Skip to main content
Erschienen in: Journal of the Association for Research in Otolaryngology 5/2017

18.07.2017 | Research Article

Fluid-Structure Finite-Element Modelling and Clinical Measurement of the Wideband Acoustic Input Admittance of the Newborn Ear Canal and Middle Ear

verfasst von: Hamid Motallebzadeh, Nima Maftoon, Jacob Pitaro, W. Robert J. Funnell, Sam J. Daniel

Erschienen in: Journal of the Association for Research in Otolaryngology | Ausgabe 5/2017

Einloggen, um Zugang zu erhalten

Abstract

The anatomical differences between the newborn ear and the adult one result in different input admittance responses in newborns than those in adults. Taking into account fluid-structure interactions, we have developed a finite-element model to investigate the wideband admittance responses of the ear canal and middle ear in newborns for frequencies up to 10 kHz. We have also performed admittance measurements on a group of 23 infants with ages between 14 and 28 days, for frequencies from 250 to 8000 Hz with 1/12-octave resolution. Sensitivity analyses of the model were performed to investigate the contributions of the ear canal and middle ear to the overall admittance responses, as well as the effects of the material parameters, measurement location and geometrical variability. The model was validated by comparison with our new data and with data from the literature. The model provides a quantitative understanding of the canal and middle-ear resonances around 500 and 1800 Hz, respectively, and also predicts the effects of the first resonance mode of the middle-ear cavity (around 6 kHz) as well as the first and second standing-wave modes in the ear canal (around 7.2 and 9.6 kHz, respectively), which may explain features seen in our high-frequency-resolution clinical measurements.
Literatur
Zurück zum Zitat Abdala C, Keefe DH (2012) Morphological and functional ear development, Hum Audit Dev (Springer), pp 19–59 Abdala C, Keefe DH (2012) Morphological and functional ear development, Hum Audit Dev (Springer), pp 19–59
Zurück zum Zitat Anson BJ, Donaldson JA (1992) Surgical anatomy of the temporal bone and ear, 4th edn. Saunders Philadelphia, New York Anson BJ, Donaldson JA (1992) Surgical anatomy of the temporal bone and ear, 4th edn. Saunders Philadelphia, New York
Zurück zum Zitat Bergevin C, Olson ES (2014) External and middle ear sound pressure distribution and acoustic coupling to the tympanic membrane. J Acoust Soc Am 135:1294–1312CrossRefPubMedPubMedCentral Bergevin C, Olson ES (2014) External and middle ear sound pressure distribution and acoustic coupling to the tympanic membrane. J Acoust Soc Am 135:1294–1312CrossRefPubMedPubMedCentral
Zurück zum Zitat Charlebois M, Motallebzadeh H, Funnell WRJ (2013) Visco-hyperelastic law for finite deformations: a frequency analysis. Biomech Model Mechanobiol 12:705–715CrossRefPubMed Charlebois M, Motallebzadeh H, Funnell WRJ (2013) Visco-hyperelastic law for finite deformations: a frequency analysis. Biomech Model Mechanobiol 12:705–715CrossRefPubMed
Zurück zum Zitat Cinamon U (2009) The growth rate and size of the mastoid air cell system and mastoid bone: a review and reference. Eur Arch Otorhinolaryngol 266:781–786CrossRefPubMed Cinamon U (2009) The growth rate and size of the mastoid air cell system and mastoid bone: a review and reference. Eur Arch Otorhinolaryngol 266:781–786CrossRefPubMed
Zurück zum Zitat Day J, Funnell WRJ (1990) An approach to finite-element modelling of the structural-acoustic interaction between the ear canal and eardrum. Proc 16th Can Med Biol Eng Conf Winnipeg. pp. 155-156 Day J, Funnell WRJ (1990) An approach to finite-element modelling of the structural-acoustic interaction between the ear canal and eardrum. Proc 16th Can Med Biol Eng Conf Winnipeg. pp. 155-156
