Skip to main content
Erschienen in: Inflammation 5/2019

04.07.2019 | Original Article

Fraxin Alleviates LPS-Induced ARDS by Downregulating Inflammatory Responses and Oxidative Damages and Reducing Pulmonary Vascular Permeability

verfasst von: Xiaohong Ma, Xiangyong Liu, Jiali Feng, Dong Zhang, Lina Huang, Dongxiao Li, Liang Yin, Lan Li, Xiao-Zhi Wang

Erschienen in: Inflammation | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Abstract

Acute respiratory distress syndrome (ARDS) is a severe acute disease that threatens human health, and few drugs that can effectively treat this disease are available. Fraxin, one of the main active ingredients of Cortex Fraxini, a Chinese herbal medicine, has presented various pharmacological and biological activities. However, the effects of fraxin on ARDS have yet to be reported. In the present study, the protective effect of fraxin in lipopolysaccharide (LPS)-induced ARDS in a mouse model was analyzed. Results from the hematoxylin and eosin staining showed that fraxin might alleviate pathological changes in the lung tissues of mice with ARDS. ELISA and Western blot results revealed that fraxin might inhibit the production of inflammatory factors, namely, IL-6, TNF-α, and IL-1β, and the activation of NF-κB and MAPK signaling pathways in the lungs. Thus, the inflammatory responses were reduced. Fraxin might inhibit the increase in reactive oxygen species (ROS) and malondialdehyde (MDA), a product of lipid peroxidation in lung tissues. Fraxin might increase the superoxide dismutase (SOD) activity to avoid oxidative damage. Vascular permeability was also assessed through Evans blue dye tissue extravasation and fluorescein isothiocyanate–labeled albumin (FITC-albumin) leakage. Fraxin might inhibit the increase in pulmonary vascular permeability and relieve pulmonary edema. Fraxin was also related to the inhibition of the increase in matrix metalloproteinase-9, which is a glycocalyx-degrading enzyme, and the relief of damages to the endothelial glycocalyx. Thus, fraxin elicited protective effects on mice with LPS-induced ARDS and might be used as a drug to cure ARDS induced by Gram-negative bacterial infection.
Literatur
1.
Zurück zum Zitat Laffey, J.G., and B.P. Kavanagh. 2017. Fifty years of research in ARDS. Insight into acute respiratory distress syndrome. From models to patients. American Journal of Respiratory and Critical Care Medicine 196 (1): 18–28.CrossRefPubMed Laffey, J.G., and B.P. Kavanagh. 2017. Fifty years of research in ARDS. Insight into acute respiratory distress syndrome. From models to patients. American Journal of Respiratory and Critical Care Medicine 196 (1): 18–28.CrossRefPubMed
2.
Zurück zum Zitat Ferguson, N.D., E. Fan, L. Camporota, M. Antonelli, A. Anzueto, R. Beale, L. Brochard, R. Brower, A. Esteban, L. Gattinoni, A. Rhodes, A.S. Slutsky, J.L. Vincent, G.D. Rubenfeld, B.T. Thompson, and V.M. Ranieri. 2012. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Medicine 38 (10): 1573–1582.CrossRefPubMed Ferguson, N.D., E. Fan, L. Camporota, M. Antonelli, A. Anzueto, R. Beale, L. Brochard, R. Brower, A. Esteban, L. Gattinoni, A. Rhodes, A.S. Slutsky, J.L. Vincent, G.D. Rubenfeld, B.T. Thompson, and V.M. Ranieri. 2012. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Medicine 38 (10): 1573–1582.CrossRefPubMed
3.
Zurück zum Zitat Máca, J., O. Jor, M. Holub, P. Sklienka, F. Burša, M. Burda, V. Janout, and P. Ševčík. 2017. Past and present ARDS mortality rates: a systematic review. Respiratory Care 62 (1): 113–122.CrossRefPubMed Máca, J., O. Jor, M. Holub, P. Sklienka, F. Burša, M. Burda, V. Janout, and P. Ševčík. 2017. Past and present ARDS mortality rates: a systematic review. Respiratory Care 62 (1): 113–122.CrossRefPubMed
4.
