Skip to main content
Erschienen in: Breast Cancer Research and Treatment 1/2009

01.11.2009 | Brief Report

Expression profile of microRNAs in c-Myc induced mouse mammary tumors

verfasst von: Yuan Sun, Jack Wu, Si-hung Wu, Archana Thakur, Aliccia Bollig, Yong Huang, D. Joshua Liao

Erschienen in: Breast Cancer Research and Treatment | Ausgabe 1/2009

Einloggen, um Zugang zu erhalten

Abstract

c-Myc is a transcription factor overexpression of which induces mammary cancer in transgenic mice. To explore whether certain microRNAs (mirRNA) mediate c-Myc induced mammary carcinogenesis, we studied mirRNA expression profile in mammary tumors developed from MMTV-c-myc transgenic mice, and found 50 and 59 mirRNAs showing increased and decreased expression, respectively, compared with lactating mammary glands of wild type mice. Twenty-four of these mirRNAs could be grouped into eight clusters because they had the same chromosomal localizations and might be processed from the same primary RNA transcripts. The increased expression of mir-20a, mir-20b, and mir-9 as well as decreased expression of mir-222 were verified by RT-PCR, real-time RT-PCR, and cDNA sequencing. Moreover, we fortuitously identified a novel non-coding RNA, the level of which was decreased in proliferating mammary glands of MMTV-c-myc mice was further decreased to undetectable level in the mammary tumors. Sequencing of this novel RNA revealed that it was transcribed from a region of mouse chromosome 19 that harbored the metastasis associated lung adenocarcinoma transcript-1 (Malat-1), a non-protein-coding gene. These results suggest that certain mirRNAs and the chromosome 19 derived non-coding RNAs may mediate c-myc induced mammary carcinogenesis.
Literatur
1.
Zurück zum Zitat Perez DS, Hoage TR, Pritchett JR, Ducharme-Smith AL, Halling ML, Ganapathiraju SC et al (2008) Long, abundantly expressed non-coding transcripts are altered in cancer. Hum Mol Genet 17:642–655. doi:10.1093/hmg/ddm336 CrossRefPubMed Perez DS, Hoage TR, Pritchett JR, Ducharme-Smith AL, Halling ML, Ganapathiraju SC et al (2008) Long, abundantly expressed non-coding transcripts are altered in cancer. Hum Mol Genet 17:642–655. doi:10.​1093/​hmg/​ddm336 CrossRefPubMed
2.
7.
Zurück zum Zitat Liu J, Rivas FV, Wohlschlegel J, Yates JRIII, Parker R, Hannon GJ (2005) A role for the P-body component GW182 in microRNA function. Nat Cell Biol 7:1261–1266PubMed Liu J, Rivas FV, Wohlschlegel J, Yates JRIII, Parker R, Hannon GJ (2005) A role for the P-body component GW182 in microRNA function. Nat Cell Biol 7:1261–1266PubMed
9.
Zurück zum Zitat Lu J, Getz G, Miska EA, varez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838. doi:10.1038/nature03702 CrossRefPubMed Lu J, Getz G, Miska EA, varez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838. doi:10.​1038/​nature03702 CrossRefPubMed
10.
11.
Zurück zum Zitat Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S et al (2005) A polycistronic microRNA cluster, miR-17–92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65:9628–9632. doi:10.1158/0008-5472.CAN-05-2352 CrossRefPubMed Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S et al (2005) A polycistronic microRNA cluster, miR-17–92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65:9628–9632. doi:10.​1158/​0008-5472.​CAN-05-2352 CrossRefPubMed
14.
Zurück zum Zitat Liao DJ, Thakur A, Wu J, Biliran H, Sarkar FH (2007) Perspectives on c-Myc, cyclin D1, and their interaction in cancer formation, progression, and response to chemotherapy. Crit Rev Oncog 13:93–158PubMed Liao DJ, Thakur A, Wu J, Biliran H, Sarkar FH (2007) Perspectives on c-Myc, cyclin D1, and their interaction in cancer formation, progression, and response to chemotherapy. Crit Rev Oncog 13:93–158PubMed
