBsAg/
Anti-HBs
Genotype/
sub-genotype
Mutant
Isolate ID
Age
HBsAg/
Anti-HBs
Genotype/
sub-genotype
Mutant
HB-BD/
Penta
Reported Function
C174493m
40–49
+/−
C1
P127S
C174492c
5
+/−
C1
P127S
−/3
Altered hydrophilicity, electrical charge and acidity of the loop
C171229m
30–39
+/−
C1
G145R
C171228c
5
+/−
C1
−/3
Vaccine Escapes Mutant
C170329
30–39
+/−
B2/C2
M133T
C170328
6
−/+
+/3
Rescue of virion secretion
C171039
30–39
+/−
B
M133T
C171038
6
−/+
+/3
Rescue of virion secretion
C171118
20–29
+/−
C
T131N, M133T
C171117
5
−/−
+/3
Rescue of virion secretion,
Rescue of virion secretion
C171550
20–29
+/−
C1
G145A
C171549
6
−/+
−/3
Vaccine Escapes Mutant
C172116
20–29
+/−
C1
P127A
C172115
6
−/−
+/1
Unclear
C173073
30–39
+/−
C
I126N
C173072
5
−/−
+/3
Vaccine Escapes Mutant
C173429
20–29
+/−
C
P127T
C173428
6
−/+
−/3
Unclear
C173706
30–39
+/−
C
P127T, G145R
C17305
5
−/−
+/3
Unclear,
Vaccine Escapes Mutant
C173764
20–29
+/−
C1
F134L
C173763
5
−/+
+/3
Lower reactivity in HBsAg assay
C173866
20–29
+/−
C1
P127T
C173865
6
−/+
NA/3
Unclear
C174337
30–39
+/+
C1
T131P, G145R
C174336
6
−/+
+/3
Unclear,
Vaccine Escapes Mutant
C174478
20–29
+/+
C1
T131I
C174477
6
−/+
+/3
Altered hydrophilicity, electrical charge and acidity of the loop
C174483
20–29
+/−
C
I126N
C174482
5
−/−
+/2
Vaccine Escapes Mutant
C174269
30–39
+/+
C
I126N
C174268
5
−/+
+/3
Vaccine Escapes Mutant
C170464
30–39
+/−
C
T131N
C170463
5
−/−
+/3
Rescue of virion secretion
HB-BD: Birth dose Hepatitis B vaccine, Penta: Pentavalent vaccine including Hepatitis B Vaccine, HBsAg: Hepatitis B surface antigen, Anti-HBs: Hepatitis B surface antibody, M: Male, F: Female, NA: No information about immunization status, †: Full-length genome cannot be done, ‡: Immunization status was taken on recall memory of parents/guardians because no yellow book in hand during survey
HBsAg prevalence and S gene mutation rate of HBV among immunized children were 0.4 and 0.08% and that among non-immunized children were 4.8 and 0% respectively. The a determinant mutation rate among children infected from mother with mutant variant is higher than those infected from mother with wild type (5.9% Vs 1.9%). If the child received hepatitis B vaccination birth-dose (HepB-BD) within 24 h after birth, the infection rate among children with mutant variants is (2% Vs 4.5%). By each genotype, the mutation rate in genotype C was 24.2% (16/66) and that of genotype B was 18.8% (3/16).

Characteristics of S gene mutant strains of HBV found among 13 mother-child pairs

After excluding children with undetectable HBV DNA (n = 1), whose mothers’ HBsAg negative (n = 2) and whose mothers refused to participate (n = 2), 8 mother-child pairs were then analyzed for S gene mutation of HBV. One mother-child pair has mutation at nt127 (P127S) in both mother and her child, one mother-child pair had mutation at nt120 (P120S) only in child and another one pair has mutation at nt145 (G145R) only in mother. Seven out of 13 children had completed at least 2 doses of pentavalent vaccine with or without HepB-BD. (Fig. 2).

Double and combination mutant strains among children and their mothers in Cambodia

The double mutation at A1762T/G1764A was found only in HBV genotype C1 strains (12 mothers and 3 children) with the mutation rate of 48.39%. The combination mutation at C1653T and A1762T/G1764A or T1753C and A1762T/G1764A was also only found in HBV genotype C1 strains (10 mothers) with the mutation rate of 32.26%. (Table 5).
Table 5
Demography and Characteristic of 42Cambodian strains with mutation in Enhancer II and Core Promoter region
No.
Isolate Name
Age class
Residence
Genotype
Length (bp)
PreS Deletion
Enhancer II and Core Promoter
1653
1753
1762/1764
1.
C171361m
20–29
PP
C1
3215
 
(+)
  
2.
C171360c
0–9
PP
C1
3215
   
(+)
3.
C174538m
20–29
PV
C1
3215
 
(+)
 
(+)
4.
C174537c
0–9
PV
C1
3215
   
(+)
5.
C171229m
30–39
PS
C1
3170
(+)
   
