Skip to main content
Erschienen in: Strahlentherapie und Onkologie 5/2017

02.03.2017 | Original Article

Framework for radiation pneumonitis risk stratification based on anatomic and perfused lung dosimetry

verfasst von: Gurleen Dhami, MD, Jing Zeng, MD, Hubert J. Vesselle, PhD MD, Paul E. Kinahan, PhD, Robert S. Miyaoka, PhD, Shilpen A. Patel, MD, Ramesh Rengan, MD PhD, Stephen R. Bowen, PhD

Erschienen in: Strahlentherapie und Onkologie | Ausgabe 5/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To design and apply a framework for predicting symptomatic radiation pneumonitis in patients undergoing thoracic radiation, using both pretreatment anatomic and perfused lung dose–volume parameters.

Materials and methods

Radiation treatment planning CT scans were coregistered with pretreatment [99mTc]MAA perfusion SPECT/CT scans of 20 patients who underwent definitive thoracic radiation. Clinical radiation pneumonitis was defined as grade ≥ 2 (CTCAE v4 grading system). Anatomic lung dose–volume parameters were collected from the treatment planning scans. Perfusion dose–volume parameters were calculated from pretreatment SPECT/CT scans. Equivalent doses in 2 Gy per fraction were calculated in the lung to account for differences in treatment regimens and spatial variations in lung dose (EQD2lung).

Results

Anatomic lung dosimetric parameters (MLD) and functional lung dosimetric parameters (pMLD70%) were identified as candidate predictors of grade ≥ 2 radiation pneumonitis (AUC > 0.93, p < 0.01). Pairing of an anatomic and functional dosimetric parameter (e. g., MLD and pMLD70%) may further improve prediction accuracy. Not all individuals with high anatomic lung dose (MLD > 13.6 GyEQD2lung, 19.3 Gy for patients receiving 60 Gy in 30 fractions) developed radiation pneumonitis, but all individuals who also had high mean dose to perfused lung (pMLD70% > 13.3 GyEQD2) developed radiation pneumonitis.

