Skip to main content
Erschienen in: Pathology & Oncology Research 2/2019

Open Access 15.09.2018 | Original Article

Expression of microRNA-150 and its Target Gene IGF2BP1 in Human Osteosarcoma and their Clinical Implications

Erschienen in: Pathology & Oncology Research | Ausgabe 2/2019

Abstract

Previous study revealed that microRNA (miR)-150 might function as a tumor suppressor in osteosarcoma partially by targeting Insulin-Like Growth Factor 2 mRNA-Binding Protein 1 (IGF2BP1). The aim of this study was to investigate the clinical significance of miR-150-IGF2BP1 axis in human osteosarcoma which remains unclear. At first, expression levels of miR-150, and IGF2BP1 mRNA and protein in 20 osteosarcoma and matched adjacent noncancerous tissues were respectively detected by quantitative real-time PCR and western blot analyses. Then, subcellular localization and expression pattern of IGF2BP1 protein in 100 osteosarcoma tissues were examined by immunohistochemistry. Associations of miR-150/IGF2BP1 expression with various clinicopathological features and patients’ prognosis were also statistically evaluated. As a result, miR-150 expression was significantly decreased, while IGF2BP1 mRNA and protein expression were dramatically increased in osteosarcoma tissues compared to matched adjacent noncancerous tissues (all P < 0.001). Immunostaining of IGF2BP1 protein was localized in cytoplasm of tumor cells in osteosarcoma tissues. Statistically, low miR-150 expression and/or high IGF2BP1 protein immunoreactive score were all significantly associated with high tumor grade, presence of metastasis and recurrence, as well as poor response to chemotherapy (all P < 0.05). Moreover, miR-150, IGF2BP1 and combined miR-150/IGF2BP1 expressions were all identified as independent prognostic factors for overall and disease-free survivals of osteosarcoma patients (all P < 0.05). In conclusion, our data suggest that miR-150 and its downstream target IGF2BP1 may be a crucial axis for the development, progression and patients’ prognosis of ostesarcoma. The newly identified miR-150/IGF2BP1 axis might be a novel potential therapeutic target for osteosarcoma treatment.
Hinweise
Lei Wang and Ailixiati Aireti contributed equally to this work.

Introduction

Osteosarcoma is the most common type of bone tumor among children, adolescents, and young adults worldwide, representing a leading cause of cancer-related death [1]. This malignancy is predominantly occurring around regions with active bone growth and repair, and its incidence rate is increasing [2]. Owing to the recent advances in therapeutic strategies for osteosarcoma, such as wide tumor excision, neoadjuvant and adjuvant chemotherapy, and radiotherapy, the patients’ clinical outcome and long-term survival rates have been improved distinctly [3]. However, approximately one-third of osteosarcoma patients survive for less than 5 years and the propensity of osteosarcoma cells to disseminate to the lung is the major cause of death of this tumor [4]. Therefore, it is of great clinical significance to understand the molecular basis of osteosarcoma development and metastasis, in order to discover new therapeutic targets and develop more efficient therapies.
MicroRNAs (miRNAs) with 18–25 nucleotides in length are a class of endogenously expressed small non-coding single stranded RNAs in the human body [5]. miRNAs are involved into various biological processes, including development, growth, metabolism and maturation, as well as cell proliferation, apoptosis, differentiation, invasion and metastasis, via regulating gene expression post-transcriptionally either by degradating the targeting protein-coding RNAs or by inhibiting their translation into protein [68]. Accumulating studies have identified aberrant miRNA expression profiles in various human tumors, and revealed their potential roles in numerous aspects of tumorigenesis and tumor progression [9, 10]. miR-150 was originally identified as a hematopoietic cell-specific miRNA which plays a critical role in normal hematopoiesis and hematological malignancies by affecting the differentiation of numerous hematopoietic cell lineages [11]. Recently, a large number of studies have observed the abnormal expression of miR-150 in various types of human tumors, and revealed that miR-150 may function as either an oncogene or a tumor suppressor depending on the action of its target genes in certain tumor types [12]. Especially in osteosarcoma, Li et al. [13] in 2015 reported that miR-150 inhibited cell proliferation, invasion, and metastasis, while stimulated cell apoptosis in osteosarcoma; Zhan et al. [14] in 2016 indicated that miR-150 upregulation could reduce osteosarcoma cell invasion and metastasis; Wang et al. [15] found that miR-150 expression level was lower in human osteosarcoma cell lines compared to the normal osteoblast cell line, which showed statistical significance (P < 0.01), and enforced expression of this miRNA might inhibit proliferation in human osteosarcoma cell lines; In the same year, Qu et al. [16] confirmed Insulin-Like Growth Factor 2 mRNA-Binding Protein 1 (IGF2BP1) as a direct target of miR-150, which could suppress cell proliferation, migration, and invasion, and induce apoptosis in vitro as well as suppressed tumor growth of osteosarcoma in vivo. These findings suggest that miR-150-IGF2BP1 axis may play potential roles in regulating osteosarcoma progression. However, its clinical significance in this malignancy remains unclear.
To address this problem, we firstly detected the expression levels of miR-150, and IGF2BP1 mRNA and protein in 20 osteosarcoma and matched adjacent noncancerous tissues by quantitative real-time PCR and western blot analyses, respectively. Then, the subcellular localization and expression pattern of IGF2BP1 protein were examined by immunohistochemistry using 100 osteosarcoma tissues. Associations of miR-150 and/or IGF2BP1 protein expression with various clinicopathological features and patients’ prognosis were also statistically evaluated.