6.
C171228c
0–9
PS
C1
3215
   
(+)
7.
C174493m
40–49
KT
C1
3215
    
8.
C174492c
0–9
KT
C1
3215
    
9.
C174335m
30–39
TK
B4/C2
3215
    
10.
C174334c
0–9
TK
B4/C2
3215
    
11.
C174348m
30–39
TK
B4/C2
3215
    
12.
C174347c
0–9
TK
B4/C2
3215
    
13.
C171459
30–39
PP
C1
3194
  
(+)
(+)
14.
C171060
20–29
KD
C1
3215
 
(+)
 
(+)
15.
C172116
20–29
KC
C1
3215
    
16.
C172168
20–29
KC
C1
3191
(+)
   
17.
C173909
20–29
KC
C1
3215
  
(+)
(+)
18.
C170492
30–39
KS
C1
3215
    
19.
C171046
30–39
KS
C1
3215
    
20.
C172562
20–29
KS
B4/C2
3215
    
21.
C170405
40–49
KCh
B4/C2
3215
  
(+)
 
22.
C171573
40–49
KCh
C1
3215
  
(+)
(+)
23.
C173681
30–39
KCh
C1
3227
    
24.
C174314
30–39
KCh
C1
2961
(+)
   
25.
C173866
20–29
ST
C1
3215
   
(+)
26.
C171550
20–29
SR
C1
3158
(+)
   
27.
C174478
20–29
OM
C1
3215
    
28.
C173275
30–39
TA
C1
3161
(+)
 
(+)
(+)
29.
C171728
20–29
PS
C1
3196
    
30.
C172920
30–39
KT
C1
3215
    
31.
C173764
20–29
KT
C1
3173
(+)
(+)
 
(+)
32.
C173334
30–39
BT
C1
3215
   
(+)
33.
C172749
30–39
BT
C1
3215
  
(+)
(+)
34.
C171026
30–39
BT
C1
3215
   
(+)
35.
C173400
40–49
BT
C1
3215
    
36.
C170329
30–39
SRi
B2/C2
3215
    
37.
C174337
30–39
TK
C1
3194
(+)
(+)
 
(+)
38.
C170337
20–29
SRi
B4/C2
3215
    
39.
C171367c
0–9
PP
B4/C2
3239
    
40.
C172147c
0–9
RK
C1
3215
    
41.
C174425c
0–9
PSi
B4/C2
3215
    
42.
C171594c
0–9
SRi
B4/C2
3215
    
PP Phnom Penh, PV Preah Vihear, PSPursat, KT Kampong Thom, TK Tbong Khmum, KD Kandal, KC Kratie, KS Kampong Speu, KCh Kampong Cham, ST Stung Treng, SR Siem Reap, Sri Svay Rieng, OM Otdar Meanchey, TA Takeo, BT Battambang, RK Ratanak Kiri, PSi Preah Sihanouk, “M”: Male, “F”: Female, “C1”: hepatitis B virus subgenotype C1, “B/C”: hepatitis B virus recombinant B/C, “(+)” indicates mutation occur in the core promoter, PreC and Core regions

Full-length genome sequences and evolutionary analysis of Texa

We could do the full-genome sequences in 42 samples (32 mothers and 10 children) with the nucleotide length from 3161 to 3239 base pairs amongst which 31 strains were belong to genotype C and the rest (11 strains) were genotype B. All HBV genotype C belongs to sub-genotype C1 which were assumed to be originated from Indonesia, Thailand, India, China and Vietnam. For HBV genotype B, almost all detected strains (n = 10) are found to be recombinant genotype B4/C2. Only one strain (C170329) showed recombinant B2/C2. All these recombinant B/C strains build up with circular DNA mixing up of sequences resembling genotype B and a short portion of genotype C in core region (Fig. 3) with various breaking points for recombination. By mean of evolutionary relationship of Texa, all recombinant genotype B4/C2 strains are near to Vietnamese strains but B2/C2 is very near to Taiwanese strain.