Conclusions

The preliminary application of this framework revealed differences between anatomic and perfused lung dosimetry in this limited patient cohort. The addition of perfused lung parameters may help risk stratify patients for radiation pneumonitis, especially in treatment plans with high anatomic mean lung dose. Further investigations are warranted.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Mehta V (2005) Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: pulmonary function, prediction, and prevention. Int J Radiat Oncol Biol Phys 63:5–24CrossRefPubMed Mehta V (2005) Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: pulmonary function, prediction, and prevention. Int J Radiat Oncol Biol Phys 63:5–24CrossRefPubMed
2.
Zurück zum Zitat Palma DA, Senan S, Tsujino K et al (2013) Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis. Int J Radiat Oncol Biol Phys 85:444–450CrossRefPubMed Palma DA, Senan S, Tsujino K et al (2013) Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis. Int J Radiat Oncol Biol Phys 85:444–450CrossRefPubMed
4.
Zurück zum Zitat Graham MV, Purdy JA, Emami B et al (1999) Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 45:323–329CrossRefPubMed Graham MV, Purdy JA, Emami B et al (1999) Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 45:323–329CrossRefPubMed
5.
Zurück zum Zitat Barriger RB, Fakiris AJ, Hanna N, Yu M, Mantravadi P, McGarry RC (2010) Dose-volume analysis of radiation pneumonitis in non-small-cell lung cancer patients treated with concurrent cisplatinum and etoposide with or without consolidation docetaxel. Int J Radiat Oncol Biol Phys 78:1381–1386CrossRefPubMed Barriger RB, Fakiris AJ, Hanna N, Yu M, Mantravadi P, McGarry RC (2010) Dose-volume analysis of radiation pneumonitis in non-small-cell lung cancer patients treated with concurrent cisplatinum and etoposide with or without consolidation docetaxel. Int J Radiat Oncol Biol Phys 78:1381–1386CrossRefPubMed
6.
Zurück zum Zitat Marks LB, Spencer DP, Sherouse GW et al (1995) The role of three dimensional functional lung imaging in radiation treatment planning: the functional dose-volume histogram. Int J Radiat Oncol Biol Phys 33:65–75CrossRefPubMed Marks LB, Spencer DP, Sherouse GW et al (1995) The role of three dimensional functional lung imaging in radiation treatment planning: the functional dose-volume histogram. Int J Radiat Oncol Biol Phys 33:65–75CrossRefPubMed
7.
Zurück zum Zitat Evans ES, Hahn CA, Kocak Z, Zhou SM, Marks LB (2007) The role of functional imaging in the diagnosis and management of late normal tissue injury. Semin Radiat Oncol 17:72–80CrossRefPubMed Evans ES, Hahn CA, Kocak Z, Zhou SM, Marks LB (2007) The role of functional imaging in the diagnosis and management of late normal tissue injury. Semin Radiat Oncol 17:72–80CrossRefPubMed
8.
Zurück zum Zitat Miften MM, Das SK, Su M, Marks LB (2004) Incorporation of functional imaging data in the evaluation of dose distributions using the generalized concept of equivalent uniform dose. Phys Med Biol 49:1711–1721CrossRefPubMed Miften MM, Das SK, Su M, Marks LB (2004) Incorporation of functional imaging data in the evaluation of dose distributions using the generalized concept of equivalent uniform dose. Phys Med Biol 49:1711–1721CrossRefPubMed
9.
Zurück zum Zitat Seppenwoolde Y, Engelsman M, De Jaeger K et al (2002) Optimizing radiation treatment plans for lung cancer using lung perfusion information. Radiother Oncol 63:165–177CrossRefPubMed Seppenwoolde Y, Engelsman M, De Jaeger K et al (2002) Optimizing radiation treatment plans for lung cancer using lung perfusion information. Radiother Oncol 63:165–177CrossRefPubMed
10.
Zurück zum Zitat Lind PA, Marks LB, Hollis D et al (2002) Receiver operating characteristic curves to assess predictors of radiation-induced symptomatic lung injury. Int J Radiat Oncol Biol Phys 54:340–347CrossRefPubMed Lind PA, Marks LB, Hollis D et al (2002) Receiver operating characteristic curves to assess predictors of radiation-induced symptomatic lung injury. Int J Radiat Oncol Biol Phys 54:340–347CrossRefPubMed
11.