Materials and Methods

Ethics Statement

The current study was approved by the Research Ethics Committee of the First Affiliated Hospital of Xinjiang Medical University, the Xinjiang Uygur Autonomous Region & the People’s Hospital of Xinjiang Uygur Autonomous Region, China.

Patients and Tissue Samples

The clinical cohorts enrolled in the present study were the same as our previous study [16]. For quantitative real-time PCR and western blot analyses, 20 fresh osteosarcoma and matched adjacent noncancerous tissues were obtained from 20 patients with primary osteosarcomas; For immunohistochemistry, a total of 100 archived paraffin wax embedded osteosarcoma tissue specimens were obtained from 100 patients with primary osteosarcoma who underwent surgical operations at the First Affiliated Hospital of Xinjiang Medical University, the Xinjiang Uygur Autonomous Region & the People’s Hospital of Xinjiang Uygur Autonomous Region between 2005 and 2009. The clinicopathologic characteristics of the osteosarcoma patients were listed in Table 1. The detailed information of the two clinical cohorts used in the present study was provided in our previous publication [17].
Table 1
Associations of the expression of miR-150 and/or IGF2BP1 protein with various clinicopathological features of patients with osteosarcoma
Clinicopathological features
No. of cases (n, %)
miR-150-low (n, %)
P
IGF2BP1-high (n, %)
P
miR-150-low/ IGF2BP1-high (n, %)
P
Age (years)
 < 18
40 (40.00)
22 (55.00)
NS
20 (50.00)
NS
12 (30.00)
NS
 ≥ 18
60 (60.00)
30 (50.00)
31 (51.67)
20 (33.33)
Sex
 Male
68 (68.00)
34 (50.00)
NS
33 (48.53)
NS
23 (33.82)
NS
 Female
32 (32.00)
18 (56.25)
18 (56.25)
9 (28.13)
Tumor site
 Femur
55 (55.00)
28 (50.91)
NS
28 (50.91)
NS
20 (36.36)
NS
 Tibia
20 (20.00)
10 (50.00)
10 (50.00)
6 (30.00)
 Humeral bone
15 (15.00)
8 (53.33)
8 (53.33)
3 (20.00)
 Other
10 (10.00)
6 (60.00)
5 (50.00)
3 (30.00)
Histologic type
 Osteoblastic
55 (55.00)
28 (50.91)
NS
28 (50.91)
NS
20 (36.36)
NS
 Chondroblastic
20 (20.00)
10 (50.00)
10 (50.00)
6 (30.00)
 Fibroblastic
15 (15.00)
8 (53.33)
8 (53.33)
3 (20.00)
 Telangiectatic
10 (10.00)
6 (60.00)
5 (50.00)
3 (30.00)
Tumor grade
 Low
15 (15.00)
5 (33.33)
0.02
4 (26.67)
0.02
2 (13.33)
0.01
 High
85 (85.00)
47 (55.29)
47 (55.29)
30 (35.29)
Metastasis
 Absent
60 (60.00)
16 (26.67)
0.001
15 (25.00)
0.001
2 (3.33)
<0.001
 Present
40 (40.00)
36 (90.00)
36 (90.00)
30 (75.00)
Recurrence
 Absent
70 (60.00)
26 (37.14)
0.001
25 (35.71)
0.001
7 (10.00)
<0.001
 Present
30 (40.00)
26 (86.67)
26 (86.67)
25 (83.33)
Response to pre-operative chemotherapy
 Good
50 (50.00)
17 (34.00)
0.01
16 (32.00)
0.01
6 (12.00)
0.001
 Poor
50 (50.00)
35 (70.00)
35 (70.00)
26 (52.00)

RNA Extraction & Quantitative Real-Time PCR

The expression levels of miR-150 and IGF2BP1 mRNA in ostoesarcoma and adjacent noncancerous tissues were detected by quantitative real-time PCR according to the protocol of our previous study [17]. The primer sequences used in this study were listed as follows: for miR-150, Forward Primer 5'- GCT CTC CCA ACC CTT GTA CC - 3', Reverse Primer 5'- CGA GGA AGA AGA CGG AAG AAT - 3'; for U6, Forward Primer 5'- GCT TCG GCA GCA CAT ATA CTA AAA T -3', Reverse Primer 5'- CGC TTC ACG AAT TTG CGT GTC AT -3'; for IGF2BP1, Forward Primer 5'- CAG GAG ATG GTG CAG GTG TTT ATC C - 3', Reverse Primer 5'- GTT TGC CAT AGA TTC TTC CCT GAG C - 3'; for GAPDH, Forward Primer 5'- AAT CCC ATC ACC ATC TTC CA -3', Reverse Primer 5'- TGG ACT CCA CGA CGT ACT CA -3'. The amplification specificity was checked by melting curve analysis. Relative expression of miR-150 and IGF2BP1 mRNA were calculated based on the 2-ΔΔCT method.