Discussion

This study is the first report to present HBV DNA positive rate, its amplification rate, genotype distribution and existence of potential HBV variants among the strains isolated from mother-child pairs in Cambodia as of its nationwide scale.
The overall HBV DNA positive rate in children was 0.48% which definitely reflects the well-established vaccination program in Cambodia. But, MTCT rate was 9.47% (9/95) which is higher than the previously reported rate among vaccinated Asian (2–3%) [26]. The homology between HBV strains isolated from these mother-child pairs was 99.62–100% which strongly indicated that the transmission was vertical.
The genome sequences revealed the genotype distribution pattern of HBV in the whole Cambodia. HBV genotype C was abundantly found in almost all provinces of Cambodia except Kandal, Kampong Cham, Tbong Khmum and Svay Rieng provinces where HBV genotype B was predominant. Some studies also reported that genotype C is the predominant genotype in Cambodia and then followed by genotype B [10, 27]. Cambodia is bordered by Thailand to the northwest, Laos to the northeast, and Vietnam to the east and the Gulf of Thailand to the southwest. The genotype distribution pattern is linked to the neighboring countries of Cambodia. In our study, HBV genotype B was exclusively circulated in Svay Rieng, Kampot and Tbong Khmum provinces; the border regions to the Vietnam where HBV genotype B is predominant (72.6%); particularly sub-genotype B4 (87.8%) [28]. HBV genotype C was abundantly found in the Stung Treng, Ratanak Kiri and Preah Vihear provinces, the northeast part of Cambodia and border region to Laos, where HBV genotype C (55.4%) is also predominant [29]. Meanwhile, in Otdar Meanchey, Pursat and Battambang provinces; the west and northwest regions of Cambodia bordering to Thailand, HBV genotype C was exclusively found where 73 to 87.5% of the detected HBV strains were genotype C [30, 31]. In fact, HBV genotypes B and C are the most prevalent types in Asia and the genotype C has more pathogenicity in compared with genotype B [32]. By this study, it is supposed to have the historical relation of HBV genotype between Cambodia and its neighboring countries. Therefore, this nationwide genotype distribution pattern raises two important issues for the infection control of HBV in Cambodia. Firstly, the health sector should be aware of geographic variation of HBV genotypes and its historical relation among neighboring countries and should consider for implementation of effective HBV preventive strategies among migrants from both sides. Secondly, the reported predominant genotypes and sub-genotypes of our study can be the clue for better understanding of viral factors on liver disease progression in chronic hepatitis B carriers in Cambodia.
S gene mutant strains of HBV were isolated from 17 mothers and 2 children. The overall S gene mutation rate of HBV among HBV DNA positive sera was 23.94% in mothers and 18.18% in children, 24.24% in genotype C and 18.75% in genotype B. This rate was lower than that reported from Singapore (39%) [33] but is higher than Thailand (22.4%) [34] and Malaysia (9%) [35]. By this study, high S gene mutation rate of HBV among mother-child pairs of Cambodia suggested the potential spread of vaccine escapes mutant strains in Cambodia. S gene mutation of HBV specifically a mutant was occurred most frequently among immunized children and who received plasma derived HepB vaccine [12] and the similar results were found among immunized children of our study but there was no statistically significance. The vaccine itself driven S gene mutation through immune pressure causing amino acid substitution and point mutation [36] although we could not exclude MTCT of S gene mutants.
In our study, only 2 out of 17 children born to mothers with S gene mutants of HBV became infected and both of them did not receive HepB-BD. But, no infection was found if the children received HepB-BD. This could be explained by the hypothesis, that the S gene mutant strain of HBV itself has lower replication rate and also has negative effect on replication of wild type HBV in mixed infection through high T cell immune response causing less infectivity and transmissibility of HBV infection [37]. If the child had received HepB-BD within 24 h, the vaccine totally interrupts MTCT. If the child missed HepB-BD, it causes high possibility of MTCT despite previous study reported on low level of viral replication among mutant strains. Although it was not clear whether S gene mutants of HBV were transmitted vertically or only under immune pressure due to vaccination in our study and the number of isolated mutant strains was quite small to compare, it was revealed that HepB-BD is crucial for preventing MTCT of HBV either wild type or S gene mutants.
S gene mutation of HBV was profoundly occurred in genotype C in our study than genotype B. In fact, genotype B was documented to have high potential for occurrence of amino acid substitution than genotype C [38]. This discrepancy might be due to difference genotype distribution pattern. But the existence of S gene mutants of HBV in Cambodia alarms the possible breakthrough infection among immunized children which may threaten the long term effect of massive immunization. Despite the successful establishment of HepB vaccination, Cambodia has no specific program and protocol for PMTCT of HBV until now. It is challenging for Cambodia on its pathway to meet WHO’s viral hepatitis elimination goal of by 2030. Therefore, the health sector should develop and disseminate the national guideline, HBV screening, assurance of HepB-BD administration to all newborns within 24 h after delivery and provide specific anti-viral treatment to HBV carrier mothers.
Apart from S gene mutation, preS deletion (22.58%), double (48.39%) and combination mutation (32.26%) were also found in HBV genotype C1 strains. In fact, HBV genotype C can easily mutate [39] and its mutation is significantly related to the HCC occurrence [10, 27, 40]. In our study, although we could not correlate the mutant variant with respective liver disease condition, based on recently published study [40], it indicates the need of proper counseling, early and proper referral to the specialized center, assessment for eligibility to anti-viral therapy and regular follow-up care which should be offered to them even they are currently asymptomatic.
This study used the DBS samples to detect not only the HBV sero-markers but also HBV DNA and consequently both partial and full length genome sequences, which is the critical tool for the advanced molecular epidemiology. According to recent systematic review and meta-analysis report, the pooled estimate of sensitivity and specificity for HBV-DNA using DBS was 95% (95% CI: 83–99) and 99% (95% CI: 53–100), respectively [14]. Despite the whole blood samples by venipuncture still ranks as the gold standard for biological specimen, this study proved the capable of DBS for HBV full-length genomes sequences and it is useful as alternative blood collection tool for large scale molecular epidemiological study especially in resources limited countries which may accelerate the surveillance of target virus.
The limitations were present in this study. Firstly, our study could not evaluate the S gene mutation rate by type of HepB vaccine used in the children. Secondly, the study is cross-sectional so that the investigation of liver disease stages and their progress is impossible. Based on the previous study, we could only suggest that HBV C1 infected participants of our study have high possibility to HCC occurrence [40]. At last, even we used DBS samples for detection of partial and full-length HBV genome sequence; we could not compare it with gold standard venous blood samples. Further comparative study on detection of viral genomes in both DBS and venous samples is needed.

