Skip to main content
Erschienen in: Current Osteoporosis Reports 6/2016

06.10.2016 | Imaging (T Lang and F Wehrli, Section Editors)

Finite Element-Based Mechanical Assessment of Bone Quality on the Basis of In Vivo Images

verfasst von: Dieter H. Pahr, Philippe K. Zysset

Erschienen in: Current Osteoporosis Reports | Ausgabe 6/2016

Einloggen, um Zugang zu erhalten

Abstract

Beyond bone mineral density (BMD), bone quality designates the mechanical integrity of bone tissue. In vivo images based on X-ray attenuation, such as CT reconstructions, provide size, shape, and local BMD distribution and may be exploited as input for finite element analysis (FEA) to assess bone fragility. Further key input parameters of FEA are the material properties of bone tissue. This review discusses the main determinants of bone mechanical properties and emphasizes the added value, as well as the important assumptions underlying finite element analysis. Bone tissue is a sophisticated, multiscale composite material that undergoes remodeling but exhibits a rather narrow band of tissue mineralization. Mechanically, bone tissue behaves elastically under physiologic loads and yields by cracking beyond critical strain levels. Through adequate cell-orchestrated modeling, trabecular bone tunes its mechanical properties by volume fraction and fabric. With proper calibration, these mechanical properties may be incorporated in quantitative CT-based finite element analysis that has been validated extensively with ex vivo experiments and has been applied increasingly in clinical trials to assess treatment efficacy against osteoporosis.
Literatur
1.
Zurück zum Zitat Reisinger AG, Pahr DH, Zysset PK. Sensitivity analysis and parametric study of elastic properties of an unidirectional mineralized bone fibril-array using mean field methods. Biomech Model Mechanobiol. 2010;9(5):499–510. Reisinger AG, Pahr DH, Zysset PK. Sensitivity analysis and parametric study of elastic properties of an unidirectional mineralized bone fibril-array using mean field methods. Biomech Model Mechanobiol. 2010;9(5):499–510.
2.
Zurück zum Zitat Gebhardt W. Ueber funktionell wichtige anordnungsweisen der groeberen und feineren bauelemente des wirbeltierknochens. Archiv fuer Entwicklungsmechanik der Organismen, 1906; 20:187–322. Gebhardt W. Ueber funktionell wichtige anordnungsweisen der groeberen und feineren bauelemente des wirbeltierknochens. Archiv fuer Entwicklungsmechanik der Organismen, 1906; 20:187–322.
3.
Zurück zum Zitat Frost HL. Presence of microcracks in vivo in bone. Henry Ford Hosp Med Bull. 1960;8:25–35. Frost HL. Presence of microcracks in vivo in bone. Henry Ford Hosp Med Bull. 1960;8:25–35.
4.
Zurück zum Zitat Knothe-Tate ML. Whither flows the fluid in bone? An osteocyte’s perspective. J Biomech. 2003;36(10):1409–24.PubMedCrossRef Knothe-Tate ML. Whither flows the fluid in bone? An osteocyte’s perspective. J Biomech. 2003;36(10):1409–24.PubMedCrossRef
5.
Zurück zum Zitat Amprino R, Engstroem A. Studies on X-ray absorption and diffraction of bone tissue. Acta Anat. 1952;15(1):1–22.PubMedCrossRef Amprino R, Engstroem A. Studies on X-ray absorption and diffraction of bone tissue. Acta Anat. 1952;15(1):1–22.PubMedCrossRef
6.
Zurück zum Zitat Boivin G, Baud C-A. Microradiographic methods for calcified tissues. In: Dickson GR, editor. Methods of calcified tissue preparation. Amsterdam: Elsevier; 1984. p. 391–412. Boivin G, Baud C-A. Microradiographic methods for calcified tissues. In: Dickson GR, editor. Methods of calcified tissue preparation. Amsterdam: Elsevier; 1984. p. 391–412.
7.
Zurück zum Zitat Fratzl P, Fratzl-Zelman N, Klausdorfer K, Vogl G, Koller K. Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif Tissue Int. 1991;48:407–13.PubMedCrossRef Fratzl P, Fratzl-Zelman N, Klausdorfer K, Vogl G, Koller K. Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif Tissue Int. 1991;48:407–13.PubMedCrossRef
8.
Zurück zum Zitat Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boesecke P, Fratzl P. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci U S A. 2006;103(47):17741–6.PubMedPubMedCentralCrossRef Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boesecke P, Fratzl P. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci U S A. 2006;103(47):17741–6.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Peyrin F, Salome M, Nuzzo S, Cloetens P, Laval-Jeantet A-M, Baruchel J. Perspectives in three-dimensional analysis of bone samples using synchrotron radiation. Cell Mol Biol. 2000;46(6):1089–102.PubMed Peyrin F, Salome M, Nuzzo S, Cloetens P, Laval-Jeantet A-M, Baruchel J. Perspectives in three-dimensional analysis of bone samples using synchrotron radiation. Cell Mol Biol. 2000;46(6):1089–102.PubMed
10.
Zurück zum Zitat Hesse B, Varga P, Langer M, Pacureanu A, Schrof S, Mannicke N, et al. Canalicular network morphology is the major determinant of the spatial distribution of mass density in human bone tissue: evidence by means of synchrotron radiation phase-contrast nano-CT. J Bone Miner Res. 2015;30(2):346–56.PubMedCrossRef Hesse B, Varga P, Langer M, Pacureanu A, Schrof S, Mannicke N, et al. Canalicular network morphology is the major determinant of the spatial distribution of mass density in human bone tissue: evidence by means of synchrotron radiation phase-contrast nano-CT. J Bone Miner Res. 2015;30(2):346–56.PubMedCrossRef
11.
Zurück zum Zitat Roschger P, Fratzl P, Eschberger J, Klaushofer K. Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human biopsies. Bone. 1998;23(4):319–26.PubMedCrossRef Roschger P, Fratzl P, Eschberger J, Klaushofer K. Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human biopsies. Bone. 1998;23(4):319–26.PubMedCrossRef
12.
Zurück zum Zitat Landis WJ, Hodgens KJ, Arena J, Song MJ, McEwen BF. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc Res Tech. 1996;33:192–202.PubMedCrossRef Landis WJ, Hodgens KJ, Arena J, Song MJ, McEwen BF. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc Res Tech. 1996;33:192–202.PubMedCrossRef
13.
Zurück zum Zitat Reznikov N, Shahar R, Weiner S. Bone hierarchical structure in three dimensions. Acta Biomater. 2014;10(9):3815–26.PubMedCrossRef Reznikov N, Shahar R, Weiner S. Bone hierarchical structure in three dimensions. Acta Biomater. 2014;10(9):3815–26.PubMedCrossRef
14.
Zurück zum Zitat Paschalis EP, Verdelis K, Doty SB, Boskey AL, Mendelsohn R, Yamauchi M. Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res. 2001;16(10):1821–8.PubMedCrossRef Paschalis EP, Verdelis K, Doty SB, Boskey AL, Mendelsohn R, Yamauchi M. Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res. 2001;16(10):1821–8.PubMedCrossRef
15.
Zurück zum Zitat Kazanci M, Roschger P, Paschalis EP, Klaushofer K, Fratzl P. Bone osteonal tissues by Raman spectral mapping: orientation-composition. J Struct Biol. 2006;156(3):489–96.PubMedCrossRef Kazanci M, Roschger P, Paschalis EP, Klaushofer K, Fratzl P. Bone osteonal tissues by Raman spectral mapping: orientation-composition. J Struct Biol. 2006;156(3):489–96.PubMedCrossRef
16.
Zurück zum Zitat Unal M, Yang S, Akkus O. Molecular spectroscopic identification of the water compartments in bone. Bone. 2014;67:228–36.PubMedCrossRef Unal M, Yang S, Akkus O. Molecular spectroscopic identification of the water compartments in bone. Bone. 2014;67:228–36.PubMedCrossRef
17.
Zurück zum Zitat Ong HH, Wright AC, Wehrli FW. Deuterium nuclear magnetic resonance unambiguously quantifies pore and collagen-bound water in cortical bone. J Bone Miner Res. 2012;27(12):2573–81.PubMedPubMedCentralCrossRef Ong HH, Wright AC, Wehrli FW. Deuterium nuclear magnetic resonance unambiguously quantifies pore and collagen-bound water in cortical bone. J Bone Miner Res. 2012;27(12):2573–81.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Li C, Seifert AC, Rad HS, Bhagat YA, Rajapakse CS, Sun W, et al. Cortical bone water concentration: dependence of MR imaging measures on age and pore volume fraction. Radiology. 2014;272(3):796–806.PubMedPubMedCentralCrossRef Li C, Seifert AC, Rad HS, Bhagat YA, Rajapakse CS, Sun W, et al. Cortical bone water concentration: dependence of MR imaging measures on age and pore volume fraction. Radiology. 2014;272(3):796–806.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Wang X, Shen X, Li X, Agrawal CM. Age-related changes in the collagen network and toughness of bone. Bone. 2002;31(1):1–7.PubMedCrossRef Wang X, Shen X, Li X, Agrawal CM. Age-related changes in the collagen network and toughness of bone. Bone. 2002;31(1):1–7.PubMedCrossRef