Western Blot Analysis

The expression levels of IGF2BP1 protein in osteosarcoma and adjacent noncancerous tissues were detected by Western blot analysis according to the protocol of our previous study [17]. The following primary antibodies were used: IGF2BP1 protein (rabbit polyclonal antibody, Abcam, MA, USA; 1:150 dilution) and GAPDH (rabbit polyclonal antibody, Abcam, MA, USA; 1:150 dilution).

Immunohistochemistry

Subcellular localization and expression pattern of IGF2BP1 protein in osteosarcoma tissues were examined by immunohistochemistry was performed according to the protocol of our previous study [17]. The following primary antibody was used: IGF2BP1 protein (rabbit polyclonal antibody, Abcam, MA, USA; 1:150 dilution).

Evaluation of Immunostaining Results

The immunoreactive scores (IRSs) of IGF2BP1 protein were evaluated by two independent pathologists who were blinded to the clinical information of osteosarcoma patients enrolled in the current study, and calculated by integrating the proportion of positive cells and the intensity of immunoreactivity based on the description of the previous studies [1820].

Statistical Analysis

All statistical analyses were performed using the SPSS statistical package (version 11.0 for Windows, SPSS Inc., IL, USA). Continuous variables were expressed as mean ± S.D.. Differences of miR-150, IGF2BP1 mRNA and protein expression between osteosarcoma and the corresponding noncancerous bone tissues were evaluated by the paired t test. Correlation between IGF2BP1 mRNA and protein expression in osteosarcoma was statistically evaluated by Spearman correlation analysis. Associations miR-150 and/or IGF2BP1 expression with various clinicopathological characteristics of osteosarcoma were analyzed by x2 tests. Survival analyses were performed using the Kaplan-Meier and the log-rank tests. P < 0.05 was used to indicate a statistically significant difference.

Results

Downregulation of miR-150, and Upregulation of IGF2BP1 mRNA and Protein in Human Osteosarcoma Tissues

The expression level of miR-150 in osteosarcoma tissues was significantly lower than that in adjacent noncancerous tissues (tumor vs. normal: 2.55 ± 0.61 vs. 3.83 ± 0.76, P < 0.001, Fig. 1a), while the expression levels of IGF2BP1 mRNA and protein were both markedly increased in osteosarcoma tissues (for IGF2BP1 mRNA, tumor vs. normal: 4.60 ± 0.93 vs. 2.75 ± 0.62, P < 0.001, Fig. 1b; for IGF2BP1 protein, tumor vs. normal: 2.47 ± 0.43 vs. 1.25 ± 0.36, P < 0.001, Fig. 1c). Importantly, the expression levels of IGF2BP1 mRNA in osteosarcoma tissues were positively correlated with that of IGF2BP1 protein in osteosarcoma tissues (Spearman correlation r = 0.49, P = 0.03, Fig. 1d).
According to the observation of immunochemistry, the positive immunostaining of IGF2BP1 protein was predominantly localized in cytoplasm of tumor cells in primary osteosarcoma tissues (Fig. 1e). The median values of miR-150 (2.56) and IGF2BP1 protein IRS (5.62) in all 100 osteosarcoma tissues were respectively used as cutoff points to classify the patients with osteosarcomas into miR-150-low (n = 52, 52.00%), miR-150-high (n = 48, 48.00%), IGF2BP1-low (n = 49, 49.00%) and IGF2BP1-high (n = 51, 51.00%) expression groups.

Associations of miR-150 and/or IGF2BP1 Protein with Various Clinicopathological Features of Human Osteosarcoma

Osteosarcoma patients with miR-150-low expression or IGF2BP1-high expression more frequently had high tumor grade (both P = 0.02), positive metastasis (both P = 0.001) and recurrence (both P = 0.001), and poor response to chemotherapy (both P = 0.01). However, there were no associations of miR-150-low expression or IGF2BP1-high expression with other clinicopathological features of patients with osteosarcomas, including age, sex, tumor site and histological type (Table 1).
Among 100 patients with osteosarcomas, 32 (32.00%), 20 (20.00%), 19 (19.00%) and 29 (29.00%) were respectively in miR-150-low/IGF2BP1-high, miR-150-low/IGF2BP1-low, miR-150-high/IGF2BP1-high, miR-150-high/IGF2BP1-low groups. Moreover, the miR-150-low/IGF2BP1-high expression was significantly associated with high tumor grade (P = 0.01), positive metastasis (P < 0.001) and recurrence (P < 0.001), and poor response to chemotherapy (P = 0.001) of patients with osteosarcomas (Table 1).