Zurück zum Zitat Decraemer WF, Khanna, SM (2004) Measurement, visualization and quantitative analysis of complete three-dimensional kinematical data sets of human and cat middle ear. In: Middle Ear Mechanics in Research and Otology. World Scientific, Singapore, pp. 3-10 Decraemer WF, Khanna, SM (2004) Measurement, visualization and quantitative analysis of complete three-dimensional kinematical data sets of human and cat middle ear. In: Middle Ear Mechanics in Research and Otology. World Scientific, Singapore, pp. 3-10
Zurück zum Zitat Feldman AS (1974) Eardrum abnormality and the measurement of middle ear function. Arch Otolaryngol 99:211–217CrossRefPubMed Feldman AS (1974) Eardrum abnormality and the measurement of middle ear function. Arch Otolaryngol 99:211–217CrossRefPubMed
Zurück zum Zitat Funnell WRJ, Laszlo CA (1978) Modeling of the cat eardrum as a thin shell using the finite-element method. J Acoust Soc Am 63:1461–1467CrossRefPubMed Funnell WRJ, Laszlo CA (1978) Modeling of the cat eardrum as a thin shell using the finite-element method. J Acoust Soc Am 63:1461–1467CrossRefPubMed
Zurück zum Zitat Gan RZ, Feng B, Sun Q (2004) Three-dimensional finite element modeling of human ear for sound transmission. Ann Biomed Eng 32:847–859CrossRefPubMed Gan RZ, Feng B, Sun Q (2004) Three-dimensional finite element modeling of human ear for sound transmission. Ann Biomed Eng 32:847–859CrossRefPubMed
Zurück zum Zitat Gan RZ, Sun Q, Feng B, Wood MW (2006) Acoustic–structural coupled finite element analysis for sound transmission in human ear—pressure distributions. Med Eng Phys 28:395–404CrossRefPubMed Gan RZ, Sun Q, Feng B, Wood MW (2006) Acoustic–structural coupled finite element analysis for sound transmission in human ear—pressure distributions. Med Eng Phys 28:395–404CrossRefPubMed
Zurück zum Zitat Gan RZ, Reeves BP, Wang X (2007) Modeling of sound transmission from ear canal to cochlea. Ann Biomed Eng 35:2180–2195CrossRefPubMed Gan RZ, Reeves BP, Wang X (2007) Modeling of sound transmission from ear canal to cochlea. Ann Biomed Eng 35:2180–2195CrossRefPubMed
Zurück zum Zitat Gan RZ, Cheng T, Dai C, Yang F, Wood MW (2009) Finite element modeling of sound transmission with perforations of tympanic membrane. J Acoust Soc Am 126:243–253CrossRefPubMedPubMedCentral Gan RZ, Cheng T, Dai C, Yang F, Wood MW (2009) Finite element modeling of sound transmission with perforations of tympanic membrane. J Acoust Soc Am 126:243–253CrossRefPubMedPubMedCentral
Zurück zum Zitat Gilman S, Dirks DD (1986) Acoustics of ear canal measurement of eardrum SPL in simulators. J Acoust Soc Am 80:783–793CrossRefPubMed Gilman S, Dirks DD (1986) Acoustics of ear canal measurement of eardrum SPL in simulators. J Acoust Soc Am 80:783–793CrossRefPubMed
Zurück zum Zitat Holte L, Cavanaugh RM, Margolis RH (1990) Ear canal wall mobility and tympanometric shape in young infants. J Pediatr 117:77–80CrossRefPubMed Holte L, Cavanaugh RM, Margolis RH (1990) Ear canal wall mobility and tympanometric shape in young infants. J Pediatr 117:77–80CrossRefPubMed
Zurück zum Zitat Holte L, Margolis RH, Cavanaugh RM Jr (1991) Developmental changes in multifrequency tympanograms. Audiology 30:1–24CrossRefPubMed Holte L, Margolis RH, Cavanaugh RM Jr (1991) Developmental changes in multifrequency tympanograms. Audiology 30:1–24CrossRefPubMed
Zurück zum Zitat Ihrle S, Lauxmann M, Eiber A, Eberhard P (2013) Nonlinear modelling of the middle ear as an elastic multibody system—applying model order reduction to acousto-structural coupled systems. J Comput Appl Math 246:18–26CrossRef Ihrle S, Lauxmann M, Eiber A, Eberhard P (2013) Nonlinear modelling of the middle ear as an elastic multibody system—applying model order reduction to acousto-structural coupled systems. J Comput Appl Math 246:18–26CrossRef