20.
Zurück zum Zitat Fantner GE, Adams J, Turner P, Thurner PJ, Fisher LW, Hansma PK. Nanoscale ion mediated networks in bone: osteopontin can repeatedly dissipate large amounts of energy. Nano Lett. 2007;7(8):2491–8.PubMedCrossRef Fantner GE, Adams J, Turner P, Thurner PJ, Fisher LW, Hansma PK. Nanoscale ion mediated networks in bone: osteopontin can repeatedly dissipate large amounts of energy. Nano Lett. 2007;7(8):2491–8.PubMedCrossRef
21.
Zurück zum Zitat Bouxsein ML, Karasik D. Bone geometry and skeletal fragility. Curr Osteoporos Rep. 2006;4(2):49–56.PubMedCrossRef Bouxsein ML, Karasik D. Bone geometry and skeletal fragility. Curr Osteoporos Rep. 2006;4(2):49–56.PubMedCrossRef
22.
Zurück zum Zitat Roschger P, Gupta HS, Berzlanovich A, Ittner G, Dempster DW, Fratzl P, et al. Constant mineralization density distribution in cancellous human bone. Bone. 2003;32:316–23.PubMedCrossRef Roschger P, Gupta HS, Berzlanovich A, Ittner G, Dempster DW, Fratzl P, et al. Constant mineralization density distribution in cancellous human bone. Bone. 2003;32:316–23.PubMedCrossRef
23.
Zurück zum Zitat Gong JK, Arnold JS, Cohn H. Composition of trabecular and cortical bone. Anat Rec. 1964;149:325–32.PubMedCrossRef Gong JK, Arnold JS, Cohn H. Composition of trabecular and cortical bone. Anat Rec. 1964;149:325–32.PubMedCrossRef
24.
Zurück zum Zitat Dall’Ara E, Varga P, Pahr D, Zysset P. A calibration methodology of QCT BMD for human vertebral body with registered micro-CT images. Med Phys. 2011;38:2602–8.PubMedCrossRef Dall’Ara E, Varga P, Pahr D, Zysset P. A calibration methodology of QCT BMD for human vertebral body with registered micro-CT images. Med Phys. 2011;38:2602–8.PubMedCrossRef
25.
Zurück zum Zitat Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone. 1993;14:595–608.PubMedCrossRef Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone. 1993;14:595–608.PubMedCrossRef
26.
Zurück zum Zitat Martin RB, Ishida J. The relative effects of collagen fiber orientation, porosity, density, and mineralization of bone strength. J Biomech. 1989;22(5):419–26.PubMedCrossRef Martin RB, Ishida J. The relative effects of collagen fiber orientation, porosity, density, and mineralization of bone strength. J Biomech. 1989;22(5):419–26.PubMedCrossRef
27.
Zurück zum Zitat McCalden RW, Mcgeough JA, Barker MB, Court-Brown C. Age-related changes in the tensile properties of cortical bone. J Bone Joint Surg. 1993;75-A(8):1193–205.CrossRef McCalden RW, Mcgeough JA, Barker MB, Court-Brown C. Age-related changes in the tensile properties of cortical bone. J Bone Joint Surg. 1993;75-A(8):1193–205.CrossRef
28.
Zurück zum Zitat Zioupos P. Ageing human bone: factors affecting its biomechanical properties and the role of collagen. J Biomater Appl. 2001;15:187–229.PubMedCrossRef Zioupos P. Ageing human bone: factors affecting its biomechanical properties and the role of collagen. J Biomater Appl. 2001;15:187–229.PubMedCrossRef
29.
Zurück zum Zitat Schaer MB, Choi K, Milgrom C. Aging and matrix microdamage accumulation in human compact bone. Bone. 1995;17(6):521–5.CrossRef Schaer MB, Choi K, Milgrom C. Aging and matrix microdamage accumulation in human compact bone. Bone. 1995;17(6):521–5.CrossRef
30.
Zurück zum Zitat Carter DR, Hayes WC. Compact bone fatigue damage—I. Residual strength and stiffness. J Biomech. 1977;10:325–37.PubMedCrossRef Carter DR, Hayes WC. Compact bone fatigue damage—I. Residual strength and stiffness. J Biomech. 1977;10:325–37.PubMedCrossRef
31.
Zurück zum Zitat Agcaoglu S, Akkus O. Acoustic emission based monitoring of the microdamage evolution during fatigue of human cortical bone. J Biomech Eng. 2013;135(8):81005.PubMedCrossRef Agcaoglu S, Akkus O. Acoustic emission based monitoring of the microdamage evolution during fatigue of human cortical bone. J Biomech Eng. 2013;135(8):81005.PubMedCrossRef
32.
Zurück zum Zitat Haupert S, Guerard S, Peyrin F, Mitton D, Laugier P. Non destructive characterization of cortical bone micro-damage by nonlinear resonant ultrasound spectroscopy. PLoS One. 2014;9(1):e83599.PubMedPubMedCentralCrossRef Haupert S, Guerard S, Peyrin F, Mitton D, Laugier P. Non destructive characterization of cortical bone micro-damage by nonlinear resonant ultrasound spectroscopy. PLoS One. 2014;9(1):e83599.PubMedPubMedCentralCrossRef
33.
34.
Zurück zum Zitat Zimmermann EA, Gludovatz B, Schaible E, Busse B, Ritchie RO. Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates. Biomaterials. 2014;35(21):5472–81.PubMedCrossRef Zimmermann EA, Gludovatz B, Schaible E, Busse B, Ritchie RO. Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates. Biomaterials. 2014;35(21):5472–81.PubMedCrossRef
35.
Zurück zum Zitat Bridges D, Randall C, Hansma PK. A new device for performing reference point indentation without a reference probe. Rev Sci Instrum. 2012;83(4):044301.PubMedPubMedCentralCrossRef Bridges D, Randall C, Hansma PK. A new device for performing reference point indentation without a reference probe. Rev Sci Instrum. 2012;83(4):044301.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Diez-Perez A, Guerri R, Nogues X, Caceres E, Pena MJ, Mellibovsky L, et al. Microindentation for in vivo measurement of bone tissue mechanical properties in humans. J Bone Miner Res. 2010;25(8):1877–85.PubMedPubMedCentralCrossRef Diez-Perez A, Guerri R, Nogues X, Caceres E, Pena MJ, Mellibovsky L, et al. Microindentation for in vivo measurement of bone tissue mechanical properties in humans. J Bone Miner Res. 2010;25(8):1877–85.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 2013;28(1):2–17.PubMedPubMedCentralCrossRef Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 2013;28(1):2–17.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Hildebrand T, Laib A, Mller R, Dequeker J, Regsegger P. Direct three dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest and calcaneus. J Bone Miner Res. 1999;14(7):1167–74.PubMedCrossRef Hildebrand T, Laib A, Mller R, Dequeker J, Regsegger P. Direct three dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest and calcaneus. J Bone Miner Res. 1999;14(7):1167–74.PubMedCrossRef
39.
Zurück zum Zitat Hahn M, Vogel M, Pompesius-Kempa M, Delling G. Trabecular bone pattern factor—a new parameter for simple quantification of bone microarchitecture. Bone. 1992;13(4):327–30.PubMedCrossRef Hahn M, Vogel M, Pompesius-Kempa M, Delling G. Trabecular bone pattern factor—a new parameter for simple quantification of bone microarchitecture. Bone. 1992;13(4):327–30.PubMedCrossRef
40.
Zurück zum Zitat Odgaard A, Gundersen HJG. Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone. 1993;14:173–82.PubMedCrossRef Odgaard A, Gundersen HJG. Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone. 1993;14:173–82.PubMedCrossRef
41.
Zurück zum Zitat Hildebrand T, Ruegsegger P. Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Engin. 1997;1:15–23.PubMedCrossRef Hildebrand T, Ruegsegger P. Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Engin. 1997;1:15–23.PubMedCrossRef
42.
Zurück zum Zitat Benhamou CL, Lespessailles E, Jacquet G. Architecture osseuse trabculaire: caractrisation par une mthode d’analyse fractale. Expansion Scientifique Franaise. 1994;61(5):297–300. Benhamou CL, Lespessailles E, Jacquet G. Architecture osseuse trabculaire: caractrisation par une mthode d’analyse fractale. Expansion Scientifique Franaise. 1994;61(5):297–300.
43.
Zurück zum Zitat Stauber M, Muller R. Volumetric spatial decomposition of trabecular bone into rods and plates—a new method for local bone morphometry. Bone. 2006;38(4):475–84.PubMedCrossRef Stauber M, Muller R. Volumetric spatial decomposition of trabecular bone into rods and plates—a new method for local bone morphometry. Bone. 2006;38(4):475–84.PubMedCrossRef