Conclusion

A partial and full-length HBV genomes sequences can be extracted from dried blood spot samples which confer up to molecular epidemiological study of HBV. HBV Genotype C is predominant type in Cambodia but the genotype B is exclusively found in the regions border to Vietnam which shows the historical relation of HBV across the border regions. The recombinant sub-genotype B/C and S gene mutant variants of HBV later known as vaccine escapes mutation (among HBV DNA positive sera, 24.29% in mothers and 16.67% in children, 24.24% in genotype C and 18.75% in genotype B) were found by this study. The double (48.39%) and combination mutation (32.26%) in HBV C1 strains of this study also alarm for the high possibility of hepatocellular carcinoma in individuals with chronic hepatitis B. Therefore, our findings strongly call for implementation of effective countermeasure and its surveillance on viral hepatitis including PMTCT so that Cambodia can continue straightforwardly to meet WHO’s elimination goal of viral hepatitis by 2030.

Acknowledgements

A part of this study was presented and published at the 29th annual conference of Asian Pacific Association for the Study of the Liver (APASL), 2020 in Bali, Indonesia [41]. Our thanks will go to each and every mother and child for their actively participation in this study. We also thank to Mrs. Chiyoko Kuroda and Mrs. Chitomi Aratani, laboratory technicians from department of Epidemiology, Infectious Disease Control and Prevention, Hiroshima University, for their kind support during laboratory measurement.
Written informed consent was obtained from the mother for her child and herself; if the mother was absent, the father or other caretaker was asked to provide written informed consent for the child. Informed assent was obtained from all children in the study. All specimens and questionnaire data were de-identified, with reference only to a unique identifier. The study protocol was approved by the Cambodia National Ethics Committee for Human Research (392NECHR), the Ethics Review Committee for the WHO Western Pacific Region and the Ethical Committee for Epidemiology of Hiroshima University (E-573) and the study procedure strictly followed the Declaration of Helsinki for research including human beings.
Not applicable.