Associations of miR-150 and/or IGF2BP1 Protein with Patients’ Prognosis in Human Osteosarcoma

Kaplan–Meier and log-rank tests showed that osteosarcoma patients with miR-150-low or IGF2BP1-high expression had shorter overall and disease-free survivals than those with miR-150-high or IGF2BP1-low expression (all P < 0.001, Fig. 2a, b, c and d). More importantly, both overall and disease-free survivals of osteosarcoma patients with miR-150-low/IGF2BP1-high were shortest, compared to miR-150-low/IGF2BP1-low, miR-150-high/IGF2BP1-high, miR-150-high/IGF2BP1-low groups (Fig. 2e, f, respectively; both P < 0.001).
Cox proportional hazard model confirmed that miR-150 expression (for overall survival: RR 7.33, 95%CI, 1.10–15.69, P = 0.01; for disease-free survival: RR 7.92, 95%CI, 1.12–16.83, P = 0.01), IGF2BP1 protein expression (for overall survival: RR 6.62, 95%CI, 0.83–13.02, P = 0.02; for disease-free survival: RR 6.86, 95%CI, 0.92–14.09, P = 0.02), and miR-150/IGF2BP1 expression (for overall survival: RR 8.52, 95%CI, 1.16–18.36, P = 0.001; for disease-free survival: RR 8.89, 95%CI, 1.19–18.98, P = 0.001) were all independent prognostic factors of unfavorable survival in human osteosarcoma (Table 2).
Table 2
Multivariate survival analysis of overall and disease-free survivals in 100 patients with osteosarcomas
Variables
Overall survival
Disease-free survival
Relative risk (RR)
95%CI
P
RR
95%CI
P
Tumor grade
2.42
0.61–5.16
NS
3.37
0.70–7.38
NS
Response to pre-operative chemotherapy
7.28
1.08–15.11
0.01
8.25
1.11–17.99
0.006
Metastasis status
6.44
0.96–13.62
0.02
6.92
1.00–14.06
0.01
Recurrence status
3.26
0.68–7.02
NS
3.59
0.71–7.83
NS
miR-150 expression
7.33
1.10–15.69
0.01
7.92
1.12–16.83
0.01
IGF2BP1 expression
6.62
0.83–13.02
0.02
6.86
0.92–14.09
0.02
miR-150/IGF2BP1 expression
8.52
1.16–18.36
0.001
8.89
1.19–18.98
0.001

Discussion

Growing evidence shows that osteosarcoma may be caused by the accumulation of genetic and epigenetic alterations. There is an ongoing necessity to identify candidate markers of diagnosis and prognosis, novel therapeutic targets and signaling pathways which are involved into osteosarcoma progression. In the present hospital-based case study, we investigated the clinical relevance of miR-150 and its target gene IGF2BP1 in human osteosarcoma for the first time. On the basis of our data, altered levels of miR-150 and IGF2BP1, alone or in combination, were all significantly associated with advanced clinicopathological features and short survival of patients with osteosarcomas, implying that the imbalance of miR-150-IGF2BP1 axis may lead to aggressive progression and poor prognosis of this malignancy.
A large number of recent studies have revealed that miRNAs may be potential diagnostic and prognostic markers, as well as therapeutic targets for the treatment of various malignant diseases. miR-150, localized on chromosome 19q13, has been identified as a hematopoietic-specific miRNA [21]. In addition to hematological malignancies, miR-150 is implicated in a variety of solid tumors, including glioma [22], osteosarcoma [1316], esophageal cancer [23], breast cancer [24], non-small cell lung cancer [25], gastric cancer [26], cholangiocarcinoma [27], hepatocellular carcinoma [28], pancreatic cancer [29], colorectal cancer [30], cervical cancer [31], ovarian cancer [32], and prostate cancer [33]. Functionally, miR-150 may act either as an oncogene or a tumor suppressor by regulating various target genes with a cancer type-dependent manner. For example, miR-150 suppressed colorectal cancer cell migration and invasion via targeting MUC4 [30]; miR-150 inhibited hepatoma cell migration and invasion by regulating MMP14 [28]; miR-150 predicted a favorable prognosis in patients with epithelial ovarian cancer, as well as inhibited cell invasion and metastasis by suppressing transcriptional repressor ZEB1 [32]. In contrast, miR-150 over-expression promoted growth, clonogenicity and reduces apoptosis in breast cancer cells through regulating the Pro-Apoptotic Purinergic P2X7 Receptor [24]; miR-150 promoted cellular metastasis in non-small cell lung cancer by targeting FOXO4 [25]. Previous studies [1315], together with our data here, confirmed that miR-150 was downregulated in osteosarcoma tissues compared to matched adjacent noncancerous tissues. In addition, we found that the decreased expression of miR-150 was significantly associated with high tumor grade, presence of metastasis and recurrence, as well as poor response to chemotherapy. We also revealed a novel role of miR-150 in patients’ prognosis in osteosarcoma.
Together with IGF2BP2 and IGF2BP3, IGF2BP1 belongs to a highly conserved protein family-the IGF2BP protein family, and is characterized by the high expression during the period between zygote and embryo stages [34]. It is emerging as a key regulator of mRNA metabolism with a specific role in controlling the localization, translation or turnover of specific mRNA targets [35]. Accumulating studies observed the abnormal expression of IGF2BP1 in various human cancer types, and indicated its oncogenic roles. For example, depletion of IGF2BP1 inhibited proliferation and induced apoptosis of liver cancer cells in vitro, and suppressed tumor growth of murine xenograft in vivo [36]; IGF2BP1 was commonly up-regulated both in human cervical cancer tissues and cell lines, and was identified as a direct target of a tumor suppressive miRNA-miR-140-5p [37]. Especially, IGF2BP1 mRNA expression was inversely correlated with the level of miR-150 in osteosarcoma tissues, and the downregulation of endogenous IGF2BP1 exhibited similar effects of overexpression of miR-150 in this malignancy [15]. Consistently, our data here confirmed the decreased expression of IGF2BP1 at both mRNA and protein levels and also shown its cytoplasmic localization in malignant cells of osteosarcoma tissues. Moreover, the significant associations of IGF2BP1 overexpression with advanced clinicopathological characteristics and poor prognosis in osteosarcoma patients were also determined. More interestingly, in addition to the clinical implications of the combined miR-150 and IGF2BP1, we also verified that this combination had more significant prognostic value than the two markers alone.
In conclusion, our data suggest that miR-150 and its downstream target IGF2BP1 may be a crucial axis for the development, progression and patients’ prognosis of ostesarcoma. The newly identified miR-150/IGF2BP1 axis might be a novel potential therapeutic target for osteosarcoma treatment. Meanwhile, there are still some limitations need further solving: At first, the follow-up time of the clinical cohort used in this study was relatively short, which may lead to some unexpected results, for example, tumor grade was not identified as a prognostic factor in our survival analysis; Secondly, why miR-150-IGF2BP1 axis was dysregulated in osteosarcoma; Thirdly, whether there are other mechanism for the involvement of miR-150-IGF2BP1 axis in osteosarcoma. Exploration of the above questions may improve our understanding of miR-150-IGF2BP1 axis in human osteosarcoma.