44.
Zurück zum Zitat Liu XS, Sajda P, Saha PK, Wehrli FW, Bevill G, Keaveny TM, et al. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J Bone Miner Res. 2008;23(2):223–35.PubMedCrossRef Liu XS, Sajda P, Saha PK, Wehrli FW, Bevill G, Keaveny TM, et al. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J Bone Miner Res. 2008;23(2):223–35.PubMedCrossRef
45.
Zurück zum Zitat Whitehouse WJ. The quantitative morphology of anisotropic trabecular bone. J Microsc. 1974;101:153–68.PubMedCrossRef Whitehouse WJ. The quantitative morphology of anisotropic trabecular bone. J Microsc. 1974;101:153–68.PubMedCrossRef
46.
Zurück zum Zitat Harrigan TP, Mann RW. Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci. 1984;19:761–7.CrossRef Harrigan TP, Mann RW. Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci. 1984;19:761–7.CrossRef
47.
Zurück zum Zitat Odgaard A. Three-dimensional methods for quantification of cancellous bone architecture. Bone. 1997;20(4):315–28.PubMedCrossRef Odgaard A. Three-dimensional methods for quantification of cancellous bone architecture. Bone. 1997;20(4):315–28.PubMedCrossRef
48.
Zurück zum Zitat Rotter M, Berg A, Langenberger H, Grampp S, Imhof H, Moser E. Autocorrelation analysis of bone structure. J Magn Reson Imaging. 2001;14(1):87–93.PubMedCrossRef Rotter M, Berg A, Langenberger H, Grampp S, Imhof H, Moser E. Autocorrelation analysis of bone structure. J Magn Reson Imaging. 2001;14(1):87–93.PubMedCrossRef
49.
Zurück zum Zitat Saha PK, Wehrli FW. A robust method for measuring trabecular bone orientation anisotropy at in vivo resolution using tensor scale. Pattern Recogn. 2004;37(9):1935–44.CrossRef Saha PK, Wehrli FW. A robust method for measuring trabecular bone orientation anisotropy at in vivo resolution using tensor scale. Pattern Recogn. 2004;37(9):1935–44.CrossRef
50.
Zurück zum Zitat Tabor Z, Rokita E. Quantifying anisotropy of trabecular bone from gray-level images. Bone. 2007;40(4):966–72.PubMedCrossRef Tabor Z, Rokita E. Quantifying anisotropy of trabecular bone from gray-level images. Bone. 2007;40(4):966–72.PubMedCrossRef
51.
Zurück zum Zitat Varga P, Zysset PK. Sampling sphere orientation distribution: an efficient method to quantify trabecular bone fabric on grayscale images. Med Image Anal. 2009;13(3):530–41.PubMedCrossRef Varga P, Zysset PK. Sampling sphere orientation distribution: an efficient method to quantify trabecular bone fabric on grayscale images. Med Image Anal. 2009;13(3):530–41.PubMedCrossRef
52.
Zurück zum Zitat Lenaerts L, Wirth AJ, van Lenthe GH. Quantification of trabecular spatial orientation from low-resolution images. Comput Methods Biomech Biomed Engin. 2015;18(13):1392–9.PubMedCrossRef Lenaerts L, Wirth AJ, van Lenthe GH. Quantification of trabecular spatial orientation from low-resolution images. Comput Methods Biomech Biomed Engin. 2015;18(13):1392–9.PubMedCrossRef
53.
Zurück zum Zitat Doube M, Klosowski MM, Arganda-Carreras I, Cordelieres FP, Dougherty RP, Jackson JS, et al. BoneJ: free and extensible bone image analysis in ImageJ. Bone. 2010;47(6):1076–9.PubMedPubMedCentralCrossRef Doube M, Klosowski MM, Arganda-Carreras I, Cordelieres FP, Dougherty RP, Jackson JS, et al. BoneJ: free and extensible bone image analysis in ImageJ. Bone. 2010;47(6):1076–9.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Rincon-Kohli L, Zysset PK. Multi-axial mechanical properties of human trabecular bone. Biomech Model Mechanobiol. 2009;8(3):195–208.PubMedCrossRef Rincon-Kohli L, Zysset PK. Multi-axial mechanical properties of human trabecular bone. Biomech Model Mechanobiol. 2009;8(3):195–208.PubMedCrossRef
55.
Zurück zum Zitat Charlebois M, Pretterklieber M, Zysset PK. The role of fabric in the large strain compressive behavior of human trabecular bone. J Biomech Eng. 2010;132(12):121006.PubMedCrossRef Charlebois M, Pretterklieber M, Zysset PK. The role of fabric in the large strain compressive behavior of human trabecular bone. J Biomech Eng. 2010;132(12):121006.PubMedCrossRef
56.
Zurück zum Zitat Thurner PJ. Atomic force microscopy and indentation force measurement of bone. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(6):624–49.PubMedCrossRef Thurner PJ. Atomic force microscopy and indentation force measurement of bone. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(6):624–49.PubMedCrossRef
57.
Zurück zum Zitat Raum K, Leguerney I, Chandelier F, Talmant M, Saied A, Peyrin F, et al. Site-matched assessment of structural and tissue properties of cortical bone using scanning acoustic microscopy and synchrotron radiation μCT. Phys Med Biol. 2006;51(3):733–46.PubMedCrossRef Raum K, Leguerney I, Chandelier F, Talmant M, Saied A, Peyrin F, et al. Site-matched assessment of structural and tissue properties of cortical bone using scanning acoustic microscopy and synchrotron radiation μCT. Phys Med Biol. 2006;51(3):733–46.PubMedCrossRef
58.
Zurück zum Zitat Spiesz EM, Reisinger AG, Kaminsky W, Roschger P, Pahr DH, Zysset PK. Computational and experimental methodology for site-matched investigations of the influence of mineral mass fraction and collagen orientation on the axial indentation modulus of lamellar bone. J Mech Behav Biomed Mater. 2013;28:195–205.PubMedPubMedCentralCrossRef Spiesz EM, Reisinger AG, Kaminsky W, Roschger P, Pahr DH, Zysset PK. Computational and experimental methodology for site-matched investigations of the influence of mineral mass fraction and collagen orientation on the axial indentation modulus of lamellar bone. J Mech Behav Biomed Mater. 2013;28:195–205.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Luczynski KW, Steiger-Thirsfeld A, Bernardi J, Eberhardsteiner J, Hellmich C. Extracellular bone matrix exhibits hardening elastoplasticity and more than double cortical strength: evidence from homogeneous compression of non-tapered single micron-sized pillars welded to a rigid substrate. J Mech Behav Biomed Mater. 2015;52:51–62.PubMedCrossRef Luczynski KW, Steiger-Thirsfeld A, Bernardi J, Eberhardsteiner J, Hellmich C. Extracellular bone matrix exhibits hardening elastoplasticity and more than double cortical strength: evidence from homogeneous compression of non-tapered single micron-sized pillars welded to a rigid substrate. J Mech Behav Biomed Mater. 2015;52:51–62.PubMedCrossRef
60.
Zurück zum Zitat Jimenez-Palomar I, Shipov A, Shahar R, Barber AH. Influence of SEM vacuum on bone micromechanics using in situ AFM. J Mech Behav Biomed Mater. 2012;5(1):149–55.PubMedCrossRef Jimenez-Palomar I, Shipov A, Shahar R, Barber AH. Influence of SEM vacuum on bone micromechanics using in situ AFM. J Mech Behav Biomed Mater. 2012;5(1):149–55.PubMedCrossRef
61.
Zurück zum Zitat Schwiedrzik J, Raghavan R, Burki A, Lenader V, Wolfram U, Michler J, et al. In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone. Nat Mater. 2014;13(7):740–7.PubMedCrossRef Schwiedrzik J, Raghavan R, Burki A, Lenader V, Wolfram U, Michler J, et al. In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone. Nat Mater. 2014;13(7):740–7.PubMedCrossRef
62.
Zurück zum Zitat Fritsch A, Hellmich C. Universal microstructural patterns in cortical and trabecular, extracellular and extravacular bone materials: micromechanics-based prediction of anisotropic elasticity. J Theor Biol. 2007;244:597–620.PubMedCrossRef Fritsch A, Hellmich C. Universal microstructural patterns in cortical and trabecular, extracellular and extravacular bone materials: micromechanics-based prediction of anisotropic elasticity. J Theor Biol. 2007;244:597–620.PubMedCrossRef
63.
Zurück zum Zitat Predoi-Racila M, Crolet JM. Human cortical bone: the SiNuPrOs model. Comput Methods Biomech Biomed Engin. 2008;11(2):169–87.PubMedCrossRef Predoi-Racila M, Crolet JM. Human cortical bone: the SiNuPrOs model. Comput Methods Biomech Biomed Engin. 2008;11(2):169–87.PubMedCrossRef
64.