Competing interests

The authors declare no conflict of interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat World_Health_Organization. Global hepatitis report, 2017; 2017. p. 83. World_Health_Organization. Global hepatitis report, 2017; 2017. p. 83.
2.
Zurück zum Zitat World_Health_Organization: WHO definition of regional grouping. 2017. World_Health_Organization: WHO definition of regional grouping. 2017.
3.
Zurück zum Zitat Szmuness W, Stevens CE, Zang EA, Harley EJ, Kellner A. A controlled clinical trial of the efficacy of the hepatitis B vaccine (heptavax B): a final report. Hepatology. 1981;1(5):377–85.CrossRef Szmuness W, Stevens CE, Zang EA, Harley EJ, Kellner A. A controlled clinical trial of the efficacy of the hepatitis B vaccine (heptavax B): a final report. Hepatology. 1981;1(5):377–85.CrossRef
4.
Zurück zum Zitat Sa-Nguanmoo P, Tangkijvanich P, Thawornsuk N, Vichaiwattana P, Prianantathavorn K, Theamboonlers A, Tanaka Y, Poovorawan Y. Molecular epidemiological study of hepatitis B virus among migrant workers from Cambodia, Laos, and Myanmar to Thailand. J Med Virol. 2010;82(8):1341–9.CrossRef Sa-Nguanmoo P, Tangkijvanich P, Thawornsuk N, Vichaiwattana P, Prianantathavorn K, Theamboonlers A, Tanaka Y, Poovorawan Y. Molecular epidemiological study of hepatitis B virus among migrant workers from Cambodia, Laos, and Myanmar to Thailand. J Med Virol. 2010;82(8):1341–9.CrossRef
5.
Zurück zum Zitat Mao B, Patel MK, Hennessey K, Duncan RJW, Wannemuehler K, Soeung SC. Prevalence of chronic hepatitis B virus infection after implementation of a hepatitis B vaccination program among children in three provinces in Cambodia. Vaccine. 2013;31(40):4459–64.CrossRef Mao B, Patel MK, Hennessey K, Duncan RJW, Wannemuehler K, Soeung SC. Prevalence of chronic hepatitis B virus infection after implementation of a hepatitis B vaccination program among children in three provinces in Cambodia. Vaccine. 2013;31(40):4459–64.CrossRef
6.
Zurück zum Zitat UNICEF WHOa: World Health Organization and UNICEF estimate of immunization coverage. 2014. UNICEF WHOa: World Health Organization and UNICEF estimate of immunization coverage. 2014.
7.
Zurück zum Zitat Soeung SC, Rani MV, Huong VT, Sarath S, Kimly C, Kohei T. Results from nationwide hepatitis B serosurvey in Cambodia using simple and rapid laboratory test: implications for National Immunization Program. Am J Trop Med Hygiene. 2009;81(2):252–7.CrossRef Soeung SC, Rani MV, Huong VT, Sarath S, Kimly C, Kohei T. Results from nationwide hepatitis B serosurvey in Cambodia using simple and rapid laboratory test: implications for National Immunization Program. Am J Trop Med Hygiene. 2009;81(2):252–7.CrossRef
8.
Zurück zum Zitat Ork V, Woodring J, Shafiqul Hossain M, Wasley A, Nagashima S, Yamamoto C, Chuon C, Sugiyama A, Ohisa M, Akita T, et al. Hepatitis B surface antigen seroprevalence among pre- and post-vaccine cohorts in Cambodia, 2017. Vaccine. 2019;37(35):5059–66.CrossRef Ork V, Woodring J, Shafiqul Hossain M, Wasley A, Nagashima S, Yamamoto C, Chuon C, Sugiyama A, Ohisa M, Akita T, et al. Hepatitis B surface antigen seroprevalence among pre- and post-vaccine cohorts in Cambodia, 2017. Vaccine. 2019;37(35):5059–66.CrossRef
9.
Zurück zum Zitat Sunbul M. Hepatitis B virus genotypes: global distribution and clinical importance. World J Gastroenterol. 2014;20(18):5427–34.CrossRef Sunbul M. Hepatitis B virus genotypes: global distribution and clinical importance. World J Gastroenterol. 2014;20(18):5427–34.CrossRef
10.
Zurück zum Zitat Huy TTT, Sall AA, Reynes JM, Abe K. Complete genomic sequence and phylogenetic relatedness of hepatitis B virus isolates in Cambodia. Virus Genes. 2008;36(2):299–305.CrossRef Huy TTT, Sall AA, Reynes JM, Abe K. Complete genomic sequence and phylogenetic relatedness of hepatitis B virus isolates in Cambodia. Virus Genes. 2008;36(2):299–305.CrossRef
11.
Zurück zum Zitat El Chaar M, Candotti D, Crowther RA, Allain JP. Impact of hepatitis B virus surface protein mutations on the diagnosis of occult hepatitis B virus infection. Hepatology. 2010;52(5):1600–10.CrossRef El Chaar M, Candotti D, Crowther RA, Allain JP. Impact of hepatitis B virus surface protein mutations on the diagnosis of occult hepatitis B virus infection. Hepatology. 2010;52(5):1600–10.CrossRef
12.