Compliance with Ethical Standards

Disclosure of Potential Conflicts of Interest

None.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
1.
Zurück zum Zitat Fagioli F, Biasin E, Mereuta OM, Muraro M, Luksch R, Ferrari S, Aglietta M, Madon E (2008) Poor prognosis osteosarcoma: new therapeutic approach. Bone Marrow Transplant 41(Suppl 2):S131–S134CrossRefPubMed Fagioli F, Biasin E, Mereuta OM, Muraro M, Luksch R, Ferrari S, Aglietta M, Madon E (2008) Poor prognosis osteosarcoma: new therapeutic approach. Bone Marrow Transplant 41(Suppl 2):S131–S134CrossRefPubMed
2.
Zurück zum Zitat Bieling P, Rehan N, Winkler P, Helmke K, Maas R, Fuchs N, Bielack S, Heise U, Jurgens H, Treuner J, Romanowski R, Exner U, Kotz R, Winkler K (1996) Tumor size and prognosis in aggressively treated osteosarcoma. J Clin Oncol 14:848–858CrossRefPubMed Bieling P, Rehan N, Winkler P, Helmke K, Maas R, Fuchs N, Bielack S, Heise U, Jurgens H, Treuner J, Romanowski R, Exner U, Kotz R, Winkler K (1996) Tumor size and prognosis in aggressively treated osteosarcoma. J Clin Oncol 14:848–858CrossRefPubMed
4.
5.
Zurück zum Zitat Piletič K, Kunej T (2016) MicroRNA epigenetic signatures in human disease. Arch Toxicol 90:2405–2419CrossRefPubMed Piletič K, Kunej T (2016) MicroRNA epigenetic signatures in human disease. Arch Toxicol 90:2405–2419CrossRefPubMed
6.
Zurück zum Zitat Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222CrossRefPubMed Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222CrossRefPubMed
7.
8.
Zurück zum Zitat Makarova JA, Shkurnikov MU, Wicklein D, Lange T, Samatov TR, Turchinovich AA, Tonevitsky AG (2016) Intracellular and extracellular microRNA: an update on localization and biological role. Prog Histochem Cytochem 51:33–49CrossRefPubMed Makarova JA, Shkurnikov MU, Wicklein D, Lange T, Samatov TR, Turchinovich AA, Tonevitsky AG (2016) Intracellular and extracellular microRNA: an update on localization and biological role. Prog Histochem Cytochem 51:33–49CrossRefPubMed
9.
Zurück zum Zitat Ram Kumar RM, Boro A, Fuchs B (2016) Involvement and clinical aspects of MicroRNA in osteosarcoma. Int J Mol Sci 17:E877CrossRefPubMed Ram Kumar RM, Boro A, Fuchs B (2016) Involvement and clinical aspects of MicroRNA in osteosarcoma. Int J Mol Sci 17:E877CrossRefPubMed
11.
Zurück zum Zitat Vasilatou D, Papageorgiou S, Pappa V, Papageorgiou E, Dervenoulas J (2010) The role of microRNAs in normal and malignant hematopoiesis. Eur J Haematol 84:1–16CrossRefPubMed Vasilatou D, Papageorgiou S, Pappa V, Papageorgiou E, Dervenoulas J (2010) The role of microRNAs in normal and malignant hematopoiesis. Eur J Haematol 84:1–16CrossRefPubMed
13.
Zurück zum Zitat Li X, Chen L, Wang W, Meng FB, Zhao RT, Chen Y (2015) MicroRNA-150 inhibits cell invasion and migration and is downregulated in human osteosarcoma. Cytogenet Genome Res 146:124–135CrossRefPubMed Li X, Chen L, Wang W, Meng FB, Zhao RT, Chen Y (2015) MicroRNA-150 inhibits cell invasion and migration and is downregulated in human osteosarcoma. Cytogenet Genome Res 146:124–135CrossRefPubMed
14.