Zurück zum Zitat Liu, X.Y., H.X. Xu, J.K. Li, D. Zhang, X.H. Ma, L.N. Huang, J.H. Lü, and X.Z. Wang. 2018. Neferine protects endothelial glycocalyx via mitochondrial ROS in lipopolysaccharide-induced acute respiratory distress syndrome. Frontiers in Physiology 9: 102.CrossRefPubMedPubMedCentral Liu, X.Y., H.X. Xu, J.K. Li, D. Zhang, X.H. Ma, L.N. Huang, J.H. Lü, and X.Z. Wang. 2018. Neferine protects endothelial glycocalyx via mitochondrial ROS in lipopolysaccharide-induced acute respiratory distress syndrome. Frontiers in Physiology 9: 102.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Kong, G., X. Huang, L. Wang, Y. Li, T. Sun, S. Han, W. Zhu, M. Ma, H. Xu, J. Li, X. Zhang, X. Liu, and X. Wang. 2016. Astilbin alleviates LPS-induced ARDS by suppressing MAPK signaling pathway and protecting pulmonary endothelial glycocalyx. International Immunopharmacology 36: 51–58.CrossRefPubMed Kong, G., X. Huang, L. Wang, Y. Li, T. Sun, S. Han, W. Zhu, M. Ma, H. Xu, J. Li, X. Zhang, X. Liu, and X. Wang. 2016. Astilbin alleviates LPS-induced ARDS by suppressing MAPK signaling pathway and protecting pulmonary endothelial glycocalyx. International Immunopharmacology 36: 51–58.CrossRefPubMed
6.
Zurück zum Zitat Hsu, H.T., Y.T. Tseng, Y.Y. Hsu, K.I. Cheng, S.H. Chou, and Y.C. Lo. 2015. Propofol attenuates lipopolysaccharide-induced reactive oxygen species production through activation of Nrf2/GSH and suppression of NADPH oxidase in human alveolar epithelial cells. Inflammation 38 (1): 415–423.CrossRefPubMed Hsu, H.T., Y.T. Tseng, Y.Y. Hsu, K.I. Cheng, S.H. Chou, and Y.C. Lo. 2015. Propofol attenuates lipopolysaccharide-induced reactive oxygen species production through activation of Nrf2/GSH and suppression of NADPH oxidase in human alveolar epithelial cells. Inflammation 38 (1): 415–423.CrossRefPubMed
7.
Zurück zum Zitat Lei, J., Y. Wei, P. Song, Y. Li, T. Zhang, Q. Feng, and G. Xu. 2018. Cordycepin inhibits LPS-induced acute lung injury by inhibiting inflammation and oxidative stress. European Journal of Pharmacology 818: 110–114.CrossRefPubMed Lei, J., Y. Wei, P. Song, Y. Li, T. Zhang, Q. Feng, and G. Xu. 2018. Cordycepin inhibits LPS-induced acute lung injury by inhibiting inflammation and oxidative stress. European Journal of Pharmacology 818: 110–114.CrossRefPubMed
8.
Zurück zum Zitat Yang, Y., and E.P. Schmidt. 2013. The endothelial glycocalyx: an important regulator of the pulmonary vascular barrier. Tissue Barriers 1 (1): 23494.CrossRefPubMed Yang, Y., and E.P. Schmidt. 2013. The endothelial glycocalyx: an important regulator of the pulmonary vascular barrier. Tissue Barriers 1 (1): 23494.CrossRefPubMed
9.
Zurück zum Zitat Inagawa, R., H. Okada, G. Takemura, K. Suzuki, C. Takada, H. Yano, Y. Ando, T. Usui, Y. Hotta, N. Miyazaki, A. Tsujimoto, R. Zaikokuji, A. Matsumoto, T. Kawaguchi, T. Doi, T. Yoshida, S. Yoshida, K. Kumada, H. Ushikoshi, I. Toyoda, and S. Ogura. 2018. Ultrastructural alteration of pulmonary capillary endothelial glycocalyx during endotoxemia. Chest 154 (2): 317–325.CrossRefPubMed Inagawa, R., H. Okada, G. Takemura, K. Suzuki, C. Takada, H. Yano, Y. Ando, T. Usui, Y. Hotta, N. Miyazaki, A. Tsujimoto, R. Zaikokuji, A. Matsumoto, T. Kawaguchi, T. Doi, T. Yoshida, S. Yoshida, K. Kumada, H. Ushikoshi, I. Toyoda, and S. Ogura. 2018. Ultrastructural alteration of pulmonary capillary endothelial glycocalyx during endotoxemia. Chest 154 (2): 317–325.CrossRefPubMed
11.