16.
Zurück zum Zitat Liao JD, Adsay NV, Khannani F, Grignon D, Thakur A, Sarkar FH (2007) Histological complexities of pancreatic lesions from transgenic mouse models are consistent with biological and morphological heterogeneity of human pancreatic cancer. Histol Histopathol 22:661–676PubMed Liao JD, Adsay NV, Khannani F, Grignon D, Thakur A, Sarkar FH (2007) Histological complexities of pancreatic lesions from transgenic mouse models are consistent with biological and morphological heterogeneity of human pancreatic cancer. Histol Histopathol 22:661–676PubMed
18.
Zurück zum Zitat Chung HJ, Levens D (2005) c-Myc expression: keep the noise down!. Mol Cells 20:157–166PubMed Chung HJ, Levens D (2005) c-Myc expression: keep the noise down!. Mol Cells 20:157–166PubMed
20.
Zurück zum Zitat Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, O’brien-Jenkins A, Katsaros D, Hatzigeorgiou A, Gimotty PA, Weber BL, Coukos G et al (2006) MicroRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 103:9136–9141. doi:10.1073/pnas.0508889103 CrossRefPubMed Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, O’brien-Jenkins A, Katsaros D, Hatzigeorgiou A, Gimotty PA, Weber BL, Coukos G et al (2006) MicroRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 103:9136–9141. doi:10.​1073/​pnas.​0508889103 CrossRefPubMed
21.
Zurück zum Zitat Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004. doi:10.1073/pnas.0307323101 CrossRefPubMed Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004. doi:10.​1073/​pnas.​0307323101 CrossRefPubMed
23.
25.
Zurück zum Zitat Natrajan R, Williams RD, Hing SN, Mackay A, Reis-Filho JS, Fenwick K et al (2006) Array CGH profiling of favourable histology Wilms tumours reveals novel gains and losses associated with relapse. J Pathol 210:49–58. doi:10.1002/path.2021 CrossRefPubMed Natrajan R, Williams RD, Hing SN, Mackay A, Reis-Filho JS, Fenwick K et al (2006) Array CGH profiling of favourable histology Wilms tumours reveals novel gains and losses associated with relapse. J Pathol 210:49–58. doi:10.​1002/​path.​2021 CrossRefPubMed
26.
Zurück zum Zitat Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S et al (2004) Identification and characterization of a novel gene, C13orf25, as a target for 13q31–q32 amplification in malignant lymphoma. Cancer Res 64:3087–3095. doi:10.1158/0008-5472.CAN-03-3773 CrossRefPubMed Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S et al (2004) Identification and characterization of a novel gene, C13orf25, as a target for 13q31–q32 amplification in malignant lymphoma. Cancer Res 64:3087–3095. doi:10.​1158/​0008-5472.​CAN-03-3773 CrossRefPubMed
28.
Zurück zum Zitat Stembalska A, Blin N, Ramsey D, Sasiadek MM (2006) Three distinct regions of deletion on 13q in squamous cell carcinoma of the larynx. Oncol Rep 16:417–421PubMed Stembalska A, Blin N, Ramsey D, Sasiadek MM (2006) Three distinct regions of deletion on 13q in squamous cell carcinoma of the larynx. Oncol Rep 16:417–421PubMed
30.
Zurück zum Zitat Weiss MM, Kuipers EJ, Postma C, Snijders AM, Pinkel D, Meuwissen SG et al (2004) Genomic alterations in primary gastric adenocarcinomas correlate with clinicopathological characteristics and survival. Cell Oncol 26:307–317PubMed Weiss MM, Kuipers EJ, Postma C, Snijders AM, Pinkel D, Meuwissen SG et al (2004) Genomic alterations in primary gastric adenocarcinomas correlate with clinicopathological characteristics and survival. Cell Oncol 26:307–317PubMed