Zurück zum Zitat Zhan C, Li C, Zhang H, Tang H, Ji F, Qiao SC, Xu WD, Wang ZW (2016) MicroRNA-150 upregulation reduces osteosarcoma cell invasion and metastasis by downregulating Ezrin. Oncol Lett 12:3457–3462CrossRefPubMedPubMedCentral Zhan C, Li C, Zhang H, Tang H, Ji F, Qiao SC, Xu WD, Wang ZW (2016) MicroRNA-150 upregulation reduces osteosarcoma cell invasion and metastasis by downregulating Ezrin. Oncol Lett 12:3457–3462CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Wang L, Wang W, Li J, Chen S, Zhan R (2016) MicroRNA-150 inhibits osteosarcoma cell proliferation by targeting RUNX2 gene. Zhong Nan Da Xue Xue Bao Yi Xue Ban 41:1285–1290PubMed Wang L, Wang W, Li J, Chen S, Zhan R (2016) MicroRNA-150 inhibits osteosarcoma cell proliferation by targeting RUNX2 gene. Zhong Nan Da Xue Xue Bao Yi Xue Ban 41:1285–1290PubMed
16.
Zurück zum Zitat Qu Y, Pan S, Kang M, Dong R, Zhao J (2016) MicroRNA-150 functions as a tumor suppressor in osteosarcoma by targeting IGF2BP1. Tumour Biol 37:5275–5284CrossRefPubMed Qu Y, Pan S, Kang M, Dong R, Zhao J (2016) MicroRNA-150 functions as a tumor suppressor in osteosarcoma by targeting IGF2BP1. Tumour Biol 37:5275–5284CrossRefPubMed
17.
18.
Zurück zum Zitat Zhao J, Xu H, He M, Wu Y (2014) Glucocorticoid receptor DNA binding factor 1 expression and osteosarcoma prognosis. Tumour Biol 35:12449–12458CrossRefPubMed Zhao J, Xu H, He M, Wu Y (2014) Glucocorticoid receptor DNA binding factor 1 expression and osteosarcoma prognosis. Tumour Biol 35:12449–12458CrossRefPubMed
19.
Zurück zum Zitat Liao Y, Feng Y, Shen J, Gao Y, Cote G, Choy E, Harmon D, Mankin H, Hornicek F, Duan Z (2016) Clinical and biological significance of PIM1 kinase in osteosarcoma. J Orthop Res 34:1185–1194CrossRefPubMed Liao Y, Feng Y, Shen J, Gao Y, Cote G, Choy E, Harmon D, Mankin H, Hornicek F, Duan Z (2016) Clinical and biological significance of PIM1 kinase in osteosarcoma. J Orthop Res 34:1185–1194CrossRefPubMed
20.
Zurück zum Zitat Abd El-Rehim DM, Osman NA (2015) Expression of a disintegrin and metalloprotease 8 and endostatin in human osteosarcoma: implication in tumor progression and prognosis. J Egypt Natl Canc Inst 27:1–9CrossRefPubMed Abd El-Rehim DM, Osman NA (2015) Expression of a disintegrin and metalloprotease 8 and endostatin in human osteosarcoma: implication in tumor progression and prognosis. J Egypt Natl Canc Inst 27:1–9CrossRefPubMed
21.
Zurück zum Zitat Watanabe A, Tagawa H, Yamashita J, Teshima K, Nara M, Iwamoto K, Kume M, Kameoka Y, Takahashi N, Nakagawa T, Shimizu N, Sawada K (2011) The role of microRNA-150 as a tumor suppressor in malignant lymphoma. Leukemia 25:1324–1334CrossRefPubMed Watanabe A, Tagawa H, Yamashita J, Teshima K, Nara M, Iwamoto K, Kume M, Kameoka Y, Takahashi N, Nakagawa T, Shimizu N, Sawada K (2011) The role of microRNA-150 as a tumor suppressor in malignant lymphoma. Leukemia 25:1324–1334CrossRefPubMed
22.
Zurück zum Zitat Sakr M, Takino T, Sabit H, Nakada M, Li Z, Sato H (2016) miR-150-5p and miR-133a suppress glioma cell proliferation and migration through targeting membrane-type-1 matrix metalloproteinase. Gene 587:155–162CrossRefPubMed Sakr M, Takino T, Sabit H, Nakada M, Li Z, Sato H (2016) miR-150-5p and miR-133a suppress glioma cell proliferation and migration through targeting membrane-type-1 matrix metalloproteinase. Gene 587:155–162CrossRefPubMed
23.
Zurück zum Zitat Wang X, Ren Y, Wang Z, Xiong X, Han S, Pan W, Chen H, Zhou L, Zhou C, Yuan Q, Yang M (2015) Down-regulation of 5S rRNA by miR-150 and miR-383 enhances c-Myc-rpL11 interaction and inhibits proliferation of esophageal squamous carcinoma cells. FEBS Lett 589(24 Pt B):3989–3997CrossRefPubMed Wang X, Ren Y, Wang Z, Xiong X, Han S, Pan W, Chen H, Zhou L, Zhou C, Yuan Q, Yang M (2015) Down-regulation of 5S rRNA by miR-150 and miR-383 enhances c-Myc-rpL11 interaction and inhibits proliferation of esophageal squamous carcinoma cells. FEBS Lett 589(24 Pt B):3989–3997CrossRefPubMed
