Skip to main content
Erschienen in: Current Cardiovascular Imaging Reports 5/2013

01.10.2013 | Hot Topic

Fundamentals and Potential of Magnetic Particle Imaging

verfasst von: Robert L. Duschka, Julian Haegele, Nikolaos Panagiotopoulos, Hanne Wojtczyk, Joerg Barkhausen, Florian M. Vogt, Thorsten M. Buzug, Kerstin Lüdtke-Buzug

Erschienen in: Current Cardiovascular Imaging Reports | Ausgabe 5/2013

Einloggen, um Zugang zu erhalten

Abstract

Cardiovascular interventions are standard treatment for numerous cardiovascular conditions and require high fidelity imaging tools to accurately visualize both vessels and interventional devices. Currently, digital subtraction angiography (DSA) is the standard method for peripheral arterial angiography. Magnetic particle imaging (MPI) is a new imaging modality, free of ionizing radiation, that utilizes static and oscillating magnetic fields to provide high temporal resolution, sub-millimeter spatial resolution images and high sensitivity. Superparamagnetic iron oxide nanoparticles (SPIOs) are used as tracers in MPI and signals are based on non-linear magnetization characteristics of those SPIOs. Regarding the magnetic moment of used tracers in MPI imaging is much faster in MPI, compared to imaging in CT and MRI. This makes MPI also very attractive for cardiovascular imaging and cardiovascular interventions. First in vivo visualization of a beating mouse heart demonstrated the feasibility of the visualization of the cardiovascular system by MPI. Different scanner designs and acquisition methods have already emerged addressing the requirements of cardiovascular interventions. Early studies have demonstrated MPI as an interesting and promising cardiovascular imaging modality. Technical improvement in hardware MPI imaging systems are currently being addressed in ongoing research which will facilitate former image acquisition with higher resolution in larger animals and/or human.
Literatur
1.
Zurück zum Zitat Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature. 2005;435(7046):1214–7.PubMedCrossRef Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature. 2005;435(7046):1214–7.PubMedCrossRef
2.
Zurück zum Zitat • Buzug TM, Bringout G, Erbe M, Gräfe K, Graeser M, Grüttner M, et al. Magnetic particle imaging: introduction to imaging and hardware realization. Z Med Phys. 2012;22(4):323–34. Good review of imaging and hardware realization in MPI.PubMedCrossRef • Buzug TM, Bringout G, Erbe M, Gräfe K, Graeser M, Grüttner M, et al. Magnetic particle imaging: introduction to imaging and hardware realization. Z Med Phys. 2012;22(4):323–34. Good review of imaging and hardware realization in MPI.PubMedCrossRef
3.
Zurück zum Zitat Goodwill PW, Saritas EU, Croft LR, Kim TN, Krishnan KM, Schaffer DV, et al. X-space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater. 2012;24(28):3870–7.PubMedCrossRef Goodwill PW, Saritas EU, Croft LR, Kim TN, Krishnan KM, Schaffer DV, et al. X-space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater. 2012;24(28):3870–7.PubMedCrossRef
5.
Zurück zum Zitat Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys. 1996;23(6):815–50.PubMedCrossRef Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys. 1996;23(6):815–50.PubMedCrossRef
6.
Zurück zum Zitat Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e6–245.PubMedCrossRef Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e6–245.PubMedCrossRef
7.
Zurück zum Zitat Howell JD. Coronary heart disease and heart attacks, 1912–2010. Med Hist. 2011;55(3):307–12.PubMedCrossRef Howell JD. Coronary heart disease and heart attacks, 1912–2010. Med Hist. 2011;55(3):307–12.PubMedCrossRef