Zurück zum Zitat Petersson J, Sanchez-Crespo A, Larsson SA, Mure M (1985) Physiological imaging of the lung: single-photon-emission computed tomography (SPECT). J Appl Physiol 2007(102):468–476 Petersson J, Sanchez-Crespo A, Larsson SA, Mure M (1985) Physiological imaging of the lung: single-photon-emission computed tomography (SPECT). J Appl Physiol 2007(102):468–476
12.
Zurück zum Zitat Patton JA, Turkington TG (2008) SPECT/CT physical principles and attenuation correction. J Nucl Med Technol 36:1–10CrossRefPubMed Patton JA, Turkington TG (2008) SPECT/CT physical principles and attenuation correction. J Nucl Med Technol 36:1–10CrossRefPubMed
13.
Zurück zum Zitat Bailey DL, Willowson KP (2014) Quantitative SPECT/CT: SPECT joins PET as a quantitative imaging modality. Eur J Nucl Med Mol Imaging 41(Suppl 1):S17–25CrossRefPubMed Bailey DL, Willowson KP (2014) Quantitative SPECT/CT: SPECT joins PET as a quantitative imaging modality. Eur J Nucl Med Mol Imaging 41(Suppl 1):S17–25CrossRefPubMed
14.
Zurück zum Zitat Bailey DL, Willowson KP (2013) An evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med 54:83–89CrossRefPubMed Bailey DL, Willowson KP (2013) An evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med 54:83–89CrossRefPubMed
15.
Zurück zum Zitat Mirnezami R, Nicholson J, Darzi A (2012) Preparing for precision medicine. N Engl J Med 366:489–491CrossRefPubMed Mirnezami R, Nicholson J, Darzi A (2012) Preparing for precision medicine. N Engl J Med 366:489–491CrossRefPubMed
16.
Zurück zum Zitat Farr KP, Kallehauge JF, Moller DS et al (2015) Inclusion of functional information from perfusion SPECT improves predictive value of dose-volume parameters in lung toxicity outcome after radiotherapy for non-small cell lung cancer: A prospective study. Radiother Oncol 117:9–16CrossRefPubMed Farr KP, Kallehauge JF, Moller DS et al (2015) Inclusion of functional information from perfusion SPECT improves predictive value of dose-volume parameters in lung toxicity outcome after radiotherapy for non-small cell lung cancer: A prospective study. Radiother Oncol 117:9–16CrossRefPubMed
17.
Zurück zum Zitat Farr KP, Kramer S, Khalil AA, Morsing A, Grau C (2015) Role of perfusion SPECT in prediction and measurement of pulmonary complications after radiotherapy for lung cancer. Eur J Nucl Med Mol Imaging 42:1315–1324CrossRefPubMed Farr KP, Kramer S, Khalil AA, Morsing A, Grau C (2015) Role of perfusion SPECT in prediction and measurement of pulmonary complications after radiotherapy for lung cancer. Eur J Nucl Med Mol Imaging 42:1315–1324CrossRefPubMed
18.
Zurück zum Zitat Borst GR, Ishikawa M, Nijkamp J et al (2010) Radiation pneumonitis after hypofractionated radiotherapy: evaluation of the LQ(L) model and different dose parameters. Int J Radiat Oncol Biol Phys 77:1596–1603CrossRefPubMed Borst GR, Ishikawa M, Nijkamp J et al (2010) Radiation pneumonitis after hypofractionated radiotherapy: evaluation of the LQ(L) model and different dose parameters. Int J Radiat Oncol Biol Phys 77:1596–1603CrossRefPubMed
19.
Zurück zum Zitat Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate – a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57:289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate – a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57:289–300
20.
Zurück zum Zitat Marks LB, Sherouse GW, Munley MT, Bentel GC, Spencer DP (1999) Incorporation of functional status into dose-volume analysis. Med Phys 26:196–199CrossRefPubMed Marks LB, Sherouse GW, Munley MT, Bentel GC, Spencer DP (1999) Incorporation of functional status into dose-volume analysis. Med Phys 26:196–199CrossRefPubMed
21.
Zurück zum Zitat Schytte T, Bentzen SM, Brink C, Hansen O (2015) Changes in pulmonary function after definitive radiotherapy for NSCLC. Radiother Oncol 117:23–28CrossRefPubMed Schytte T, Bentzen SM, Brink C, Hansen O (2015) Changes in pulmonary function after definitive radiotherapy for NSCLC. Radiother Oncol 117:23–28CrossRefPubMed
22.
Zurück zum Zitat Hoover DA, Reid RH, Wong E et al (2014) SPECT-based functional lung imaging for the prediction of radiation pneumonitis: a clinical and dosimetric correlation. J Med Imaging Radiat Oncol 58:214–222CrossRefPubMed Hoover DA, Reid RH, Wong E et al (2014) SPECT-based functional lung imaging for the prediction of radiation pneumonitis: a clinical and dosimetric correlation. J Med Imaging Radiat Oncol 58:214–222CrossRefPubMed