31.
Zurück zum Zitat Yu W, Inoue J, Imoto I, Matsuo Y, Karpas A, Inazawa J (2003) GPC5 is a possible target for the 13q31–q32 amplification detected in lymphoma cell lines. J Hum Genet 48:331–335PubMed Yu W, Inoue J, Imoto I, Matsuo Y, Karpas A, Inazawa J (2003) GPC5 is a possible target for the 13q31–q32 amplification detected in lymphoma cell lines. J Hum Genet 48:331–335PubMed
33.
Zurück zum Zitat Kovalchuk O, Tryndyak VP, Montgomery B, Boyko A, Kutanzi K, Zemp F et al (2007) Estrogen-induced rat breast carcinogenesis is characterized by alterations in DNA methylation, histone modifications and aberrant microRNA expression. Cell Cycle 6:2010–2018PubMed Kovalchuk O, Tryndyak VP, Montgomery B, Boyko A, Kutanzi K, Zemp F et al (2007) Estrogen-induced rat breast carcinogenesis is characterized by alterations in DNA methylation, histone modifications and aberrant microRNA expression. Cell Cycle 6:2010–2018PubMed
34.
Zurück zum Zitat Choi C, Kim MH, Juhng SW (1998) Loss of heterozygosity on chromosome XP22.2–p22.13 and Xq26.1–q27.1 in human breast carcinomas. J Korean Med Sci 13:311–316PubMed Choi C, Kim MH, Juhng SW (1998) Loss of heterozygosity on chromosome XP22.2–p22.13 and Xq26.1–q27.1 in human breast carcinomas. J Korean Med Sci 13:311–316PubMed
35.
Zurück zum Zitat Choi C, Cho S, Horikawa I, Berchuck A, Wang N, Cedrone E et al (1997) Loss of heterozygosity at chromosome segment Xq25–26.1 in advanced human ovarian carcinomas. Genes Chromosom Cancer 20:234–242. doi:10.1002/(SICI)1098-2264(199711)20:3<234::AID-GCC3>3.0.CO;2-3CrossRefPubMed Choi C, Cho S, Horikawa I, Berchuck A, Wang N, Cedrone E et al (1997) Loss of heterozygosity at chromosome segment Xq25–26.1 in advanced human ovarian carcinomas. Genes Chromosom Cancer 20:234–242. doi:10.1002/(SICI)1098-2264(199711)20:3<234::AID-GCC3>3.0.CO;2-3CrossRefPubMed
38.
Zurück zum Zitat Chen YT, Scanlan MJ, Venditti CA, Chua R, Theiler G, Stevenson BJ et al (2005) Identification of cancer/testis-antigen genes by massively parallel signature sequencing. Proc Natl Acad Sci USA 102:7940–7945. doi:10.1073/pnas.0502583102 CrossRefPubMed Chen YT, Scanlan MJ, Venditti CA, Chua R, Theiler G, Stevenson BJ et al (2005) Identification of cancer/testis-antigen genes by massively parallel signature sequencing. Proc Natl Acad Sci USA 102:7940–7945. doi:10.​1073/​pnas.​0502583102 CrossRefPubMed
39.
Zurück zum Zitat Lucas S, De SC, Arden KC, Viars CS, Lethe B, Lurquin C et al (1998) Identification of a new MAGE gene with tumor-specific expression by representational difference analysis. Cancer Res 58:743–752PubMed Lucas S, De SC, Arden KC, Viars CS, Lethe B, Lurquin C et al (1998) Identification of a new MAGE gene with tumor-specific expression by representational difference analysis. Cancer Res 58:743–752PubMed
42.
Zurück zum Zitat Rapley EA, Crockford GP, Teare D, Biggs P, Seal S, Barfoot R et al (2000) Localization to Xq27 of a susceptibility gene for testicular germ-cell tumours. Nat Genet 24:197–200. doi:10.1038/72877 CrossRefPubMed Rapley EA, Crockford GP, Teare D, Biggs P, Seal S, Barfoot R et al (2000) Localization to Xq27 of a susceptibility gene for testicular germ-cell tumours. Nat Genet 24:197–200. doi:10.​1038/​72877 CrossRefPubMed
43.