8.
Zurück zum Zitat Heinrich MC, Haberle L, Muller V, Bautz W, Uder M. Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: meta-analysis of randomized controlled trials. Radiology. 2009;250(1):68–86.PubMedCrossRef Heinrich MC, Haberle L, Muller V, Bautz W, Uder M. Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: meta-analysis of randomized controlled trials. Radiology. 2009;250(1):68–86.PubMedCrossRef
9.
Zurück zum Zitat Rahmer J, Weizenecker J, Gleich B, Borgert J. Signal encoding in magnetic particle imaging: properties of the system function. BMC Med Imaging. 2009;9:4.PubMedCrossRef Rahmer J, Weizenecker J, Gleich B, Borgert J. Signal encoding in magnetic particle imaging: properties of the system function. BMC Med Imaging. 2009;9:4.PubMedCrossRef
10.
Zurück zum Zitat Lampe J, Bassoy C, Rahmer J, Weizenecker J, Voss H, Gleich B, et al. Fast reconstruction in magnetic particle imaging. Phys Med Biol. 2012;57(4):1113–34.PubMedCrossRef Lampe J, Bassoy C, Rahmer J, Weizenecker J, Voss H, Gleich B, et al. Fast reconstruction in magnetic particle imaging. Phys Med Biol. 2012;57(4):1113–34.PubMedCrossRef
11.
Zurück zum Zitat Knopp T, Biederer S, Sattel TF, Rahmer J, Weizenecker J, Gleich B, et al. 2D model-based reconstruction for magnetic particle imaging. Med Phys. 2010;37(2):485–91.PubMedCrossRef Knopp T, Biederer S, Sattel TF, Rahmer J, Weizenecker J, Gleich B, et al. 2D model-based reconstruction for magnetic particle imaging. Med Phys. 2010;37(2):485–91.PubMedCrossRef
12.
Zurück zum Zitat Knopp T, Sattel TF, Biederer S, Rahmer J, Weizenecker J, Gleich B, et al. Model-based reconstruction for magnetic particle imaging. IEEE Trans Med Imaging. 2010;29(1):12–8.PubMedCrossRef Knopp T, Sattel TF, Biederer S, Rahmer J, Weizenecker J, Gleich B, et al. Model-based reconstruction for magnetic particle imaging. IEEE Trans Med Imaging. 2010;29(1):12–8.PubMedCrossRef
13.
Zurück zum Zitat Goodwill PW, Conolly SM. The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans Med Imaging. 2010;29(11):1851–9.PubMedCrossRef Goodwill PW, Conolly SM. The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans Med Imaging. 2010;29(11):1851–9.PubMedCrossRef
14.
Zurück zum Zitat •• Goodwill PW, Conolly SM. Multidimensional X-space magnetic particle imaging. IEEE Trans Med Imaging. 2011;30(9):1581–90. Good paper, introducing multidimensional x-space MPI.PubMedCrossRef •• Goodwill PW, Conolly SM. Multidimensional X-space magnetic particle imaging. IEEE Trans Med Imaging. 2011;30(9):1581–90. Good paper, introducing multidimensional x-space MPI.PubMedCrossRef
15.
Zurück zum Zitat Rahmer J, Gleich B, Bontus C, Schmale I, Schmidt J, Kanzenbach J, et al. Rapid 3D in vivo magnetic particle imaging with a large field of view. In: International Society for Magnetic Resonance in Medicine, 19th Annual Meeting: 2011; Montreal; 2011: 3285. Rahmer J, Gleich B, Bontus C, Schmale I, Schmidt J, Kanzenbach J, et al. Rapid 3D in vivo magnetic particle imaging with a large field of view. In: International Society for Magnetic Resonance in Medicine, 19th Annual Meeting: 2011; Montreal; 2011: 3285.
16.
Zurück zum Zitat Schmale I, Rahmer J, Gleich B, Kanzenbach J, Schmidt JD, Bontus C, et al. First phantom and in vivo MPI images with an extended field of view. In: Proc. SPIE 7965, medical imaging 2011: biomedical applications in molecular, structural and functional imaging; 2011. Schmale I, Rahmer J, Gleich B, Kanzenbach J, Schmidt JD, Bontus C, et al. First phantom and in vivo MPI images with an extended field of view. In: Proc. SPIE 7965, medical imaging 2011: biomedical applications in molecular, structural and functional imaging; 2011.