Zurück zum Zitat Wang, H., B. Xiao, Z. Hao, and Z. Sun. 2016. Simultaneous determination of fraxin and its metabolite, fraxetin, in rat plasma by liquid chromatography-tandem mass spectrometry and its application in a pharmacokinetic study. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 1017-1018: 70–74.CrossRefPubMed Wang, H., B. Xiao, Z. Hao, and Z. Sun. 2016. Simultaneous determination of fraxin and its metabolite, fraxetin, in rat plasma by liquid chromatography-tandem mass spectrometry and its application in a pharmacokinetic study. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 1017-1018: 70–74.CrossRefPubMed
12.
Zurück zum Zitat Chang, B.Y., Y.S. Jung, C.S. Yoon, J.S. Oh, J.H. Hong, Y.C. Kim, and S.Y. Kim. 2017. Fraxin prevents chemically induced hepatotoxicity by reducing oxidative stress. Molecules 22 (4): E587.CrossRefPubMed Chang, B.Y., Y.S. Jung, C.S. Yoon, J.S. Oh, J.H. Hong, Y.C. Kim, and S.Y. Kim. 2017. Fraxin prevents chemically induced hepatotoxicity by reducing oxidative stress. Molecules 22 (4): E587.CrossRefPubMed
13.
Zurück zum Zitat Niu, X., F. Liu, W. Li, W. Zhi, Q. Yao, J. Zhao, G. Yang, X. Wang, L. Qin, and Z. He. 2017. Hepatoprotective effect of fraxin against carbon tetrachloride-induced hepatotoxicity in vitro and in vivo through regulating hepatic antioxidant, inflammation response and the MAPK-NF-κB signaling pathway. Biomedicine & Pharmacotherapy 95: 1091–1102.CrossRef Niu, X., F. Liu, W. Li, W. Zhi, Q. Yao, J. Zhao, G. Yang, X. Wang, L. Qin, and Z. He. 2017. Hepatoprotective effect of fraxin against carbon tetrachloride-induced hepatotoxicity in vitro and in vivo through regulating hepatic antioxidant, inflammation response and the MAPK-NF-κB signaling pathway. Biomedicine & Pharmacotherapy 95: 1091–1102.CrossRef
14.
Zurück zum Zitat Whang, W.K., H.S. Park, I. Ham, M. Oh, H. Namkoong, H.K. Kim, D.W. Hwang, S.Y. Hur, T.E. Kim, Y.G. Park, J.R. Kim, and J.W. Kim. 2005. Natural compounds, fraxin and chemicals structurally related to fraxin protect cells from oxidative stress. Experimental and Molecular Medicine 37 (5): 436–446.CrossRefPubMed Whang, W.K., H.S. Park, I. Ham, M. Oh, H. Namkoong, H.K. Kim, D.W. Hwang, S.Y. Hur, T.E. Kim, Y.G. Park, J.R. Kim, and J.W. Kim. 2005. Natural compounds, fraxin and chemicals structurally related to fraxin protect cells from oxidative stress. Experimental and Molecular Medicine 37 (5): 436–446.CrossRefPubMed
15.
Zurück zum Zitat Schempp, H., D. Weiser, and E.F. Elstner. 2000. Biochemical model reactions indicative of inflammatory processes. Activities of extracts from Fraxinus excelsior and Populus tremula. Arzneimittel-Forschung/Drug Research 50 (4): 362–372.PubMed Schempp, H., D. Weiser, and E.F. Elstner. 2000. Biochemical model reactions indicative of inflammatory processes. Activities of extracts from Fraxinus excelsior and Populus tremula. Arzneimittel-Forschung/Drug Research 50 (4): 362–372.PubMed
16.
Zurück zum Zitat Song, L., Z. Han, H. Cheng, J. Huan, L. Chen, J. Meng, X. Chen, and L. Xie. 2018. Therapeutic effects of different doses of methylprednisolone on smoke inhalation-induced acute lung injury in rats. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 30 (8): 754–759. Song, L., Z. Han, H. Cheng, J. Huan, L. Chen, J. Meng, X. Chen, and L. Xie. 2018. Therapeutic effects of different doses of methylprednisolone on smoke inhalation-induced acute lung injury in rats. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 30 (8): 754–759.
17.
Zurück zum Zitat Wang, L., X. Huang, G. Kong, H. Xu, J. Li, D. Hao, T. Wang, S. Han, C. Han, Y. Sun, X. Liu, and X. Wang. 2016. Ulinastatin attenuates pulmonary endothelial glycocalyx damage and inhibits endothelial heparanase activity in LPS-induced ARDS. Biochemical and Biophysical Research Communications 478 (2): 669–675.CrossRefPubMed Wang, L., X. Huang, G. Kong, H. Xu, J. Li, D. Hao, T. Wang, S. Han, C. Han, Y. Sun, X. Liu, and X. Wang. 2016. Ulinastatin attenuates pulmonary endothelial glycocalyx damage and inhibits endothelial heparanase activity in LPS-induced ARDS. Biochemical and Biophysical Research Communications 478 (2): 669–675.CrossRefPubMed
18.