Zurück zum Zitat Wu J-F, Ni Y-H, Chang M-H, Chiang C-L, Hsu H-Y, Chen H-L, Chen P-J. No increase in prevalence of hepatitis B surface antigen mutant in a population of children and adolescents who were fully covered by universal infant immunization. J Infect Dis. 2010;201(8):1192–200.CrossRef Wu J-F, Ni Y-H, Chang M-H, Chiang C-L, Hsu H-Y, Chen H-L, Chen P-J. No increase in prevalence of hepatitis B surface antigen mutant in a population of children and adolescents who were fully covered by universal infant immunization. J Infect Dis. 2010;201(8):1192–200.CrossRef
13.
Zurück zum Zitat Lumipulse FI. Japan: Report on HBsAg, HBsAb-N, HBcAb-N, HBeAg, HBeAb-N using Lumipulse G1200; 2017. Lumipulse FI. Japan: Report on HBsAg, HBsAb-N, HBcAb-N, HBeAg, HBeAb-N using Lumipulse G1200; 2017.
14.
Zurück zum Zitat Lange B, Roberts T, Cohn J, Greenman J, Camp J, Ishizaki A, Messac L, Tuaillon E, van de Perre P, Pichler C, et al. Diagnostic accuracy of detection and quantification of HBV-DNA and HCV-RNA using dried blood spot (DBS) samples - a systematic review and meta-analysis. BMC Infect Dis. 2017;17(Suppl 1):693.CrossRef Lange B, Roberts T, Cohn J, Greenman J, Camp J, Ishizaki A, Messac L, Tuaillon E, van de Perre P, Pichler C, et al. Diagnostic accuracy of detection and quantification of HBV-DNA and HCV-RNA using dried blood spot (DBS) samples - a systematic review and meta-analysis. BMC Infect Dis. 2017;17(Suppl 1):693.CrossRef
15.
Zurück zum Zitat Yamamoto C, Nagashima S, Isomura M, Ko K, Chuon C, Akita T, Katayama K, Woodring J, Hossain MS, Takahashi K, et al. Evaluation of the efficiency of dried blood spot-based measurement of hepatitis B and hepatitis C virus seromarkers. Sci Rep. 2020;10(1):3857.CrossRef Yamamoto C, Nagashima S, Isomura M, Ko K, Chuon C, Akita T, Katayama K, Woodring J, Hossain MS, Takahashi K, et al. Evaluation of the efficiency of dried blood spot-based measurement of hepatitis B and hepatitis C virus seromarkers. Sci Rep. 2020;10(1):3857.CrossRef
16.
Zurück zum Zitat Fujimoto M, Chuon C, Nagashima S, Yamamoto C, Ko K, Svay S, Hok S, Lim O, Ohisa M, Akita T, et al. A seroepidemiological survey of the effect of hepatitis B vaccine and hepatitis B and C virus infections among elementary school students in Siem Reap province, Cambodia. Hepatol Res. 2018;48(3):E172–82.CrossRef Fujimoto M, Chuon C, Nagashima S, Yamamoto C, Ko K, Svay S, Hok S, Lim O, Ohisa M, Akita T, et al. A seroepidemiological survey of the effect of hepatitis B vaccine and hepatitis B and C virus infections among elementary school students in Siem Reap province, Cambodia. Hepatol Res. 2018;48(3):E172–82.CrossRef
17.
Zurück zum Zitat Matsuo J, Do SH, Yamamoto C, Nagashima S, Chuon C, Katayama K, Takahashi K, Tanaka J. Clustering infection of hepatitis B virus genotype B4 among residents in Vietnam, and its genomic characters both intra- and extra-family. PLoS One. 2017;12(7):–e0177248. Matsuo J, Do SH, Yamamoto C, Nagashima S, Chuon C, Katayama K, Takahashi K, Tanaka J. Clustering infection of hepatitis B virus genotype B4 among residents in Vietnam, and its genomic characters both intra- and extra-family. PLoS One. 2017;12(7):–e0177248.
18.
Zurück zum Zitat Yuasa RTK, Dien BV, Binh NH, Morishita T, Sato K, Yamamoto N, Isomura S, Yoshioka K, Ishikawa T, Mishiro S, Kakumu S. Properties of hepatitis B virus genome recovered from Vietnamese patients with fulminant hepatitis in comparison with those of acute hepatitis. J Med Virol. 2000;61(1):6.CrossRef Yuasa RTK, Dien BV, Binh NH, Morishita T, Sato K, Yamamoto N, Isomura S, Yoshioka K, Ishikawa T, Mishiro S, Kakumu S. Properties of hepatitis B virus genome recovered from Vietnamese patients with fulminant hepatitis in comparison with those of acute hepatitis. J Med Virol. 2000;61(1):6.CrossRef
19.
Zurück zum Zitat Iizuka H, Ohmura K, Ishijima A, Satoh K, Tanaka T, Tsuda F, Okamoto H, Miyakawa Y, Mayumi M. Correlation between anti-HBc titers and HBV DNA in blood units without detectable HBsAg. Vox Sang. 1992;63(2):107–11.CrossRef Iizuka H, Ohmura K, Ishijima A, Satoh K, Tanaka T, Tsuda F, Okamoto H, Miyakawa Y, Mayumi M. Correlation between anti-HBc titers and HBV DNA in blood units without detectable HBsAg. Vox Sang. 1992;63(2):107–11.CrossRef
20.
Zurück zum Zitat Nei M, Saitou N. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.PubMed Nei M, Saitou N. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.PubMed
21.
Zurück zum Zitat Stecher G, Kumar S, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.CrossRef Stecher G, Kumar S, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.CrossRef
22.