24.
Zurück zum Zitat Huang S, Chen Y, Wu W, Ouyang N, Chen J, Li H, Liu X, Su F, Lin L, Yao Y (2013) miR-150 promotes human breast cancer growth and malignant behavior by targeting the pro-apoptotic purinergic P2X7 receptor. PLoS One 8:e80707CrossRefPubMedPubMedCentral Huang S, Chen Y, Wu W, Ouyang N, Chen J, Li H, Liu X, Su F, Lin L, Yao Y (2013) miR-150 promotes human breast cancer growth and malignant behavior by targeting the pro-apoptotic purinergic P2X7 receptor. PLoS One 8:e80707CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Li H, Ouyang R, Wang Z, Zhou W, Chen H, Jiang Y, Zhang Y, Li H, Liao M, Wang W, Ye M, Ding Z, Feng X, Liu J, Zhang B (2016) MiR-150 promotes cellular metastasis in non-small cell lung cancer by targeting FOXO4. Sci Rep 6:39001CrossRefPubMedPubMedCentral Li H, Ouyang R, Wang Z, Zhou W, Chen H, Jiang Y, Zhang Y, Li H, Liao M, Wang W, Ye M, Ding Z, Feng X, Liu J, Zhang B (2016) MiR-150 promotes cellular metastasis in non-small cell lung cancer by targeting FOXO4. Sci Rep 6:39001CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Wu Q, Jin H, Yang Z, Luo G, Lu Y, Li K, Ren G, Su T, Pan Y, Feng B, Xue Z, Wang X, Fan D (2010) MiR-150 promotes gastric cancer proliferation by negatively regulating the pro-apoptotic gene EGR2. Biochem Biophys Res Commun 392:340–345CrossRefPubMed Wu Q, Jin H, Yang Z, Luo G, Lu Y, Li K, Ren G, Su T, Pan Y, Feng B, Xue Z, Wang X, Fan D (2010) MiR-150 promotes gastric cancer proliferation by negatively regulating the pro-apoptotic gene EGR2. Biochem Biophys Res Commun 392:340–345CrossRefPubMed
27.
Zurück zum Zitat Wang S, Yin J, Li T, Yuan L, Wang D, He J, Du X, Lu J (2015) Upregulated circulating miR-150 is associated with the risk of intrahepatic cholangiocarcinoma. Oncol Rep 33:819–825CrossRefPubMed Wang S, Yin J, Li T, Yuan L, Wang D, He J, Du X, Lu J (2015) Upregulated circulating miR-150 is associated with the risk of intrahepatic cholangiocarcinoma. Oncol Rep 33:819–825CrossRefPubMed
28.
Zurück zum Zitat Li T, Xie J, Shen C, Cheng D, Shi Y, Wu Z, Zhan Q, Deng X, Chen H, Shen B, Peng C, Li H, Zhu Z (2014) miR-150-5p inhibits hepatoma cell migration and invasion by targeting MMP14. PLoS One 9:e115577CrossRefPubMedPubMedCentral Li T, Xie J, Shen C, Cheng D, Shi Y, Wu Z, Zhan Q, Deng X, Chen H, Shen B, Peng C, Li H, Zhu Z (2014) miR-150-5p inhibits hepatoma cell migration and invasion by targeting MMP14. PLoS One 9:e115577CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Yang K, He M, Cai Z, Ni C, Deng J, Ta N, Xu J, Zheng J (2015) A decrease in miR-150 regulates the malignancy of pancreatic cancer by targeting c-Myb and MUC4. Pancreas 44:370–379CrossRefPubMed Yang K, He M, Cai Z, Ni C, Deng J, Ta N, Xu J, Zheng J (2015) A decrease in miR-150 regulates the malignancy of pancreatic cancer by targeting c-Myb and MUC4. Pancreas 44:370–379CrossRefPubMed
30.