Zurück zum Zitat Genant HK, Jiang YB. Perspectives on advances in bone imaging for osteoporosis. In: Qin L, Genant HK, Griffth JF, Leung KS, editors. Advanced bioimaging technologies in assessment of the quality of bone and scaffold materials. Berlin: Springer; 2007. p. 5–26.CrossRef Genant HK, Jiang YB. Perspectives on advances in bone imaging for osteoporosis. In: Qin L, Genant HK, Griffth JF, Leung KS, editors. Advanced bioimaging technologies in assessment of the quality of bone and scaffold materials. Berlin: Springer; 2007. p. 5–26.CrossRef
65.
66.
Zurück zum Zitat Brandi ML. Microarchitecture, the key to bone quality. Rheumatology (Oxford). 2009;48 Suppl 4:3–8.CrossRef Brandi ML. Microarchitecture, the key to bone quality. Rheumatology (Oxford). 2009;48 Suppl 4:3–8.CrossRef
67.
Zurück zum Zitat Mulder L, van Rietbergen B, Noordhoek NJ, Ito K. Determination of vertebral and femoral trabecular morphology and stiffness using a flat-panel C-arm-based CT approach. Bone. 2012;50:200–8.PubMedCrossRef Mulder L, van Rietbergen B, Noordhoek NJ, Ito K. Determination of vertebral and femoral trabecular morphology and stiffness using a flat-panel C-arm-based CT approach. Bone. 2012;50:200–8.PubMedCrossRef
68.
Zurück zum Zitat Klintstrom E, Smedby O, Moreno R, Brismar TB. Trabecular bone structure parameters from 3D image processing of clinical multi-slice and conebeam computed tomography data. Skeletal Radiol. 2014;43(2):197–204.PubMedCrossRef Klintstrom E, Smedby O, Moreno R, Brismar TB. Trabecular bone structure parameters from 3D image processing of clinical multi-slice and conebeam computed tomography data. Skeletal Radiol. 2014;43(2):197–204.PubMedCrossRef
69.
Zurück zum Zitat Pahr DH, Schwiedrzik J, Dall’Ara E, Zysset PK. Clinical versus pre-clinical FE models for vertebral body strength predictions. J Mech Behav Biomed Mater. 2013;33:76–83.CrossRef Pahr DH, Schwiedrzik J, Dall’Ara E, Zysset PK. Clinical versus pre-clinical FE models for vertebral body strength predictions. J Mech Behav Biomed Mater. 2013;33:76–83.CrossRef
70.
Zurück zum Zitat Luisier B, Dallara E, Pahr DH. Orthotropic HR-pQCT-based FE models improve strength predictions for stance but not for side-way fall loading compared to isotropic QCT-based FE models of human femurs. J Mech Behav Biomed Mater. 2014;32C:287–99.CrossRef Luisier B, Dallara E, Pahr DH. Orthotropic HR-pQCT-based FE models improve strength predictions for stance but not for side-way fall loading compared to isotropic QCT-based FE models of human femurs. J Mech Behav Biomed Mater. 2014;32C:287–99.CrossRef
71.
Zurück zum Zitat Zysset P, Pahr D, Engelke K, Genant HK, Mc-Clung MR, Kendler DL, et al. Comparison of proximal femur and vertebral body strength improvements in the FREEDOM trial using an alternative finite element methodology. Bone. 2015;81:122–30.PubMedCrossRef Zysset P, Pahr D, Engelke K, Genant HK, Mc-Clung MR, Kendler DL, et al. Comparison of proximal femur and vertebral body strength improvements in the FREEDOM trial using an alternative finite element methodology. Bone. 2015;81:122–30.PubMedCrossRef
72.
Zurück zum Zitat Kang Y, Engelke K, Kalender WA. A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. Med Imaging, IEEE Transactions. 2003;22(5):586–98.CrossRef Kang Y, Engelke K, Kalender WA. A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. Med Imaging, IEEE Transactions. 2003;22(5):586–98.CrossRef
73.
Zurück zum Zitat Heimann T, Meinzer H-P. Statistical shape models for 3D medical image segmentation: a review. Med Image Anal. 2009;13(4):543–63.PubMedCrossRef Heimann T, Meinzer H-P. Statistical shape models for 3D medical image segmentation: a review. Med Image Anal. 2009;13(4):543–63.PubMedCrossRef
74.
Zurück zum Zitat Pahr DH, Zysset PK. From high-resolution CT data to finite element models: development of an integrated modular framework. Comput Methods Biomech Biomed Engin. 2009;12:45–57.PubMedCrossRef Pahr DH, Zysset PK. From high-resolution CT data to finite element models: development of an integrated modular framework. Comput Methods Biomech Biomed Engin. 2009;12:45–57.PubMedCrossRef
75.
Zurück zum Zitat Treece GM, Gee AH, Mayhew PM, Poole KES. High resolution cortical bone thickness measurement from clinical CT data. Med Image Anal. 2010;14(3):276–90.PubMedPubMedCentralCrossRef Treece GM, Gee AH, Mayhew PM, Poole KES. High resolution cortical bone thickness measurement from clinical CT data. Med Image Anal. 2010;14(3):276–90.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Ridler TW, Calvard S. Picture thresholding using an iterative selection method. IEEE T Syst Man Cyb. 1978;8(8):630–2.CrossRef Ridler TW, Calvard S. Picture thresholding using an iterative selection method. IEEE T Syst Man Cyb. 1978;8(8):630–2.CrossRef
77.
Zurück zum Zitat Laib A, Häuselmann HJ, Rüegsegger P. In vivo high resolution 3D-QCT of the human forearm. Technol Health Care. 1998;6(5–6):329–37.PubMed Laib A, Häuselmann HJ, Rüegsegger P. In vivo high resolution 3D-QCT of the human forearm. Technol Health Care. 1998;6(5–6):329–37.PubMed
78.
Zurück zum Zitat Scherf H, Tilgner R. A new high-resolution computed tomography (CT) segmentation method for trabecular bone architectural analysis. Am J Phys Anthropol. 2009;140(1):39–51.PubMedCrossRef Scherf H, Tilgner R. A new high-resolution computed tomography (CT) segmentation method for trabecular bone architectural analysis. Am J Phys Anthropol. 2009;140(1):39–51.PubMedCrossRef
79.
Zurück zum Zitat Parkinson IH, Badiei A, Fazzalari NL. Variation in segmentation of bone from micro-CT imaging: implications for quantitative morphometric analysis. Australas Phys Eng Sci Med. 2008;31(2):160–4.PubMedCrossRef Parkinson IH, Badiei A, Fazzalari NL. Variation in segmentation of bone from micro-CT imaging: implications for quantitative morphometric analysis. Australas Phys Eng Sci Med. 2008;31(2):160–4.PubMedCrossRef
80.
Zurück zum Zitat Viceconti M, Zannoni C, Testi D, Cappello A. CT data sets surface extraction for biomechanical modeling of long bones. Comput Methods Programs Biomed. 1999;9(3):159–66.CrossRef Viceconti M, Zannoni C, Testi D, Cappello A. CT data sets surface extraction for biomechanical modeling of long bones. Comput Methods Programs Biomed. 1999;9(3):159–66.CrossRef
81.
Zurück zum Zitat Rathnayaka K, Sahama T, Schuetz MA, Schmutz B. Effects of CT image segmentation methods on the accuracy of long bone 3D reconstructions. Med Eng Phys. 2011;33(2):226–33.PubMedCrossRef Rathnayaka K, Sahama T, Schuetz MA, Schmutz B. Effects of CT image segmentation methods on the accuracy of long bone 3D reconstructions. Med Eng Phys. 2011;33(2):226–33.PubMedCrossRef
82.
Zurück zum Zitat Homminga J, van Rietbergen B, Lochmuller EM, Weinans H, Eckstein F, Huiskes R. The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone. 2004;34(3):510–6.PubMedCrossRef Homminga J, van Rietbergen B, Lochmuller EM, Weinans H, Eckstein F, Huiskes R. The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone. 2004;34(3):510–6.PubMedCrossRef
83.
Zurück zum Zitat Verhulp E, van Rietbergen B, Huiskes R. Comparison of micro-level and continuum-level voxel models of the proximal femur. J Biomech. 2006;39(16):2951–7.PubMedCrossRef Verhulp E, van Rietbergen B, Huiskes R. Comparison of micro-level and continuum-level voxel models of the proximal femur. J Biomech. 2006;39(16):2951–7.PubMedCrossRef
84.
Zurück zum Zitat Fields AJ, Eswaran SK, Jekir MG, Keaveny TM. Role of trabecular microarchitecture in whole-vertebral body biomechanical behavior. J Bone Miner Res. 2009;24(9):1523–30.PubMedPubMedCentralCrossRef Fields AJ, Eswaran SK, Jekir MG, Keaveny TM. Role of trabecular microarchitecture in whole-vertebral body biomechanical behavior. J Bone Miner Res. 2009;24(9):1523–30.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Nawathe S, Akhlaghpour H, Bouxsein ML, Keaveny TM. Microstructural failure mechanisms in the human proximal femur for sideways fall loading. J Bone Miner Res. 2013;29:507–15.CrossRef Nawathe S, Akhlaghpour H, Bouxsein ML, Keaveny TM. Microstructural failure mechanisms in the human proximal femur for sideways fall loading. J Bone Miner Res. 2013;29:507–15.CrossRef
86.