Zurück zum Zitat Lole KS, Bollinger RC, Paranjape RS, Gadkari D, Kulkarni SS, Novak NG, Ingersoll R, Sheppard HW, Ray SC. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected Seroconverters in India, with evidence of Intersubtype recombination. J Virol. 1999;73(1):152–60.CrossRef Lole KS, Bollinger RC, Paranjape RS, Gadkari D, Kulkarni SS, Novak NG, Ingersoll R, Sheppard HW, Ray SC. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected Seroconverters in India, with evidence of Intersubtype recombination. J Virol. 1999;73(1):152–60.CrossRef
23.
Zurück zum Zitat Schultz A-K, Bulla I, Abdou-Chekaraou M, Gordien E, Morgenstern B, Zoulim F, Dény P. Stanke M: jpHMM: recombination analysis in viruses with circular genomes such as the hepatitis B virus. Nucleic Acids Res. 2012;40(W1):W193–8.CrossRef Schultz A-K, Bulla I, Abdou-Chekaraou M, Gordien E, Morgenstern B, Zoulim F, Dény P. Stanke M: jpHMM: recombination analysis in viruses with circular genomes such as the hepatitis B virus. Nucleic Acids Res. 2012;40(W1):W193–8.CrossRef
24.
Zurück zum Zitat Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45.CrossRef Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45.CrossRef
25.
Zurück zum Zitat Purdy MA. Hepatitis B virus S gene escape mutants. Asian J Transfus Sci. 2007;1(2):62–70.CrossRef Purdy MA. Hepatitis B virus S gene escape mutants. Asian J Transfus Sci. 2007;1(2):62–70.CrossRef
26.
Zurück zum Zitat Hunt CM, McGill JM, Allen MI, Condreay LD. Clinical relevance of hepatitis B viral mutations. Hepatology. 2000;31(5):1037–44.CrossRef Hunt CM, McGill JM, Allen MI, Condreay LD. Clinical relevance of hepatitis B viral mutations. Hepatology. 2000;31(5):1037–44.CrossRef
27.
Zurück zum Zitat Yamada H, Fujimoto M, Svay S, Lim O, Hok S, Goto N, Ohisa M, Akita T, Matsuo J, Do SH, et al. Seroprevalence, genotypic distribution and potential risk factors of hepatitis B and C virus infections among adults in Siem Reap, Cambodia. Hepatology Research. 2015;45(4):480–7.CrossRef Yamada H, Fujimoto M, Svay S, Lim O, Hok S, Goto N, Ohisa M, Akita T, Matsuo J, Do SH, et al. Seroprevalence, genotypic distribution and potential risk factors of hepatitis B and C virus infections among adults in Siem Reap, Cambodia. Hepatology Research. 2015;45(4):480–7.CrossRef
28.
Zurück zum Zitat Bui TTT, Tran TT, Nghiem MN, Rahman P, Tran TTT, Dinh MNH, Le MH, Nguyen VVC, Thwaites G, Rahman M. Molecular characterization of hepatitis B virus in Vietnam. BMC Infect Dis. 2017;17(1):601.CrossRef Bui TTT, Tran TT, Nghiem MN, Rahman P, Tran TTT, Dinh MNH, Le MH, Nguyen VVC, Thwaites G, Rahman M. Molecular characterization of hepatitis B virus in Vietnam. BMC Infect Dis. 2017;17(1):601.CrossRef
30.
Zurück zum Zitat Tangkijvanich P, Mahachai V, Komolmit P, Fongsarun J, Theamboonlers A, Poovorawan Y. Hepatitis B virus genotypes and hepatocellular carcinoma in Thailand. World J Gastroenterol. 2005;11(15):2238–43.CrossRef Tangkijvanich P, Mahachai V, Komolmit P, Fongsarun J, Theamboonlers A, Poovorawan Y. Hepatitis B virus genotypes and hepatocellular carcinoma in Thailand. World J Gastroenterol. 2005;11(15):2238–43.CrossRef
31.
Zurück zum Zitat Louisirirotchanakul S, Olinger CM, Arunkaewchaemsri P, Poovorawan Y, Kanoksinsombat C, Thongme C, Sa-nguanmoo P, Krasae S, Theamboonlert A, Oota S, et al. The distribution of hepatitis B virus genotypes in Thailand. J Med Virol. 2012;84(10):1541–7.CrossRef Louisirirotchanakul S, Olinger CM, Arunkaewchaemsri P, Poovorawan Y, Kanoksinsombat C, Thongme C, Sa-nguanmoo P, Krasae S, Theamboonlert A, Oota S, et al. The distribution of hepatitis B virus genotypes in Thailand. J Med Virol. 2012;84(10):1541–7.CrossRef
32.
Zurück zum Zitat Huy TT, Ushijima H, Win KM, Luengrojanakul P, Shrestha PK, Zhong ZH, Smirnov AV, Taltavull TC, Sata T, Abe K. High prevalence of hepatitis B virus pre-s mutant in countries where it is endemic and its relationship with genotype and chronicity. J Clin Microbiol. 2003;41(12):5449–55.CrossRef Huy TT, Ushijima H, Win KM, Luengrojanakul P, Shrestha PK, Zhong ZH, Smirnov AV, Taltavull TC, Sata T, Abe K. High prevalence of hepatitis B virus pre-s mutant in countries where it is endemic and its relationship with genotype and chronicity. J Clin Microbiol. 2003;41(12):5449–55.CrossRef
33.
Zurück zum Zitat Chong-Jin O, Ning CW, Shiuan K, Keow LG. Identification of hepatitis B surface antigen variants with alterations outside the “a” determinant in immunized Singapore infants. J Infect Dis. 1999;179(1):259–63.CrossRef Chong-Jin O, Ning CW, Shiuan K, Keow LG. Identification of hepatitis B surface antigen variants with alterations outside the “a” determinant in immunized Singapore infants. J Infect Dis. 1999;179(1):259–63.CrossRef