Zurück zum Zitat Wang, C., L. Zeng, T. Zhang, J. Liu, and W. Wang. 2016. Casticin inhibits lipopolysaccharide-induced acute lung injury in mice. European Journal of Pharmacology 789: 172–178.CrossRefPubMed Wang, C., L. Zeng, T. Zhang, J. Liu, and W. Wang. 2016. Casticin inhibits lipopolysaccharide-induced acute lung injury in mice. European Journal of Pharmacology 789: 172–178.CrossRefPubMed
19.
Zurück zum Zitat Zhang, Z., Z. Luo, A. Bi, W. Yang, W. An, X. Dong, R. Chen, S. Yang, H. Tang, X. Han, and L. Luo. 2017. Compound edaravone alleviates lipopolysaccharide (LPS)-induced acute lung injury in mice. European Journal of Pharmacology 811: 1–11.CrossRefPubMed Zhang, Z., Z. Luo, A. Bi, W. Yang, W. An, X. Dong, R. Chen, S. Yang, H. Tang, X. Han, and L. Luo. 2017. Compound edaravone alleviates lipopolysaccharide (LPS)-induced acute lung injury in mice. European Journal of Pharmacology 811: 1–11.CrossRefPubMed
20.
Zurück zum Zitat Lincoln, K.M., P. Gonzalez, T.E. Richardson, D.A. Julovich, R. Saunders, J.W. Simpkins, and K.N. Green. 2013. A potent antioxidant small molecule aimed at targeting metal-based oxidative stress in neurodegenerative disorders. Chemical Communications 49 (26): 2712–2714.CrossRefPubMed Lincoln, K.M., P. Gonzalez, T.E. Richardson, D.A. Julovich, R. Saunders, J.W. Simpkins, and K.N. Green. 2013. A potent antioxidant small molecule aimed at targeting metal-based oxidative stress in neurodegenerative disorders. Chemical Communications 49 (26): 2712–2714.CrossRefPubMed
21.
Zurück zum Zitat Beatty, P.R., H. Puerta-Guardo, S.S. Killingbeck, D.R. Glasner, K. Hopkins, and E. Harris. 2015. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Science Translational Medicine 7 (304): 304ra141.CrossRefPubMed Beatty, P.R., H. Puerta-Guardo, S.S. Killingbeck, D.R. Glasner, K. Hopkins, and E. Harris. 2015. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Science Translational Medicine 7 (304): 304ra141.CrossRefPubMed
22.
Zurück zum Zitat Aimbire, F., A.P. Ligeiro de Oliveira, R. Albertini, J.C. Corrêa, C.B. Ladeira de Campos, J.P. Lyon, J.A.Jr. Silva, and M.S. Costa. 2008. Low level laser therapy (LLLT) decreases pulmonary microvascular leakage, neutrophil influx and IL-1beta levels in airway and lung from rat subjected to LPS-induced inflammation. Inflammation 31 (3): 189–197.CrossRefPubMed Aimbire, F., A.P. Ligeiro de Oliveira, R. Albertini, J.C. Corrêa, C.B. Ladeira de Campos, J.P. Lyon, J.A.Jr. Silva, and M.S. Costa. 2008. Low level laser therapy (LLLT) decreases pulmonary microvascular leakage, neutrophil influx and IL-1beta levels in airway and lung from rat subjected to LPS-induced inflammation. Inflammation 31 (3): 189–197.CrossRefPubMed
23.
Zurück zum Zitat Esiobu, P., and E.W. Childs. 2018. A rat model of hemorrhagic shock for studying vascular hyperpermeability. Methods in Molecular Biology 1717: 53–60.CrossRefPubMed Esiobu, P., and E.W. Childs. 2018. A rat model of hemorrhagic shock for studying vascular hyperpermeability. Methods in Molecular Biology 1717: 53–60.CrossRefPubMed
24.