Zurück zum Zitat Keefe DH, Levi E (1996) Maturation of the middle and external ears: acoustic power-based responses and reflectance tympanometry. Ear Hear 17:361–373CrossRefPubMed Keefe DH, Levi E (1996) Maturation of the middle and external ears: acoustic power-based responses and reflectance tympanometry. Ear Hear 17:361–373CrossRefPubMed
Zurück zum Zitat Keefe DH, Bulen JC, Arehart KH, Burns EM (1993) Ear-canal impedance and reflection coefficient in human infants and adults. J Acoust Soc Am 94:2617–2638CrossRefPubMed Keefe DH, Bulen JC, Arehart KH, Burns EM (1993) Ear-canal impedance and reflection coefficient in human infants and adults. J Acoust Soc Am 94:2617–2638CrossRefPubMed
Zurück zum Zitat Khaleghi M, Puria S (2017) Attenuating the ear canal feedback pressure of a laser-driven hearing aid. J Acoust Soc Am 141:1683-1693 Khaleghi M, Puria S (2017) Attenuating the ear canal feedback pressure of a laser-driven hearing aid. J Acoust Soc Am 141:1683-1693
Zurück zum Zitat Kuypers LC, Decraemer WF, Dirckx JJ (2006) Thickness distribution of fresh and preserved human eardrums measured with confocal microscopy. Otol Neurotol 27:256–264CrossRefPubMed Kuypers LC, Decraemer WF, Dirckx JJ (2006) Thickness distribution of fresh and preserved human eardrums measured with confocal microscopy. Otol Neurotol 27:256–264CrossRefPubMed
Zurück zum Zitat Lee C-F, Chen P-R, Lee W-J, Chou Y-F, Chen J-H, Liu T-C (2010) Computer aided modeling of human mastoid cavity biomechanics using finite element analysis. EURASIP J Adv Signal Proc 2010:6 Lee C-F, Chen P-R, Lee W-J, Chou Y-F, Chen J-H, Liu T-C (2010) Computer aided modeling of human mastoid cavity biomechanics using finite element analysis. EURASIP J Adv Signal Proc 2010:6
Zurück zum Zitat Liu Y-W, Sanford CA, Ellison JC, Fitzpatrick DF, Gorga MP, Keefe DH (2008) Wideband absorbance tympanometry using pressure sweeps: system development and results on adults with normal hearing. J Acoust Soc Am 124:3708–3719CrossRefPubMedPubMedCentral Liu Y-W, Sanford CA, Ellison JC, Fitzpatrick DF, Gorga MP, Keefe DH (2008) Wideband absorbance tympanometry using pressure sweeps: system development and results on adults with normal hearing. J Acoust Soc Am 124:3708–3719CrossRefPubMedPubMedCentral
Zurück zum Zitat Maftoon N, Funnell WRJ, Daniel SJ, Decraemer WF (2015) Finite-element modelling of the response of the gerbil middle ear to sound. J Assoc Res Otolaryngol 16:547–567CrossRefPubMedPubMedCentral Maftoon N, Funnell WRJ, Daniel SJ, Decraemer WF (2015) Finite-element modelling of the response of the gerbil middle ear to sound. J Assoc Res Otolaryngol 16:547–567CrossRefPubMedPubMedCentral
Zurück zum Zitat McLellan MS, Webb CH (1950) Ear studies in the newborn infant. J Pediatr 51:672–677CrossRef McLellan MS, Webb CH (1950) Ear studies in the newborn infant. J Pediatr 51:672–677CrossRef
Zurück zum Zitat Merchant GR, Horton NJ, Voss SE (2010) Normative reflectance and transmittance measurements on healthy newborn and 1-month-old infants. Ear Hear 31:746–754CrossRefPubMed Merchant GR, Horton NJ, Voss SE (2010) Normative reflectance and transmittance measurements on healthy newborn and 1-month-old infants. Ear Hear 31:746–754CrossRefPubMed
Zurück zum Zitat Motallebzadeh H, Gariepy B, Maftoon N, Funnell WRJ, Daniel SJ (2013a) Finite-element modelling of the newborn ear canal and middle ear. Proc Meet Acoust (Acoust Soc Am) 19:030101CrossRef Motallebzadeh H, Gariepy B, Maftoon N, Funnell WRJ, Daniel SJ (2013a) Finite-element modelling of the newborn ear canal and middle ear. Proc Meet Acoust (Acoust Soc Am) 19:030101CrossRef