17.
Zurück zum Zitat Sattel T, Knopp T, Biederer S, Gleich B, Weizenecker J, Borgert J, et al. Single-sided device for magnetic particle imaging. J Phys D Appl Phys. 2009;42(2):1–5.CrossRef Sattel T, Knopp T, Biederer S, Gleich B, Weizenecker J, Borgert J, et al. Single-sided device for magnetic particle imaging. J Phys D Appl Phys. 2009;42(2):1–5.CrossRef
18.
Zurück zum Zitat Weizenecker J, Gleich B, Borgert J. Magnetic particle imaging using a field free line. J Phys D Appl Phys. 2008;41(10). Weizenecker J, Gleich B, Borgert J. Magnetic particle imaging using a field free line. J Phys D Appl Phys. 2008;41(10).
19.
Zurück zum Zitat • Erbe M, Knopp T, Sattel TF, Biederer S, Buzug TM. Experimental generation of an arbitrarily rotated field-free line for the use in magnetic particle imaging. Med Phys. 2011;38(9):5200–7. Good paper, introducing scanner setup for field-free line concept in MPI.PubMedCrossRef • Erbe M, Knopp T, Sattel TF, Biederer S, Buzug TM. Experimental generation of an arbitrarily rotated field-free line for the use in magnetic particle imaging. Med Phys. 2011;38(9):5200–7. Good paper, introducing scanner setup for field-free line concept in MPI.PubMedCrossRef
20.
Zurück zum Zitat Knopp T, Erbe M, Biederer S, Sattel TF, Buzug TM. Efficient generation of a magnetic field-free line. Med Phys. 2010;37(7):3538–40.PubMedCrossRef Knopp T, Erbe M, Biederer S, Sattel TF, Buzug TM. Efficient generation of a magnetic field-free line. Med Phys. 2010;37(7):3538–40.PubMedCrossRef
21.
Zurück zum Zitat Knopp T, Erbe M, Sattel TF, Biederer S, Buzug TM. Generation of a static magnetic field-free line using two Maxwell coil pairs. Appl Phys Lett. 2010;97(9). Knopp T, Erbe M, Sattel TF, Biederer S, Buzug TM. Generation of a static magnetic field-free line using two Maxwell coil pairs. Appl Phys Lett. 2010;97(9).
22.
Zurück zum Zitat Knopp T, Sattel TF, Biederer S, Buzug TM. Field-free line formation in a magnetic field. J Phys A Math Theor. 2010;43(1):1–5.CrossRef Knopp T, Sattel TF, Biederer S, Buzug TM. Field-free line formation in a magnetic field. J Phys A Math Theor. 2010;43(1):1–5.CrossRef
23.
Zurück zum Zitat Erbe M, Weber M, Sattel TF, Buzug TM. Experimental validation of an assembly of optimized curved rectangular coils for the use in dynamic field free line magnetic particle imaging. Curr Med Imaging Rev. 2013;9(2):89–95.CrossRef Erbe M, Weber M, Sattel TF, Buzug TM. Experimental validation of an assembly of optimized curved rectangular coils for the use in dynamic field free line magnetic particle imaging. Curr Med Imaging Rev. 2013;9(2):89–95.CrossRef
24.
Zurück zum Zitat Goodwill PW, Lu K, Zheng B, Conolly SM. An x-space magnetic particle imaging scanner. Rev Sci Instrum. 2012;83(3). Goodwill PW, Lu K, Zheng B, Conolly SM. An x-space magnetic particle imaging scanner. Rev Sci Instrum. 2012;83(3).
25.
Zurück zum Zitat Goodwill PW, Konkle JJ, Zheng B, Saritas EU, Conolly SM. Projection X-space magnetic particle imaging. IEEE Trans Med Imaging. 2012;31(5):1076–85.PubMedCrossRef Goodwill PW, Konkle JJ, Zheng B, Saritas EU, Conolly SM. Projection X-space magnetic particle imaging. IEEE Trans Med Imaging. 2012;31(5):1076–85.PubMedCrossRef
26.
Zurück zum Zitat •• Konkle JJ, Goodwill PW, Carrasco-Zevallos OM, Conolly SM. Projection reconstruction magnetic particle imaging. IEEE Trans Med Imaging. 2013;32(2):338–47. Good paper of proof of principle for the use of filtered backprojection in Magnetic particle imaging.PubMedCrossRef •• Konkle JJ, Goodwill PW, Carrasco-Zevallos OM, Conolly SM. Projection reconstruction magnetic particle imaging. IEEE Trans Med Imaging. 2013;32(2):338–47. Good paper of proof of principle for the use of filtered backprojection in Magnetic particle imaging.PubMedCrossRef