Zurück zum Zitat Aherne ST, Madden SF, Hughes DJ, Pardini B, Naccarati A, Levy M, Vodicka P, Neary P, Dowling P, Clynes M (2015) Circulating miRNAs miR-34a and miR-150 associated with colorectal cancer progression. BMC Cancer 15:329CrossRefPubMedPubMedCentral Aherne ST, Madden SF, Hughes DJ, Pardini B, Naccarati A, Levy M, Vodicka P, Neary P, Dowling P, Clynes M (2015) Circulating miRNAs miR-34a and miR-150 associated with colorectal cancer progression. BMC Cancer 15:329CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Li J, Hu L, Tian C, Lu F, Wu J, Liu L (2015) microRNA-150 promotes cervical cancer cell growth and survival by targeting FOXO4. BMC Mol Biol 16:24CrossRefPubMedPubMedCentral Li J, Hu L, Tian C, Lu F, Wu J, Liu L (2015) microRNA-150 promotes cervical cancer cell growth and survival by targeting FOXO4. BMC Mol Biol 16:24CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Wuerkenbieke D, Wang J, Li Y, Ma C (2015) miRNA-150 downregulation promotes pertuzumab resistance in ovarian cancer cells via AKT activation. Arch Gynecol Obstet 292:1109–1116CrossRefPubMed Wuerkenbieke D, Wang J, Li Y, Ma C (2015) miRNA-150 downregulation promotes pertuzumab resistance in ovarian cancer cells via AKT activation. Arch Gynecol Obstet 292:1109–1116CrossRefPubMed
33.
Zurück zum Zitat Liu DZ, Zhang HY, Long XL, Zou SL, Zhang XY, Han GY, Cui ZG (2015) MIR-150 promotes prostate cancer stem cell development via suppressing p27Kip1. Eur Rev Med Pharmacol Sci 19:4344–4352PubMed Liu DZ, Zhang HY, Long XL, Zou SL, Zhang XY, Han GY, Cui ZG (2015) MIR-150 promotes prostate cancer stem cell development via suppressing p27Kip1. Eur Rev Med Pharmacol Sci 19:4344–4352PubMed
34.
Zurück zum Zitat Yisraeli JK (2005) VICKZ proteins: a multi-talented family of regulatory RNA-binding proteins. Biol Cell 97:87–96CrossRefPubMed Yisraeli JK (2005) VICKZ proteins: a multi-talented family of regulatory RNA-binding proteins. Biol Cell 97:87–96CrossRefPubMed
35.
Zurück zum Zitat Yaniv K, Yisraeli JK (2002) The involvement of a conserved family of RNA binding proteins in embryonic development and carcinogenesis. Gene 287:49–54CrossRefPubMed Yaniv K, Yisraeli JK (2002) The involvement of a conserved family of RNA binding proteins in embryonic development and carcinogenesis. Gene 287:49–54CrossRefPubMed
36.
Zurück zum Zitat Gutschner T, Hämmerle M, Pazaitis N, Bley N, Fiskin E, Uckelmann H, Heim A, Groβ M, Hofmann N, Geffers R, Skawran B, Longerich T, Breuhahn K, Schirmacher P, Mühleck B, Hüttelmaier S, Diederichs S (2014) Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is an important protumorigenic factor in hepatocellular carcinoma. Hepatology 59:1900–1911CrossRefPubMed Gutschner T, Hämmerle M, Pazaitis N, Bley N, Fiskin E, Uckelmann H, Heim A, Groβ M, Hofmann N, Geffers R, Skawran B, Longerich T, Breuhahn K, Schirmacher P, Mühleck B, Hüttelmaier S, Diederichs S (2014) Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is an important protumorigenic factor in hepatocellular carcinoma. Hepatology 59:1900–1911CrossRefPubMed
37.
Zurück zum Zitat Su Y, Xiong J, Hu J, Wei X, Zhang X, Rao L (2016) MicroRNA-140-5p targets insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1) to suppress cervical cancer growth and metastasis. Oncotarget 7:68397–68411PubMedPubMedCentral Su Y, Xiong J, Hu J, Wei X, Zhang X, Rao L (2016) MicroRNA-140-5p targets insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1) to suppress cervical cancer growth and metastasis. Oncotarget 7:68397–68411PubMedPubMedCentral
Metadaten
Titel
Expression of microRNA-150 and its Target Gene IGF2BP1 in Human Osteosarcoma and their Clinical Implications
Publikationsdatum
15.09.2018
Erschienen in
Pathology & Oncology Research / Ausgabe 2/2019
Print ISSN: 1219-4956
Elektronische ISSN: 1532-2807
DOI
https://doi.org/10.1007/s12253-018-0454-0

Weitere Artikel der Ausgabe 2/2019

Pathology & Oncology Research 2/2019 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.