Zurück zum Zitat Bhargava, R., W. Janssen, C. Altmann, A. Andrés-Hernando, K. Okamura, R.W. Vandivier, N. Ahuja, and S. Faubel. 2013. Intratracheal IL-6 protects against lung inflammation in direct, but not indirect, causes of acute lung injury in mice. PLoS One 8 (5): e61405.CrossRefPubMedPubMedCentral Bhargava, R., W. Janssen, C. Altmann, A. Andrés-Hernando, K. Okamura, R.W. Vandivier, N. Ahuja, and S. Faubel. 2013. Intratracheal IL-6 protects against lung inflammation in direct, but not indirect, causes of acute lung injury in mice. PLoS One 8 (5): e61405.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Ju, Y.N., J. Gong, X.T. Wang, J.L. Zhu, and W. Gao. 2018. Endothelial colony-forming cells attenuate ventilator-induced lung injury in rats with acute respiratory distress syndrome. Archives of Medical Research 49 (3): 172–181.CrossRefPubMed Ju, Y.N., J. Gong, X.T. Wang, J.L. Zhu, and W. Gao. 2018. Endothelial colony-forming cells attenuate ventilator-induced lung injury in rats with acute respiratory distress syndrome. Archives of Medical Research 49 (3): 172–181.CrossRefPubMed
26.
Zurück zum Zitat Peng, Z., S. Pati, D. Potter, R. Brown, J.B. Holcomb, R. Grill, K. Wataha, P.W. Park, H. Xue, and R.A. Kozar. 2013. Fresh frozen plasma lessens pulmonary endothelial inflammation and hyperpermeability after hemorrhagic shock and is associated with loss of syndecan 1. Shock 40 (3): 195–202.CrossRefPubMedPubMedCentral Peng, Z., S. Pati, D. Potter, R. Brown, J.B. Holcomb, R. Grill, K. Wataha, P.W. Park, H. Xue, and R.A. Kozar. 2013. Fresh frozen plasma lessens pulmonary endothelial inflammation and hyperpermeability after hemorrhagic shock and is associated with loss of syndecan 1. Shock 40 (3): 195–202.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Szatmári, T., R. Ötvös, A. Hjerpe, and K. Dobra. 2015. Syndecan-1 in cancer: implications for cell signaling, differentiation, and prognostication. Disease Markers 2015: 796052.CrossRefPubMedPubMedCentral Szatmári, T., R. Ötvös, A. Hjerpe, and K. Dobra. 2015. Syndecan-1 in cancer: implications for cell signaling, differentiation, and prognostication. Disease Markers 2015: 796052.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Wang, X., D. Zuo, Y. Chen, W. Li, R. Liu, Y. He, L. Ren, L. Zhou, T. Deng, X. Wang, G. Ying, and Y. Ba. 2014. Shed Syndecan-1 is involved in chemotherapy resistance via the EGFR pathway in colorectal cancer. British Journal of Cancer 111 (10): 1965–1976.CrossRefPubMedPubMedCentral Wang, X., D. Zuo, Y. Chen, W. Li, R. Liu, Y. He, L. Ren, L. Zhou, T. Deng, X. Wang, G. Ying, and Y. Ba. 2014. Shed Syndecan-1 is involved in chemotherapy resistance via the EGFR pathway in colorectal cancer. British Journal of Cancer 111 (10): 1965–1976.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Qi, D., X. Tang, J. He, D. Wang, Y. Zhao, W. Deng, X. Deng, G. Zhou, J. Xia, X. Zhong, and S. Pu. 2016. Omentin protects against LPS-induced ARDS through suppressing pulmonary inflammation and promoting endothelial barrier via an Akt/eNOS-dependent mechanism. Cell Death & Disease 7 (9): e2360.CrossRef Qi, D., X. Tang, J. He, D. Wang, Y. Zhao, W. Deng, X. Deng, G. Zhou, J. Xia, X. Zhong, and S. Pu. 2016. Omentin protects against LPS-induced ARDS through suppressing pulmonary inflammation and promoting endothelial barrier via an Akt/eNOS-dependent mechanism. Cell Death & Disease 7 (9): e2360.CrossRef
30.