Zurück zum Zitat Faulkner KG, Cann CE, Hasegawa BH. Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis. Radiology. 1991;179(3):669–74.PubMedCrossRef Faulkner KG, Cann CE, Hasegawa BH. Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis. Radiology. 1991;179(3):669–74.PubMedCrossRef
87.
Zurück zum Zitat Martin H, Werner J, Andresen R, Schober HC, Schmitz KP. Noninvasive assessment of stiffness and failure load of human vertebrae from CT-data. Biomed Tech (Berl). 1998;43(4):82–8.CrossRef Martin H, Werner J, Andresen R, Schober HC, Schmitz KP. Noninvasive assessment of stiffness and failure load of human vertebrae from CT-data. Biomed Tech (Berl). 1998;43(4):82–8.CrossRef
88.
Zurück zum Zitat Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 2003;33(4):744–50.PubMedCrossRef Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 2003;33(4):744–50.PubMedCrossRef
89.
Zurück zum Zitat Imai K, Ohnishi I, Bessho M, Nakamura K. Nonlinear finite element model predicts vertebral bone strength and fracture site. Spine. 2006;31:1789–94.PubMedCrossRef Imai K, Ohnishi I, Bessho M, Nakamura K. Nonlinear finite element model predicts vertebral bone strength and fracture site. Spine. 2006;31:1789–94.PubMedCrossRef
90.
Zurück zum Zitat Schileo E, Taddei F, Malandrino A, Cristofolini L, Viceconti M. Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech. 2007;40(13):2982–9.PubMedCrossRef Schileo E, Taddei F, Malandrino A, Cristofolini L, Viceconti M. Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech. 2007;40(13):2982–9.PubMedCrossRef
91.
Zurück zum Zitat Pahr DH, Zysset PK. A comparison of enhanced continuum FE with micro FE models of human vertebral bodies. J Biomech. 2009;42:455–62.PubMedCrossRef Pahr DH, Zysset PK. A comparison of enhanced continuum FE with micro FE models of human vertebral bodies. J Biomech. 2009;42:455–62.PubMedCrossRef
92.
Zurück zum Zitat van Rietbergen B, Weinans H, Huiskes R, Odgaard A. A new method to determine trabecular bone elastic properties and loading using micromechanical finite element models. J Biomech. 1995;28(1):69–81.PubMedCrossRef van Rietbergen B, Weinans H, Huiskes R, Odgaard A. A new method to determine trabecular bone elastic properties and loading using micromechanical finite element models. J Biomech. 1995;28(1):69–81.PubMedCrossRef
93.
Zurück zum Zitat Adams MF, Bayraktar HH, Keaveny TM, Papadopoulos P. Ultrascalable implicit finite element analyses in solid mechanics with over a half a billion degrees of freedom. In Proceedings of the 2004 ACM/IEEE conference on supercomputing, page 34. IEEE Computer Society, 2004. Adams MF, Bayraktar HH, Keaveny TM, Papadopoulos P. Ultrascalable implicit finite element analyses in solid mechanics with over a half a billion degrees of freedom. In Proceedings of the 2004 ACM/IEEE conference on supercomputing, page 34. IEEE Computer Society, 2004.
94.
Zurück zum Zitat Arbenz P, van Lenthe GH, Mennel U, Müller R, Sala M. A scalable multi-level preconditioner for matrix-free μ-finite element analysis of human bone structures. Int J Numer Methods Eng. 2008;73(7):927–47.CrossRef Arbenz P, van Lenthe GH, Mennel U, Müller R, Sala M. A scalable multi-level preconditioner for matrix-free μ-finite element analysis of human bone structures. Int J Numer Methods Eng. 2008;73(7):927–47.CrossRef
95.
Zurück zum Zitat Flaig C, Arbenz P. A highly scalable matrix-free multigrid solver for FE analysis based on a pointer-less octree. In Lirkov I, Margenov S, Waniewski J, editors. Large-scale scientific computing, volume 7116 of Lecture Notes in Computer Science, p. 498–506. Berlin: Springer, 2012. Flaig C, Arbenz P. A highly scalable matrix-free multigrid solver for FE analysis based on a pointer-less octree. In Lirkov I, Margenov S, Waniewski J, editors. Large-scale scientific computing, volume 7116 of Lecture Notes in Computer Science, p. 498–506. Berlin: Springer, 2012.
96.
Zurück zum Zitat Homminga J, Weinans H, Gowin W, Felsenberg R, Huiskes D. Osteoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution. Spine. 2001;26:1555–60.PubMedCrossRef Homminga J, Weinans H, Gowin W, Felsenberg R, Huiskes D. Osteoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution. Spine. 2001;26:1555–60.PubMedCrossRef
97.
Zurück zum Zitat Chevalier Y, Pahr DH, Charlebois M, Heini P, Schneider E, Zysset PK. Cement distribution, volume, and compliance in vertebroplasty: some answers from an anatomy-based nonlinear finite element study. Spine. 2008;33:1722–30.PubMedCrossRef Chevalier Y, Pahr DH, Charlebois M, Heini P, Schneider E, Zysset PK. Cement distribution, volume, and compliance in vertebroplasty: some answers from an anatomy-based nonlinear finite element study. Spine. 2008;33:1722–30.PubMedCrossRef
98.
Zurück zum Zitat Viceconti M, Bellingeri L, Cristofolini L, Toni A. A comparative study on different methods of automatic mesh generation of human femurs. Med Eng Phys. 1998;20(1):1–10.PubMedCrossRef Viceconti M, Bellingeri L, Cristofolini L, Toni A. A comparative study on different methods of automatic mesh generation of human femurs. Med Eng Phys. 1998;20(1):1–10.PubMedCrossRef
99.
Zurück zum Zitat Treece GM, Prager RW, Gee AH. Regularised marching tetrahedra: improved iso-surface extraction. Comput Graph. 1999;23(4):583–98.CrossRef Treece GM, Prager RW, Gee AH. Regularised marching tetrahedra: improved iso-surface extraction. Comput Graph. 1999;23(4):583–98.CrossRef
100.
Zurück zum Zitat Ito Y, Shum PC, Shih AM, Soni BK, Nakahashi K. Robust generation of high-quality unstructured meshes on realistic biomedical geometry. Int J Numer Methods Eng. 2006;65(6):943–73.CrossRef Ito Y, Shum PC, Shih AM, Soni BK, Nakahashi K. Robust generation of high-quality unstructured meshes on realistic biomedical geometry. Int J Numer Methods Eng. 2006;65(6):943–73.CrossRef
101.
Zurück zum Zitat Taddei F, Schileo E, Helgason B, Cristofolini L, Viceconti M. The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements. Med Eng Phys. 2007;29(9):973–9.PubMedCrossRef Taddei F, Schileo E, Helgason B, Cristofolini L, Viceconti M. The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements. Med Eng Phys. 2007;29(9):973–9.PubMedCrossRef
102.
Zurück zum Zitat Cheung AM, Adachi JD, Hanley DA, Kendler DL, Davison KS, Josse R, et al. High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian Bone Strength Working Group. Curr Osteoporos Rep. 2013;11(2):136–46.PubMedPubMedCentralCrossRef Cheung AM, Adachi JD, Hanley DA, Kendler DL, Davison KS, Josse R, et al. High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian Bone Strength Working Group. Curr Osteoporos Rep. 2013;11(2):136–46.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of femoral fracture load using automated finite element modeling. J Biomech. 1997;31(2):125–33.CrossRef Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of femoral fracture load using automated finite element modeling. J Biomech. 1997;31(2):125–33.CrossRef
104.
Zurück zum Zitat Dall’Ara E, Luisier B, Schmidt R, Kainberger F, Zysset P, Pahr D. A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro. Bone. 2013;52(1):27–38.PubMedCrossRef Dall’Ara E, Luisier B, Schmidt R, Kainberger F, Zysset P, Pahr D. A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro. Bone. 2013;52(1):27–38.PubMedCrossRef
105.
Zurück zum Zitat Jones AC, Wilcox RK. Assessment of factors influencing finite element vertebral model predictions. J Biomech Eng. 2007;129(6):898–903.PubMedCrossRef Jones AC, Wilcox RK. Assessment of factors influencing finite element vertebral model predictions. J Biomech Eng. 2007;129(6):898–903.PubMedCrossRef
106.
Zurück zum Zitat Yosibash Z, Tal D, Trabelsi N. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties. Philos Transact A Math Phys Eng Sci. 2010;368(1920):2707–23.CrossRef Yosibash Z, Tal D, Trabelsi N. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties. Philos Transact A Math Phys Eng Sci. 2010;368(1920):2707–23.CrossRef
107.