23.
Zurück zum Zitat Wang D, Sun J, Zhu J, Li X, Zhen Y, Sui S (2012) Functional dosimetric metrics for predicting radiation-induced lung injury in non-small cell lung cancer patients treated with chemoradiotherapy. Radiat Oncol 7:69CrossRefPubMedPubMedCentral Wang D, Sun J, Zhu J, Li X, Zhen Y, Sui S (2012) Functional dosimetric metrics for predicting radiation-induced lung injury in non-small cell lung cancer patients treated with chemoradiotherapy. Radiat Oncol 7:69CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Farr KP, Moller DS, Khalil AA, Kramer S, Morsing A, Grau C (2015) Loss of lung function after chemo-radiotherapy for NSCLC measured by perfusion SPECT/CT: Correlation with radiation dose and clinical morbidity. Acta Oncol 54:1350–1354CrossRefPubMed Farr KP, Moller DS, Khalil AA, Kramer S, Morsing A, Grau C (2015) Loss of lung function after chemo-radiotherapy for NSCLC measured by perfusion SPECT/CT: Correlation with radiation dose and clinical morbidity. Acta Oncol 54:1350–1354CrossRefPubMed
25.
Zurück zum Zitat Robbins ME, Brunso-Bechtold JK, Peiffer AM, Tsien CI, Bailey JE, Marks LB (2012) Imaging radiation-induced normal tissue injury. Radiat Res 177:449–466CrossRefPubMedPubMedCentral Robbins ME, Brunso-Bechtold JK, Peiffer AM, Tsien CI, Bailey JE, Marks LB (2012) Imaging radiation-induced normal tissue injury. Radiat Res 177:449–466CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Siva S, Devereux T, Ball DL et al (2016) Ga-68 MAA perfusion 4D-PET/CT scanning allows for functional lung avoidance using conformal radiation therapy planning. Technol Cancer Res Treat 15:114–121CrossRefPubMed Siva S, Devereux T, Ball DL et al (2016) Ga-68 MAA perfusion 4D-PET/CT scanning allows for functional lung avoidance using conformal radiation therapy planning. Technol Cancer Res Treat 15:114–121CrossRefPubMed
27.
Zurück zum Zitat McGuire SM, Marks LB, Yin FF, Das SK (2010) A methodology for selecting the beam arrangement to reduce the intensity-modulated radiation therapy (IMRT) dose to the SPECT-defined functioning lung. Phys Med Biol 55:403–416CrossRefPubMed McGuire SM, Marks LB, Yin FF, Das SK (2010) A methodology for selecting the beam arrangement to reduce the intensity-modulated radiation therapy (IMRT) dose to the SPECT-defined functioning lung. Phys Med Biol 55:403–416CrossRefPubMed
28.
Zurück zum Zitat St-Hilaire J, Lavoie C, Dagnault A et al (2011) Functional avoidance of lung in plan optimization with an aperture-based inverse planning system. Radiother Oncol 100:390–395CrossRefPubMed St-Hilaire J, Lavoie C, Dagnault A et al (2011) Functional avoidance of lung in plan optimization with an aperture-based inverse planning system. Radiother Oncol 100:390–395CrossRefPubMed
29.
Zurück zum Zitat Chaudhuri AA, Binkley MS, Rigdon J et al (2016) Pre-treatment non-target lung FDG-PET uptake predicts symptomatic radiation pneumonitis following Stereotactic Ablative Radiotherapy (SABR). Radiother Oncol 119:454–460CrossRefPubMed Chaudhuri AA, Binkley MS, Rigdon J et al (2016) Pre-treatment non-target lung FDG-PET uptake predicts symptomatic radiation pneumonitis following Stereotactic Ablative Radiotherapy (SABR). Radiother Oncol 119:454–460CrossRefPubMed
Metadaten
Titel
Framework for radiation pneumonitis risk stratification based on anatomic and perfused lung dosimetry
verfasst von
Gurleen Dhami, MD
Jing Zeng, MD
Hubert J. Vesselle, PhD MD
Paul E. Kinahan, PhD
Robert S. Miyaoka, PhD
Shilpen A. Patel, MD
Ramesh Rengan, MD PhD
Stephen R. Bowen, PhD
Publikationsdatum
02.03.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Strahlentherapie und Onkologie / Ausgabe 5/2017
Print ISSN: 0179-7158
Elektronische ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-017-1114-0

Weitere Artikel der Ausgabe 5/2017

Strahlentherapie und Onkologie 5/2017 Zur Ausgabe

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

CUP-Syndrom: Künstliche Intelligenz kann Primärtumor finden

30.04.2024 Künstliche Intelligenz Nachrichten

Krebserkrankungen unbekannten Ursprungs (CUP) sind eine diagnostische Herausforderung. KI-Systeme können Pathologen dabei unterstützen, zytologische Bilder zu interpretieren, um den Primärtumor zu lokalisieren.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.