Zurück zum Zitat Motallebzadeh H, Charlebois M, Funnell WRJ (2013b) A non-linear viscoelastic model for the tympanic membrane. J Acoust Soc Am 134:4427–4434CrossRefPubMed Motallebzadeh H, Charlebois M, Funnell WRJ (2013b) A non-linear viscoelastic model for the tympanic membrane. J Acoust Soc Am 134:4427–4434CrossRefPubMed
Zurück zum Zitat Motallebzadeh H, Maftoon N, Pitaro J, Funnell WRJ, Daniel SJ (2017) Finite-element modelling of the acoustic input admittance of the newborn ear canal and middle ear. J Assoc Res Otolaryngol 18:25–48CrossRefPubMed Motallebzadeh H, Maftoon N, Pitaro J, Funnell WRJ, Daniel SJ (2017) Finite-element modelling of the acoustic input admittance of the newborn ear canal and middle ear. J Assoc Res Otolaryngol 18:25–48CrossRefPubMed
Zurück zum Zitat Nakajima HH, Ravicz ME, Rosowski JJ, Peake WT, Merchant SN (2005) Experimental and clinical studies of malleus fixation. Laryngoscope 115:147–154CrossRefPubMed Nakajima HH, Ravicz ME, Rosowski JJ, Peake WT, Merchant SN (2005) Experimental and clinical studies of malleus fixation. Laryngoscope 115:147–154CrossRefPubMed
Zurück zum Zitat Paradise JL, Smith CG, Bluestone CD (1976) Tympanometric detection of middle ear effusion in infants and young children. Pediatrics 58:198–210PubMed Paradise JL, Smith CG, Bluestone CD (1976) Tympanometric detection of middle ear effusion in infants and young children. Pediatrics 58:198–210PubMed
Zurück zum Zitat Pitaro J, Al Masaoudi L, Motallebzadeh H, Funnell WRJ, Daniel SJ (2016) Wideband reflectance measurements in newborns: relationship to otoscopic findings. Int J Pediatr Otorhinolaryngol 86:156–160CrossRefPubMed Pitaro J, Al Masaoudi L, Motallebzadeh H, Funnell WRJ, Daniel SJ (2016) Wideband reflectance measurements in newborns: relationship to otoscopic findings. Int J Pediatr Otorhinolaryngol 86:156–160CrossRefPubMed
Zurück zum Zitat Qi L, Funnell WRJ, Daniel SJ (2008) A nonlinear finite-element model of the newborn middle ear. J Acoust Soc Am 124:337CrossRefPubMed Qi L, Funnell WRJ, Daniel SJ (2008) A nonlinear finite-element model of the newborn middle ear. J Acoust Soc Am 124:337CrossRefPubMed
Zurück zum Zitat Rabbitt RD (1988) High-frequency plane waves in the ear canal: application of a simple asymptotic theory. J Acoust Soc Am 84:2070–2080CrossRefPubMed Rabbitt RD (1988) High-frequency plane waves in the ear canal: application of a simple asymptotic theory. J Acoust Soc Am 84:2070–2080CrossRefPubMed
Zurück zum Zitat Ruah CB, Schachern PA, Zelterman D, Paparella MM, Yoon TH (1991) Age-related morphologic changes in the human tympanic membrane. A light and electron microscopic study. Arch Otolaryngol Head Neck Surg 117:627–634CrossRefPubMed Ruah CB, Schachern PA, Zelterman D, Paparella MM, Yoon TH (1991) Age-related morphologic changes in the human tympanic membrane. A light and electron microscopic study. Arch Otolaryngol Head Neck Surg 117:627–634CrossRefPubMed
Zurück zum Zitat Sanford CA, Feeney MP (2008) Effects of maturation on tympanometric wideband acoustic transfer functions in human infants. J Acoust Soc Am 124:2106–2122CrossRefPubMedPubMedCentral Sanford CA, Feeney MP (2008) Effects of maturation on tympanometric wideband acoustic transfer functions in human infants. J Acoust Soc Am 124:2106–2122CrossRefPubMedPubMedCentral
Zurück zum Zitat Shahnaz N, Polka L (1997) Standard and multifrequency tympanometry in normal and otosclerotic ears. Ear Hear 18:326–341CrossRefPubMed Shahnaz N, Polka L (1997) Standard and multifrequency tympanometry in normal and otosclerotic ears. Ear Hear 18:326–341CrossRefPubMed
Zurück zum Zitat Shanks JE, Lilly DJ (1981) An evaluation of tympanometric estimates of ear canal volume. J Speech Hear Res 24:557CrossRefPubMed Shanks JE, Lilly DJ (1981) An evaluation of tympanometric estimates of ear canal volume. J Speech Hear Res 24:557CrossRefPubMed