34.
Zurück zum Zitat Poovorawan Y, Chongsrisawat V, Theamboonlers A, Leroux-Roels G, Crasta PD, Hardt K. Persistence and immune memory to hepatitis B vaccine 20 years after primary vaccination of Thai infants, born to HBsAg and HBeAg positive mothers. Hum Vaccin Immunother. 2012;8(7):896–904.CrossRef Poovorawan Y, Chongsrisawat V, Theamboonlers A, Leroux-Roels G, Crasta PD, Hardt K. Persistence and immune memory to hepatitis B vaccine 20 years after primary vaccination of Thai infants, born to HBsAg and HBeAg positive mothers. Hum Vaccin Immunother. 2012;8(7):896–904.CrossRef
35.
Zurück zum Zitat Meldal BHM, Bon AH, Prati D, Ayob Y, Allain JP. Diversity of hepatitis B virus infecting Malaysian candidate blood donors is driven by viral and host factors. J Viral Hepatitis. 2011;18(2):91–101.CrossRef Meldal BHM, Bon AH, Prati D, Ayob Y, Allain JP. Diversity of hepatitis B virus infecting Malaysian candidate blood donors is driven by viral and host factors. J Viral Hepatitis. 2011;18(2):91–101.CrossRef
36.
Zurück zum Zitat Hsu H-Y, Chang M-H, Liaw S-H, Ni Y-H, Chen H-L. Changes of hepatitis B surface antigen variants in carrier children before and after universal vaccination in Taiwan. Hepatology. 1999;30(5):1312–7.CrossRef Hsu H-Y, Chang M-H, Liaw S-H, Ni Y-H, Chen H-L. Changes of hepatitis B surface antigen variants in carrier children before and after universal vaccination in Taiwan. Hepatology. 1999;30(5):1312–7.CrossRef
37.
Zurück zum Zitat Bes M, Vargas V, Piron M, Casamitjana N, Esteban JI, Vilanova N, Pinacho A, Quer J, Puig L, Guardia J, et al. T cell responses and viral variability in blood donation candidates with occult hepatitis B infection. J Hepatol. 2012;56(4):765–74.CrossRef Bes M, Vargas V, Piron M, Casamitjana N, Esteban JI, Vilanova N, Pinacho A, Quer J, Puig L, Guardia J, et al. T cell responses and viral variability in blood donation candidates with occult hepatitis B infection. J Hepatol. 2012;56(4):765–74.CrossRef
38.
Zurück zum Zitat Gencay M, Hübner K, Gohl P, Seffner A, Weizenegger M, Neofytos D, Batrla R, Woeste A, Kim H-S, Westergaard G, et al. Ultra-deep sequencing reveals high prevalence and broad structural diversity of hepatitis B surface antigen mutations in a global population. PLoS One. 2017;12(5):–e0172101. Gencay M, Hübner K, Gohl P, Seffner A, Weizenegger M, Neofytos D, Batrla R, Woeste A, Kim H-S, Westergaard G, et al. Ultra-deep sequencing reveals high prevalence and broad structural diversity of hepatitis B surface antigen mutations in a global population. PLoS One. 2017;12(5):–e0172101.
39.
Zurück zum Zitat Lee MH, Kim DY, Kim JK, Chang HY, Kang SH, Ryu HJ, Ju HL, Kim SU, Lee JM, Park JY, et al. Combination of preS deletions and A1762T/G1764A mutations in HBV subgenotype C2 increases the risk of developing HCC. Intervirology. 2012;55(4):296–302.CrossRef Lee MH, Kim DY, Kim JK, Chang HY, Kang SH, Ryu HJ, Ju HL, Kim SU, Lee JM, Park JY, et al. Combination of preS deletions and A1762T/G1764A mutations in HBV subgenotype C2 increases the risk of developing HCC. Intervirology. 2012;55(4):296–302.CrossRef
40.
Zurück zum Zitat Chuon C, Takahashi K, Matsuo J, Katayama K, Yamamoto C, Ko K, Hok S, Nagashima S, Akbar SMF, Tanaka J. High possibility of hepatocarcinogenesis in HBV genotype C1 infected Cambodians is indicated by 340 HBV C1 full-genomes analysis from GenBank. Sci Rep. 2019;9(1):12186.CrossRef Chuon C, Takahashi K, Matsuo J, Katayama K, Yamamoto C, Ko K, Hok S, Nagashima S, Akbar SMF, Tanaka J. High possibility of hepatocarcinogenesis in HBV genotype C1 infected Cambodians is indicated by 340 HBV C1 full-genomes analysis from GenBank. Sci Rep. 2019;9(1):12186.CrossRef
41.
Zurück zum Zitat Abstracts. Hepatology International 2020, 14(1):1–470. Abstracts. Hepatology International 2020, 14(1):1–470.
Metadaten
Titel
Existence of hepatitis B virus surface protein mutations and other variants: demand for hepatitis B infection control in Cambodia
verfasst von
Ko Ko
Kazuaki Takahashi
Shintaro Nagashima
Chikako Yamamoto
Vichit Ork
Aya Sugiyama
Tomoyuki Akita
Masayuki Ohisa
Channarena Chuon
Md. Shafiqul Hossain
Bunsoth Mao
Junko Tanaka
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2020
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-05025-3

Weitere Artikel der Ausgabe 1/2020

BMC Infectious Diseases 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.