Zurück zum Zitat Xiao, M., T. Zhu, W. Zhang, T. Wang, Y.C. Shen, Q.F. Wan, and F.Q. Wen. 2014. Emodin ameliorates LPS-induced acute lung injury, involving the inactivation of NF-κB in mice. International Journal of Molecular Sciences 15 (11): 19355–19368.CrossRefPubMedPubMedCentral Xiao, M., T. Zhu, W. Zhang, T. Wang, Y.C. Shen, Q.F. Wan, and F.Q. Wen. 2014. Emodin ameliorates LPS-induced acute lung injury, involving the inactivation of NF-κB in mice. International Journal of Molecular Sciences 15 (11): 19355–19368.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Ma, M.M., Y. Li, X.Y. Liu, W.W. Zhu, X. Ren, G.Q. Kong, X. Huang, L.P. Wang, L.Q. Luo, and X.Z. Wang. 2015. Cyanidin-3-O-glucoside ameliorates lipopolysaccharide-induced injury both in vivo and in vitro suppression of NF-κB and MAPK pathways. Inflammation 38 (4): 1669–1682.CrossRefPubMed Ma, M.M., Y. Li, X.Y. Liu, W.W. Zhu, X. Ren, G.Q. Kong, X. Huang, L.P. Wang, L.Q. Luo, and X.Z. Wang. 2015. Cyanidin-3-O-glucoside ameliorates lipopolysaccharide-induced injury both in vivo and in vitro suppression of NF-κB and MAPK pathways. Inflammation 38 (4): 1669–1682.CrossRefPubMed
32.
Zurück zum Zitat Zhou, F., Y. Zhang, J. Chen, X. Hu, and Y. Xu. 2016. Liraglutide attenuates lipopolysaccharide-induced acute lung injury in mice. European Journal of Pharmacology 791: 735–740.CrossRefPubMed Zhou, F., Y. Zhang, J. Chen, X. Hu, and Y. Xu. 2016. Liraglutide attenuates lipopolysaccharide-induced acute lung injury in mice. European Journal of Pharmacology 791: 735–740.CrossRefPubMed
33.
Zurück zum Zitat Chen, L., W. Li, D. Qi, L. Lu, Z. Zhang, and D. Wang. 2018. Honokiol protects pulmonary microvascular endothelial barrier against lipopolysaccharide-induced ARDS partially via the Sirt3/AMPK signaling axis. Life Sciences 210: 86–95.CrossRefPubMed Chen, L., W. Li, D. Qi, L. Lu, Z. Zhang, and D. Wang. 2018. Honokiol protects pulmonary microvascular endothelial barrier against lipopolysaccharide-induced ARDS partially via the Sirt3/AMPK signaling axis. Life Sciences 210: 86–95.CrossRefPubMed
34.
Zurück zum Zitat Chen, L., W. Li, D. Qi, and D. Wang. 2018. Lycium barbarum polysaccharide protects against LPS-induced ARDS by inhibiting apoptosis, oxidative stress, and inflammation in pulmonary endothelial cells. Free Radical Research 52 (4): 480–490.CrossRefPubMed Chen, L., W. Li, D. Qi, and D. Wang. 2018. Lycium barbarum polysaccharide protects against LPS-induced ARDS by inhibiting apoptosis, oxidative stress, and inflammation in pulmonary endothelial cells. Free Radical Research 52 (4): 480–490.CrossRefPubMed
35.
Zurück zum Zitat Mammoto, A., T. Mammoto, M. Kanapathipillai, C. Wing Yung, E. Jiang, A. Jiang, K. Lofgren, E.P. Gee, and D.E. Ingber. 2013. Control of lung vascular permeability and endotoxin-induced pulmonary oedema by changes in extracellular matrix mechanics. Nature Communications 4: 1759.CrossRefPubMed Mammoto, A., T. Mammoto, M. Kanapathipillai, C. Wing Yung, E. Jiang, A. Jiang, K. Lofgren, E.P. Gee, and D.E. Ingber. 2013. Control of lung vascular permeability and endotoxin-induced pulmonary oedema by changes in extracellular matrix mechanics. Nature Communications 4: 1759.CrossRefPubMed
36.
Zurück zum Zitat Perel, A. 2013. Extravascular lung water and the pulmonary vascular permeability index may improve the definition of ARDS. Critical Care 17 (1): 108.CrossRefPubMedPubMedCentral Perel, A. 2013. Extravascular lung water and the pulmonary vascular permeability index may improve the definition of ARDS. Critical Care 17 (1): 108.CrossRefPubMedPubMedCentral
Metadaten
Titel
Fraxin Alleviates LPS-Induced ARDS by Downregulating Inflammatory Responses and Oxidative Damages and Reducing Pulmonary Vascular Permeability
verfasst von
Xiaohong Ma
Xiangyong Liu
Jiali Feng
Dong Zhang
Lina Huang
Dongxiao Li
Liang Yin
Lan Li
Xiao-Zhi Wang
Publikationsdatum
04.07.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01052-8

Weitere Artikel der Ausgabe 5/2019

Inflammation 5/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.