Zurück zum Zitat Stepp CE, Voss SE (2005) Acoustics of the human middle-ear air space. J Acoust Soc Am 118:861–871CrossRefPubMed Stepp CE, Voss SE (2005) Acoustics of the human middle-ear air space. J Acoust Soc Am 118:861–871CrossRefPubMed
Zurück zum Zitat Stinson MR (1985a) The spatial distribution of sound pressure within scaled replicas of the human ear canal. J Acoust Soc Am 78:1596–1602CrossRefPubMed Stinson MR (1985a) The spatial distribution of sound pressure within scaled replicas of the human ear canal. J Acoust Soc Am 78:1596–1602CrossRefPubMed
Zurück zum Zitat Stinson MR (1985b) Spatial variation of phase in ducts and the measurement of acoustic energy reflection coefficients. J Acoust Soc Am 77:386–393CrossRef Stinson MR (1985b) Spatial variation of phase in ducts and the measurement of acoustic energy reflection coefficients. J Acoust Soc Am 77:386–393CrossRef
Zurück zum Zitat Stinson MR, Khanna SM (1989) Sound propagation in the ear canal and coupling to the eardrum, with measurements on model systems. J Acoust Soc Am 85:2481–2491CrossRefPubMed Stinson MR, Khanna SM (1989) Sound propagation in the ear canal and coupling to the eardrum, with measurements on model systems. J Acoust Soc Am 85:2481–2491CrossRefPubMed
Zurück zum Zitat Stinson MR, Shaw EAG, Lawton BW (1982) Estimation of acoustical energy reflectance at the eardrum from measurements of pressure distribution in the human ear canal. J Acoust Soc Am 72:766–773CrossRefPubMed Stinson MR, Shaw EAG, Lawton BW (1982) Estimation of acoustical energy reflectance at the eardrum from measurements of pressure distribution in the human ear canal. J Acoust Soc Am 72:766–773CrossRefPubMed
Zurück zum Zitat Volandri G, Carmignani C, Di Puccio F, Forte P (2014) Finite element formulations applied to outer ear modeling. Stroj Vestn-J Mech Eng 60:363–372CrossRef Volandri G, Carmignani C, Di Puccio F, Forte P (2014) Finite element formulations applied to outer ear modeling. Stroj Vestn-J Mech Eng 60:363–372CrossRef
Zurück zum Zitat Voss SE, Allen JB (1994) Measurement of acoustic impedance and reflectance in the human ear canal. J Acoust Soc Am 95:372–384CrossRefPubMed Voss SE, Allen JB (1994) Measurement of acoustic impedance and reflectance in the human ear canal. J Acoust Soc Am 95:372–384CrossRefPubMed
Zurück zum Zitat Wang X, Keefe DH, Gan RZ (2016) Predictions of middle-ear and passive cochlear mechanics using a finite element model of the pediatric ear. J Acoust Soc Am 139:1735–1746CrossRefPubMedPubMedCentral Wang X, Keefe DH, Gan RZ (2016) Predictions of middle-ear and passive cochlear mechanics using a finite element model of the pediatric ear. J Acoust Soc Am 139:1735–1746CrossRefPubMedPubMedCentral
Zurück zum Zitat Willi UB, Ferrazzini MA, Huber AM (2002) The incudo-malleolar joint and sound transmission losses. Hear Res 174:32–44CrossRefPubMed Willi UB, Ferrazzini MA, Huber AM (2002) The incudo-malleolar joint and sound transmission losses. Hear Res 174:32–44CrossRefPubMed
Metadaten
Titel
Fluid-Structure Finite-Element Modelling and Clinical Measurement of the Wideband Acoustic Input Admittance of the Newborn Ear Canal and Middle Ear
verfasst von
Hamid Motallebzadeh
Nima Maftoon
Jacob Pitaro
W. Robert J. Funnell
Sam J. Daniel
Publikationsdatum
18.07.2017
Verlag
Springer US
Erschienen in
Journal of the Association for Research in Otolaryngology / Ausgabe 5/2017
Print ISSN: 1525-3961
Elektronische ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-017-0630-z

Weitere Artikel der Ausgabe 5/2017

Journal of the Association for Research in Otolaryngology 5/2017 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.