Zurück zum Zitat Chen YT, Alpen B, Ono T, Gure AO, Scanlan MA, Biggs WHIII et al (2003) Identification and characterization of mouse SSX genes: a multigene family on the X chromosome with restricted cancer/testis expression. Genomics 82:628–636. doi:10.1016/S0888-7543(03)00183-6 CrossRefPubMed Chen YT, Alpen B, Ono T, Gure AO, Scanlan MA, Biggs WHIII et al (2003) Identification and characterization of mouse SSX genes: a multigene family on the X chromosome with restricted cancer/testis expression. Genomics 82:628–636. doi:10.​1016/​S0888-7543(03)00183-6 CrossRefPubMed
44.
Zurück zum Zitat Zendman AJ, Van Kraats AA, Weidle UH, Ruiter DJ, Van Muijen GN (2002) The XAGE family of cancer/testis-associated genes: alignment and expression profile in normal tissues, melanoma lesions and Ewing’s sarcoma. Int J Cancer 99:361–369. doi:10.1002/ijc.10371 CrossRefPubMed Zendman AJ, Van Kraats AA, Weidle UH, Ruiter DJ, Van Muijen GN (2002) The XAGE family of cancer/testis-associated genes: alignment and expression profile in normal tissues, melanoma lesions and Ewing’s sarcoma. Int J Cancer 99:361–369. doi:10.​1002/​ijc.​10371 CrossRefPubMed
45.
47.
48.
Zurück zum Zitat Timmer T, Terpstra P, van den BA, Veldhuis PM, Ter EA, van der Veen AY, Kok K, Naylor SL, Buys CH (1999) An evolutionary rearrangement of the Xp11.3–11.23 region in 3p21.3, a region frequently deleted in a variety of cancers. Genomics 60:238–240. doi:10.1006/geno.1999.5878 CrossRefPubMed Timmer T, Terpstra P, van den BA, Veldhuis PM, Ter EA, van der Veen AY, Kok K, Naylor SL, Buys CH (1999) An evolutionary rearrangement of the Xp11.3–11.23 region in 3p21.3, a region frequently deleted in a variety of cancers. Genomics 60:238–240. doi:10.​1006/​geno.​1999.​5878 CrossRefPubMed
52.
56.
Zurück zum Zitat Suzuki A, Shibata T, Shimada Y, Murakami Y, Horii A, Shiratori K et al (2008) Identification of SMURF1 as a possible target for 7q21.3–22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization. Cancer Sci 99:986–994. doi:10.1111/j.1349-7006.2008.00779.x CrossRefPubMed Suzuki A, Shibata T, Shimada Y, Murakami Y, Horii A, Shiratori K et al (2008) Identification of SMURF1 as a possible target for 7q21.3–22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization. Cancer Sci 99:986–994. doi:10.​1111/​j.​1349-7006.​2008.​00779.​x CrossRefPubMed
57.
Zurück zum Zitat Law FB, Chen YW, Wong KY, Ying J, Tao Q, Langford C et al (2007) Identification of a novel tumor transforming gene GAEC1 at 7q22 which encodes a nuclear protein and is frequently amplified and overexpressed in esophageal squamous cell carcinoma. Oncogene 26:5877–5888. doi:10.1038/sj.onc.1210390 CrossRefPubMed Law FB, Chen YW, Wong KY, Ying J, Tao Q, Langford C et al (2007) Identification of a novel tumor transforming gene GAEC1 at 7q22 which encodes a nuclear protein and is frequently amplified and overexpressed in esophageal squamous cell carcinoma. Oncogene 26:5877–5888. doi:10.​1038/​sj.​onc.​1210390 CrossRefPubMed
59.
Zurück zum Zitat Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H et al (2007) Apoptosis induction by antisense oligonucleotides against miR-17–5p and miR-20a in lung cancers overexpressing miR-17–92. Oncogene 26:6099–6105. doi:10.1038/sj.onc.1210425 CrossRefPubMed Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H et al (2007) Apoptosis induction by antisense oligonucleotides against miR-17–5p and miR-20a in lung cancers overexpressing miR-17–92. Oncogene 26:6099–6105. doi:10.​1038/​sj.​onc.​1210425 CrossRefPubMed
60.
Zurück zum Zitat Johannsdottir HK, Jonsson G, Johannesdottir G, Agnarsson BA, Eerola H, Arason A et al (2006) Chromosome 5 imbalance mapping in breast tumors from BRCA1 and BRCA2 mutation carriers and sporadic breast tumors. Int J Cancer 119:1052–1060. doi:10.1002/ijc.21934 CrossRefPubMed Johannsdottir HK, Jonsson G, Johannesdottir G, Agnarsson BA, Eerola H, Arason A et al (2006) Chromosome 5 imbalance mapping in breast tumors from BRCA1 and BRCA2 mutation carriers and sporadic breast tumors. Int J Cancer 119:1052–1060. doi:10.​1002/​ijc.​21934 CrossRefPubMed