Zurück zum Zitat Bevill G, Keaveny TM. Trabecular bone strength predictions using finite element analysis of micro-scale images at limited spatial resolution. Bone. 2009;44(4):579–84.PubMedCrossRef Bevill G, Keaveny TM. Trabecular bone strength predictions using finite element analysis of micro-scale images at limited spatial resolution. Bone. 2009;44(4):579–84.PubMedCrossRef
108.
Zurück zum Zitat Currey JD. Power law models for the mechanical properties of cancellous bone. Eng Med. 1986;15(3):153–4.PubMedCrossRef Currey JD. Power law models for the mechanical properties of cancellous bone. Eng Med. 1986;15(3):153–4.PubMedCrossRef
109.
Zurück zum Zitat Helgason B, Perilli E, Schileo E, Taddei F, Brynjolfsson S, Viceconti M. Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech (Bristol, Avon). 2008;23(2):135–46.CrossRef Helgason B, Perilli E, Schileo E, Taddei F, Brynjolfsson S, Viceconti M. Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech (Bristol, Avon). 2008;23(2):135–46.CrossRef
110.
Zurück zum Zitat Enns-Bray WS, Owoc JS, Nishiyama KK, Boyd SK. Mapping anisotropy of the proximal femur for enhanced image based finite element analysis. J Biomech. 2014;47(13):3272–8.PubMedCrossRef Enns-Bray WS, Owoc JS, Nishiyama KK, Boyd SK. Mapping anisotropy of the proximal femur for enhanced image based finite element analysis. J Biomech. 2014;47(13):3272–8.PubMedCrossRef
111.
Zurück zum Zitat Marangalou JH, Ito K, van Rietbergen B. A novel approach to estimate trabecular bone anisotropy from stress tensors. Biomech Model Mechanobiol. 2015;14(1):39–48.CrossRef Marangalou JH, Ito K, van Rietbergen B. A novel approach to estimate trabecular bone anisotropy from stress tensors. Biomech Model Mechanobiol. 2015;14(1):39–48.CrossRef
112.
Zurück zum Zitat Zysset PK. A review of morphology-elasticity relationships in human trabecular bone: theories and experiments. J Biomech. 2003;36(10):1469–85.PubMedCrossRef Zysset PK. A review of morphology-elasticity relationships in human trabecular bone: theories and experiments. J Biomech. 2003;36(10):1469–85.PubMedCrossRef
113.
Zurück zum Zitat Gross T, Pahr DH, Zysset PK. Morphology-elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations. Biomech Model Mechanobiol. 2013;12(4):793–800.PubMedCrossRef Gross T, Pahr DH, Zysset PK. Morphology-elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations. Biomech Model Mechanobiol. 2013;12(4):793–800.PubMedCrossRef
114.
Zurück zum Zitat Bevill G, Easley SK, Keaveny TM. Side-artifact errors in yield strength and elastic modulus for human trabecular bone and their dependence on bone volume fraction and anatomic site. J Biomech. 2007;40:3381–8.PubMedPubMedCentralCrossRef Bevill G, Easley SK, Keaveny TM. Side-artifact errors in yield strength and elastic modulus for human trabecular bone and their dependence on bone volume fraction and anatomic site. J Biomech. 2007;40:3381–8.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Panyasantisuk J, Pahr DH, Gross T, Zysset PK. Comparison of mixed and kinematic uniform boundary conditions in homogenized elasticity of femoral trabecular bone using microfinite element analyses. J Biomech Eng (2015); 137(1). doi:10.1115/1.4028968. Panyasantisuk J, Pahr DH, Gross T, Zysset PK. Comparison of mixed and kinematic uniform boundary conditions in homogenized elasticity of femoral trabecular bone using microfinite element analyses. J Biomech Eng (2015); 137(1). doi:10.​1115/​1.​4028968.
118.
Zurück zum Zitat Eberle S, Gottlinger M, Augat P. An investigation to determine if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones. Med Eng Phys. 2013;35:875–83. doi:10.1016/j.medengphy.2012.08.PubMedCrossRef Eberle S, Gottlinger M, Augat P. An investigation to determine if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones. Med Eng Phys. 2013;35:875–83. doi:10.​1016/​j.​medengphy.​2012.​08.PubMedCrossRef
119.
Zurück zum Zitat Marangalou JH, Ito K, Cataldi M, Taddei F, van Rietbergen B. A novel approach to estimate trabecular bone anisotropy using a database approach. J Biomech. 2013;46(14):2356–62.CrossRef Marangalou JH, Ito K, Cataldi M, Taddei F, van Rietbergen B. A novel approach to estimate trabecular bone anisotropy using a database approach. J Biomech. 2013;46(14):2356–62.CrossRef
120.
Zurück zum Zitat Pahr DH, Dall’Ara E, Varga P, Zysset PK. HR-pQCT-based homogenized finite element models provide quantitative predictions of experimental vertebral body stiffness and strength with the same accuracy as microFE models. Comput Methods Biomech Biomed Engin. 2012;15:711–20.PubMedCrossRef Pahr DH, Dall’Ara E, Varga P, Zysset PK. HR-pQCT-based homogenized finite element models provide quantitative predictions of experimental vertebral body stiffness and strength with the same accuracy as microFE models. Comput Methods Biomech Biomed Engin. 2012;15:711–20.PubMedCrossRef
121.
Zurück zum Zitat Kinzl M, Wolfram U, Pahr DH. Identification of a crushable foam material model and application to strength and damage prediction of human femur and vertebral body. J Mech Behav Biomed Mater. 2013;26:136–47.PubMedCrossRef Kinzl M, Wolfram U, Pahr DH. Identification of a crushable foam material model and application to strength and damage prediction of human femur and vertebral body. J Mech Behav Biomed Mater. 2013;26:136–47.PubMedCrossRef
122.
Zurück zum Zitat Sanyal A, Scheffelin J, Keaveny TM. The quartic piecewise-linear criterion for the multiaxial yield behavior of human trabecular bone. J Biomech Eng, 2015; 137(1). Sanyal A, Scheffelin J, Keaveny TM. The quartic piecewise-linear criterion for the multiaxial yield behavior of human trabecular bone. J Biomech Eng, 2015; 137(1).
123.
Zurück zum Zitat Schwiedrzik JJ, Wolfram U, Zysset PK. A generalized anisotropic quadric yield criterion and its application to bone tissue at multiple length scales. Biomech Model Mechanobiol. 2013;12(6):1155–68.PubMedCrossRef Schwiedrzik JJ, Wolfram U, Zysset PK. A generalized anisotropic quadric yield criterion and its application to bone tissue at multiple length scales. Biomech Model Mechanobiol. 2013;12(6):1155–68.PubMedCrossRef
124.
Zurück zum Zitat Taylor WR, Heller MO, Bergmann G, Duda GN. Tibiofemoral loading during human gait and stair climbing. J Orthop Res. 2004;22(3):625–32.PubMedCrossRef Taylor WR, Heller MO, Bergmann G, Duda GN. Tibiofemoral loading during human gait and stair climbing. J Orthop Res. 2004;22(3):625–32.PubMedCrossRef
125.
Zurück zum Zitat Heller MO, Kratzenstein S, Ehrig RM, Wassilew G, Duda GN, Taylor WR. The weighted optimal common shape technique improves identification of the hip joint center of rotation in vivo. J Orthop Res. 2011;29(10):1470–5.PubMedCrossRef Heller MO, Kratzenstein S, Ehrig RM, Wassilew G, Duda GN, Taylor WR. The weighted optimal common shape technique improves identification of the hip joint center of rotation in vivo. J Orthop Res. 2011;29(10):1470–5.PubMedCrossRef
126.
Zurück zum Zitat Falcinelli C, Schileo E, Balistreri L, Baruffaldi F, Bordini B, Viceconti M, et al. Multiple loading conditions analysis can improve the association between finite element bone strength estimates and proximal femur fractures: a preliminary study in elderly women. Bone. 2014;67:71–80.PubMedCrossRef Falcinelli C, Schileo E, Balistreri L, Baruffaldi F, Bordini B, Viceconti M, et al. Multiple loading conditions analysis can improve the association between finite element bone strength estimates and proximal femur fractures: a preliminary study in elderly women. Bone. 2014;67:71–80.PubMedCrossRef
127.
Zurück zum Zitat Taddei F, Palmadori I, Taylor WR, Heller MO, Bordini B, Toni A, et al. Safety factor of the proximal femur during gait: a population-based finite element study. J Biomech. 2014;47(14):3433–40.PubMedCrossRef Taddei F, Palmadori I, Taylor WR, Heller MO, Bordini B, Toni A, et al. Safety factor of the proximal femur during gait: a population-based finite element study. J Biomech. 2014;47(14):3433–40.PubMedCrossRef
128.
Zurück zum Zitat Christen P, Ito K, Knippels I, Müller R, van Lenthe GH, van Rietbergen B. Subject-specific bone loading estimation in the human distal radius. J Biomech. 2013;46(4):759–66.PubMedCrossRef Christen P, Ito K, Knippels I, Müller R, van Lenthe GH, van Rietbergen B. Subject-specific bone loading estimation in the human distal radius. J Biomech. 2013;46(4):759–66.PubMedCrossRef