61.
Zurück zum Zitat Thornton DE, Theil K, Payson R, Balcerzak SP, Chiu IM (1991) Characterization of the 5q-breakpoint in an acute nonlymphocytic leukemia patient using pulsed-field gel electrophoresis. Am J Med Genet 41:557–565. doi:10.1002/ajmg.1320410437 CrossRefPubMed Thornton DE, Theil K, Payson R, Balcerzak SP, Chiu IM (1991) Characterization of the 5q-breakpoint in an acute nonlymphocytic leukemia patient using pulsed-field gel electrophoresis. Am J Med Genet 41:557–565. doi:10.​1002/​ajmg.​1320410437 CrossRefPubMed
62.
Zurück zum Zitat Pettenati MJ, Le Beau MM, Lemons RS, Shima EA, Kawasaki ES, Larson RA et al (1987) Assignment of CSF-1 to 5q33.1: evidence for clustering of genes regulating hematopoiesis and for their involvement in the deletion of the long arm of chromosome 5 in myeloid disorders. Proc Natl Acad Sci USA 84:2970–2974. doi:10.1073/pnas.84.9.2970 CrossRefPubMed Pettenati MJ, Le Beau MM, Lemons RS, Shima EA, Kawasaki ES, Larson RA et al (1987) Assignment of CSF-1 to 5q33.1: evidence for clustering of genes regulating hematopoiesis and for their involvement in the deletion of the long arm of chromosome 5 in myeloid disorders. Proc Natl Acad Sci USA 84:2970–2974. doi:10.​1073/​pnas.​84.​9.​2970 CrossRefPubMed
63.
Zurück zum Zitat Gudmundsson J, Sulem P, Rafnar T, Bergthorsson JT, Manolescu A, Gudbjartsson D et al (2008) Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat Genet 40:281–283. doi:10.1038/ng.89 CrossRefPubMed Gudmundsson J, Sulem P, Rafnar T, Bergthorsson JT, Manolescu A, Gudbjartsson D et al (2008) Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat Genet 40:281–283. doi:10.​1038/​ng.​89 CrossRefPubMed
64.
Zurück zum Zitat Shipley JM, Birdsall S, Clark J, Crew J, Gill S, Linehan M et al (1995) Mapping the X chromosome breakpoint in two papillary renal cell carcinoma cell lines with a t(X;1)(p11.2;q21.2) and the first report of a female case. Cytogenet Cell Genet 71:280–284. doi:10.1159/000134127 CrossRefPubMed Shipley JM, Birdsall S, Clark J, Crew J, Gill S, Linehan M et al (1995) Mapping the X chromosome breakpoint in two papillary renal cell carcinoma cell lines with a t(X;1)(p11.2;q21.2) and the first report of a female case. Cytogenet Cell Genet 71:280–284. doi:10.​1159/​000134127 CrossRefPubMed
65.
Zurück zum Zitat Shipley JM, Clark J, Crew AJ, Birdsall S, Rocques PJ, Gill S, Chelly J, Monaco AP, Abe S, Gusterson BA, Cooper CS (1994) The t(X;18)(p11.2;q11.2) translocation found in human synovial sarcomas involves two distinct loci on the X chromosome. Oncogene 9:1447–1453PubMed Shipley JM, Clark J, Crew AJ, Birdsall S, Rocques PJ, Gill S, Chelly J, Monaco AP, Abe S, Gusterson BA, Cooper CS (1994) The t(X;18)(p11.2;q11.2) translocation found in human synovial sarcomas involves two distinct loci on the X chromosome. Oncogene 9:1447–1453PubMed
Metadaten
Titel
Expression profile of microRNAs in c-Myc induced mouse mammary tumors
verfasst von
Yuan Sun
Jack Wu
Si-hung Wu
Archana Thakur
Aliccia Bollig
Yong Huang
D. Joshua Liao
Publikationsdatum
01.11.2009
Verlag
Springer US
Erschienen in
Breast Cancer Research and Treatment / Ausgabe 1/2009
Print ISSN: 0167-6806
Elektronische ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-008-0171-6

Weitere Artikel der Ausgabe 1/2009

Breast Cancer Research and Treatment 1/2009 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.