129.
Zurück zum Zitat Christen P, Ito K, Galis F, van Rietbergen B. Determination of hip-joint loading patterns of living and extinct mammals using an inverse wolf’s law approach. Biomech Model Mechanobiol. 2015;14(2):427–32.PubMedCrossRef Christen P, Ito K, Galis F, van Rietbergen B. Determination of hip-joint loading patterns of living and extinct mammals using an inverse wolf’s law approach. Biomech Model Mechanobiol. 2015;14(2):427–32.PubMedCrossRef
130.
Zurück zum Zitat Dall’Ara E, Schmidt R, Pahr D, Varga P, Chevalier Y, Patsch J, et al. A nonlinear finite element model validation study based on a novel experimental technique for inducing anterior wedge-shape fractures in human vertebral bodies in vitro. J Biomech. 2010;43:2374–80.PubMedCrossRef Dall’Ara E, Schmidt R, Pahr D, Varga P, Chevalier Y, Patsch J, et al. A nonlinear finite element model validation study based on a novel experimental technique for inducing anterior wedge-shape fractures in human vertebral bodies in vitro. J Biomech. 2010;43:2374–80.PubMedCrossRef
131.
Zurück zum Zitat Varga P, Dall’Ara E, Pahr DH, Pretterkliebe M, Zysset PK. Validation of an HR-pQCT-based homogenized finite element approach using mechanical testing of ultra-distal radius sections. Biomech Model Mechanobiol. 2011;10(4):431–44.PubMedCrossRef Varga P, Dall’Ara E, Pahr DH, Pretterkliebe M, Zysset PK. Validation of an HR-pQCT-based homogenized finite element approach using mechanical testing of ultra-distal radius sections. Biomech Model Mechanobiol. 2011;10(4):431–44.PubMedCrossRef
132.
Zurück zum Zitat Maquer G, Dall’Ara E, Zysset PK. Removal of the cortical endplates has little effect on ultimate load and damage distribution in QCT-based voxel models of human lumbar vertebrae under axial compression. J Biomech. 2012;45(9):1733–8.PubMedCrossRef Maquer G, Dall’Ara E, Zysset PK. Removal of the cortical endplates has little effect on ultimate load and damage distribution in QCT-based voxel models of human lumbar vertebrae under axial compression. J Biomech. 2012;45(9):1733–8.PubMedCrossRef
133.
Zurück zum Zitat Matsumoto T, Ohnishi I, Bessho M, Imai K, Ohashi S, Nakamura K. Prediction of vertebral strength under loading conditions occurring in activities of daily living using a computed tomography-based nonlinear finite element method. Spine. 2009;34(14):1464–9.PubMedCrossRef Matsumoto T, Ohnishi I, Bessho M, Imai K, Ohashi S, Nakamura K. Prediction of vertebral strength under loading conditions occurring in activities of daily living using a computed tomography-based nonlinear finite element method. Spine. 2009;34(14):1464–9.PubMedCrossRef
134.
Zurück zum Zitat Nishiyama KK, Ito M, Harada A, Boyd SK. Classification of women with and without hip fracture based on quantitative computed tomography and finite element analysis. Osteoporos Int. 2014;25(2):619–26.PubMedCrossRef Nishiyama KK, Ito M, Harada A, Boyd SK. Classification of women with and without hip fracture based on quantitative computed tomography and finite element analysis. Osteoporos Int. 2014;25(2):619–26.PubMedCrossRef
135.
Zurück zum Zitat Keyak JH, Sigurdsson S, Karlsdottir GS, Oskarsdottir D, Sigmarsdottir A, Kornak J, et al. Effect of finite element model loading condition on fracture risk assessment in men and women: the AGES-Reykjavik study. Bone. 2013;57(1):18–29.PubMedPubMedCentralCrossRef Keyak JH, Sigurdsson S, Karlsdottir GS, Oskarsdottir D, Sigmarsdottir A, Kornak J, et al. Effect of finite element model loading condition on fracture risk assessment in men and women: the AGES-Reykjavik study. Bone. 2013;57(1):18–29.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Viceconti M, Taddei F, Cristofolini L, Martelli S, Falcinelli C, Schileo E. Are spontaneous fractures possible? An example of clinical application for personalised, multiscale neuro-musculo-skeletal modelling. J Biomech. 2012;45(3):421–6.PubMedCrossRef Viceconti M, Taddei F, Cristofolini L, Martelli S, Falcinelli C, Schileo E. Are spontaneous fractures possible? An example of clinical application for personalised, multiscale neuro-musculo-skeletal modelling. J Biomech. 2012;45(3):421–6.PubMedCrossRef
137.
Zurück zum Zitat Keaveny TM, McClung MR, Genant HK, Zanchetta JR, Kendler D, Brown JP, et al. Femoral and vertebral strength improvements in postmenopausal women with osteoporosis treated with denosumab. J Bone Miner Res. 2014;29(1):158–65.PubMedCrossRef Keaveny TM, McClung MR, Genant HK, Zanchetta JR, Kendler D, Brown JP, et al. Femoral and vertebral strength improvements in postmenopausal women with osteoporosis treated with denosumab. J Bone Miner Res. 2014;29(1):158–65.PubMedCrossRef
138.
Zurück zum Zitat Vilayphiou N, Boutroy S, Sornay-Rendu E, van Rietbergen B, Munoz F, Delmas PD, et al. Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in postmenopausal women. Bone. 2010;46(4):1030–7.PubMedCrossRef Vilayphiou N, Boutroy S, Sornay-Rendu E, van Rietbergen B, Munoz F, Delmas PD, et al. Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in postmenopausal women. Bone. 2010;46(4):1030–7.PubMedCrossRef
139.
Zurück zum Zitat Anderson AE, Ellis BJ, Weiss JA. Verification, validation and sensitivity studies in computational biomechanics. Comput Methods Biomech Biomed Engin. 2007;10(3):171–84.PubMedPubMedCentralCrossRef Anderson AE, Ellis BJ, Weiss JA. Verification, validation and sensitivity studies in computational biomechanics. Comput Methods Biomech Biomed Engin. 2007;10(3):171–84.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Liebschner MA, Kopperdahl DL, Rosenberg WS, Keaveny TM. Finite element modeling of the human thoracolumbar spine. Spine. 2003;28(6):559–65.PubMed Liebschner MA, Kopperdahl DL, Rosenberg WS, Keaveny TM. Finite element modeling of the human thoracolumbar spine. Spine. 2003;28(6):559–65.PubMed
141.
Zurück zum Zitat Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP. Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech. 1999;32(10):1013–20.PubMedCrossRef Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP. Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech. 1999;32(10):1013–20.PubMedCrossRef
142.
Zurück zum Zitat Dragomir-Daescu D, Op Den Buijs J, McEligot S, Dai Y, Entwistle RC, Salas C, et al. Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Ann Biomed Eng. 2011;39(2):742–55.PubMedCrossRef Dragomir-Daescu D, Op Den Buijs J, McEligot S, Dai Y, Entwistle RC, Salas C, et al. Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Ann Biomed Eng. 2011;39(2):742–55.PubMedCrossRef
143.
Zurück zum Zitat Pistoia W, van Rietbergen B, Lochmuller EM, Lill CA, Eckstein F, Ruegsegger P. Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone. 2002;30(6):842–8.PubMedCrossRef Pistoia W, van Rietbergen B, Lochmuller EM, Lill CA, Eckstein F, Ruegsegger P. Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone. 2002;30(6):842–8.PubMedCrossRef
144.
Zurück zum Zitat Varga P, Baumbach S, Pahr D, Zysset PK. Validation of an anatomy specific finite element model of Colles’ fracture. J Biomech. 2009;42(11):1726–31.PubMedCrossRef Varga P, Baumbach S, Pahr D, Zysset PK. Validation of an anatomy specific finite element model of Colles’ fracture. J Biomech. 2009;42(11):1726–31.PubMedCrossRef
145.
Zurück zum Zitat MacNeil JA, Boyd SK. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone. 2008;42(6):1203–13.PubMedCrossRef MacNeil JA, Boyd SK. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone. 2008;42(6):1203–13.PubMedCrossRef
146.
Zurück zum Zitat Yosibash Z, Trabelsi N, Milgrom C. Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations. J Biomech. 2007;40(16):3688–99.PubMedCrossRef Yosibash Z, Trabelsi N, Milgrom C. Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations. J Biomech. 2007;40(16):3688–99.PubMedCrossRef
147.•
Zurück zum Zitat Zysset P, Qin L, Lang T, Khosla S, Leslie WD, Shepherd JA, et al. Clinical use of quantitative computed tomography-based finite element analysis of the hip and spine in the management of osteoporosis in adults: the 2015 ISCD Official Positions-Part II. J Clin Densitom. 2015;18(3):359–92. This position paper of the International Society for Clinical Densitometry (ISCD) provides recommendations for the clinical use of QCT-based finite element analysis in the management of osteoporosis with supporting medical evidence, rationale, controversy, and suggestions for further study.PubMedCrossRef Zysset P, Qin L, Lang T, Khosla S, Leslie WD, Shepherd JA, et al. Clinical use of quantitative computed tomography-based finite element analysis of the hip and spine in the management of osteoporosis in adults: the 2015 ISCD Official Positions-Part II. J Clin Densitom. 2015;18(3):359–92. This position paper of the International Society for Clinical Densitometry (ISCD) provides recommendations for the clinical use of QCT-based finite element analysis in the management of osteoporosis with supporting medical evidence, rationale, controversy, and suggestions for further study.PubMedCrossRef
148.
Zurück zum Zitat Keaveny TM, Kopperdahl DL, Melton 3rd LJ, Hoffmann PF, Amin S, Riggs BL, et al. Age-dependence of femoral strength in white women and men. J Bone Miner Res. 2010;25(5):994–1001.PubMed Keaveny TM, Kopperdahl DL, Melton 3rd LJ, Hoffmann PF, Amin S, Riggs BL, et al. Age-dependence of femoral strength in white women and men. J Bone Miner Res. 2010;25(5):994–1001.PubMed
149.
Zurück zum Zitat Imai K, Ohnishi I, Matsumoto T, Yamamoto S, Nakamura K. Assessment of vertebral fracture risk and therapeutic effects of alendronate in postmenopausal women using a quantitative computed tomography-based nonlinear finite element method. Osteoporos Int. 2009;20(5):801–10.PubMedCrossRef Imai K, Ohnishi I, Matsumoto T, Yamamoto S, Nakamura K. Assessment of vertebral fracture risk and therapeutic effects of alendronate in postmenopausal women using a quantitative computed tomography-based nonlinear finite element method. Osteoporos Int. 2009;20(5):801–10.PubMedCrossRef
150.
Zurück zum Zitat Wang X, Sanyal A, Cawthon PM, Palermo L, Jekir M, Christensen J, et al. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res. 2012;27(4):808–16. Wang X, Sanyal A, Cawthon PM, Palermo L, Jekir M, Christensen J, et al. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res. 2012;27(4):808–16.
151.
Zurück zum Zitat Graeff C, Marin F, Petto H, Kayser O, Reisinger A, Pena J, et al. High resolution quantitative computed tomography-based assessment of trabecular microstructure and strength estimates by finite-element analysis of the spine, but not DXA, reflects vertebral fracture status in men with glucocorticoid-induced osteoporosis. Bone. 2013;52(2):568–77.PubMedCrossRef Graeff C, Marin F, Petto H, Kayser O, Reisinger A, Pena J, et al. High resolution quantitative computed tomography-based assessment of trabecular microstructure and strength estimates by finite-element analysis of the spine, but not DXA, reflects vertebral fracture status in men with glucocorticoid-induced osteoporosis. Bone. 2013;52(2):568–77.PubMedCrossRef
152.
Zurück zum Zitat Keyak JH, Sigurdsson S, Karlsdottir G, Oskarsdottir D, Sigmarsdottir A, Zhao S, et al. Male-female differences in the association between incident hip fracture and proximal femoral strength: a finite element analysis study. Bone. 2011;48(6):1239–45.PubMedPubMedCentralCrossRef Keyak JH, Sigurdsson S, Karlsdottir G, Oskarsdottir D, Sigmarsdottir A, Zhao S, et al. Male-female differences in the association between incident hip fracture and proximal femoral strength: a finite element analysis study. Bone. 2011;48(6):1239–45.PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat Kopperdahl DL, Aspelund T, Hoffmann PF, Sigurdsson S, Siggeirsdottir K, Harris TB, et al. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res. 2014;29(3):570–80.PubMedPubMedCentralCrossRef Kopperdahl DL, Aspelund T, Hoffmann PF, Sigurdsson S, Siggeirsdottir K, Harris TB, et al. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res. 2014;29(3):570–80.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Langton CM, Pisharody S, Keyak JH. Comparison of 3D finite element analysis derived stiffness and BMD to determine the failure load of the excised proximal femur. Med Eng Phys. 2009;31(6):668–72.PubMedCrossRef Langton CM, Pisharody S, Keyak JH. Comparison of 3D finite element analysis derived stiffness and BMD to determine the failure load of the excised proximal femur. Med Eng Phys. 2009;31(6):668–72.PubMedCrossRef
155.
Zurück zum Zitat Luo Y, Ferdous Z, Leslie WD. Precision study of DXA-based patient-specific finite element modeling for assessing hip fracture risk. Int J Numer Method Biomed Eng. 2013;29(5):615–29.PubMedCrossRef Luo Y, Ferdous Z, Leslie WD. Precision study of DXA-based patient-specific finite element modeling for assessing hip fracture risk. Int J Numer Method Biomed Eng. 2013;29(5):615–29.PubMedCrossRef
156.
Zurück zum Zitat Yang L, Peel N, Clowes JA, McCloskey EV, Eastell R. Use of DXA-based structural engineering models of the proximal femur to discriminate hip fracture. J Bone Miner Res. 2009;24(1):33–42.PubMedPubMedCentralCrossRef Yang L, Peel N, Clowes JA, McCloskey EV, Eastell R. Use of DXA-based structural engineering models of the proximal femur to discriminate hip fracture. J Bone Miner Res. 2009;24(1):33–42.PubMedPubMedCentralCrossRef
157.
Zurück zum Zitat MacNeil JA, Adachi JD, Goltzman D, Josse RG, Kovacs CS, Prior JC, et al. Predicting fracture using 2D finite element modelling. Med Eng Phys. 2012;34(4):478–84.PubMedCrossRef MacNeil JA, Adachi JD, Goltzman D, Josse RG, Kovacs CS, Prior JC, et al. Predicting fracture using 2D finite element modelling. Med Eng Phys. 2012;34(4):478–84.PubMedCrossRef
158.
Zurück zum Zitat Danielson ME, Beck TJ, Karlamangla AS, Greendale GA, Atkinson EJ, Lian Y, et al. A comparison of DXA and CT based methods for estimating the strength of the femoral neck in post-menopausal women. Osteoporos Int. 2013;24(4):1379–88.PubMedCrossRef Danielson ME, Beck TJ, Karlamangla AS, Greendale GA, Atkinson EJ, Lian Y, et al. A comparison of DXA and CT based methods for estimating the strength of the femoral neck in post-menopausal women. Osteoporos Int. 2013;24(4):1379–88.PubMedCrossRef
159.
Zurück zum Zitat Thevenot J, Koivumaki J, Kuhn V, Eckstein F, Jamsa T. A novel methodology for generating 3D finite element models of the hip from 2D radiographs. J Biomech. 2014;47(2):438–44.PubMedCrossRef Thevenot J, Koivumaki J, Kuhn V, Eckstein F, Jamsa T. A novel methodology for generating 3D finite element models of the hip from 2D radiographs. J Biomech. 2014;47(2):438–44.PubMedCrossRef
Metadaten
Titel
Finite Element-Based Mechanical Assessment of Bone Quality on the Basis of In Vivo Images
verfasst von
Dieter H. Pahr
Philippe K. Zysset
Publikationsdatum
06.10.2016
Verlag
Springer US
Erschienen in
Current Osteoporosis Reports / Ausgabe 6/2016
Print ISSN: 1544-1873
Elektronische ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-016-0335-y

Weitere Artikel der Ausgabe 6/2016

Current Osteoporosis Reports 6/2016 Zur Ausgabe

Craniofacial Skeleton (G Roberts, Section Editor)

Bone Response of Loaded Periodontal Ligament

Regenerative Biology and Medicine in Osteoporosis (T Webster, Section Editor)

In Situ Sensor Advancements for Osteoporosis Prevention, Diagnosis, and Treatment

Bone and Diabetes (A Schwartz and P Vestergaard, Section Editors)

Advanced Glycation End Products, Diabetes, and Bone Strength

Bone and Joint Pain (J McDougall and S Bain, Section Editors)

Emerging Targets for the Management of Osteoarthritis Pain

Bone and Diabetes (A Schwartz and P Vestergaard, Section Editors)

Diabetes and Bone Marrow Adiposity

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Arthroskopie kann Knieprothese nicht hinauszögern

25.04.2024 Gonarthrose Nachrichten

Ein arthroskopischer Eingriff bei Kniearthrose macht im Hinblick darauf, ob und wann ein Gelenkersatz fällig wird, offenbar keinen Unterschied.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.