27.
Zurück zum Zitat Knopp T, Erbe M, Sattel TF, Biederer S, Buzug TM. A Fourier slice theorem for magnetic particle imaging using a field-free line. Inverse Prob. 2011;27(9):095004.CrossRef Knopp T, Erbe M, Sattel TF, Biederer S, Buzug TM. A Fourier slice theorem for magnetic particle imaging using a field-free line. Inverse Prob. 2011;27(9):095004.CrossRef
28.
Zurück zum Zitat Pankhurst QA, Conolly J, Jones SK, Dobson J. Application of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36:R167–81.CrossRef Pankhurst QA, Conolly J, Jones SK, Dobson J. Application of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36:R167–81.CrossRef
29.
Zurück zum Zitat Lu M, Cohen MH, Rieves D, Pazdur R. FDA report: Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol. 2010;85(5):315–9.PubMed Lu M, Cohen MH, Rieves D, Pazdur R. FDA report: Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol. 2010;85(5):315–9.PubMed
31.
Zurück zum Zitat Eberbeck D, Wiekhorst F, Wagner S, Trahms L. How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance. Appl Phys Lett. 2011;98(18). Eberbeck D, Wiekhorst F, Wagner S, Trahms L. How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance. Appl Phys Lett. 2011;98(18).
32.
Zurück zum Zitat Ferguson RM, Minard KR, Khandhar AP, Krishnan KM. Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Med Phys. 2011;38(3):1619–26.PubMedCrossRef Ferguson RM, Minard KR, Khandhar AP, Krishnan KM. Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Med Phys. 2011;38(3):1619–26.PubMedCrossRef
33.
Zurück zum Zitat Ludwig F, Wawrzik T, Yoshida T, Gehrke N, Briel A, Eberbeck D, et al. Optimization of magnetic nanoparticles for magnetic particle imaging. IEEE Trans Magn. 2012;48(11):3780–3.CrossRef Ludwig F, Wawrzik T, Yoshida T, Gehrke N, Briel A, Eberbeck D, et al. Optimization of magnetic nanoparticles for magnetic particle imaging. IEEE Trans Magn. 2012;48(11):3780–3.CrossRef
34.
Zurück zum Zitat Ferguson RM, Khandhar AP, Krishnan KM. Tracer design for magnetic particle imaging (invited). J Appl Phys. 2012;111(7). Ferguson RM, Khandhar AP, Krishnan KM. Tracer design for magnetic particle imaging (invited). J Appl Phys. 2012;111(7).
35.
Zurück zum Zitat Biederer S, Knopp T, Sattel TF, Ludtke-Buzug K, Gleich B, Weizenecker J, et al. Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging. J Phys D Appl Phys. 2009;42(20). Biederer S, Knopp T, Sattel TF, Ludtke-Buzug K, Gleich B, Weizenecker J, et al. Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging. J Phys D Appl Phys. 2009;42(20).
36.
Zurück zum Zitat Lüdtke-Buzug K. From synthesis to clinical application. Magnetic nanoparticles. Chem Unserer Zeit. 2012;46(1):32–9.CrossRef Lüdtke-Buzug K. From synthesis to clinical application. Magnetic nanoparticles. Chem Unserer Zeit. 2012;46(1):32–9.CrossRef
37.
Zurück zum Zitat Schmale I, Rahmer J, Gleich B, Mende O, Weizenecker J, Schmidt J, et al. MPI-based blood flow examination along stenosis. BMT. 2011. Schmale I, Rahmer J, Gleich B, Mende O, Weizenecker J, Schmidt J, et al. MPI-based blood flow examination along stenosis. BMT. 2011.
38.
Zurück zum Zitat •• Schütz G. The potential of magnetic particle imaging in the competitive environment of cardiac diagnostics. In: Buzug T, Borgert J, editors. Magnetic particle imaging. SPPHY 140: Berlin: Springer-Verlag; 2012. pp. 129–134. Good chapter, concerning the potential of MPI for cardiovascular diagnostics. •• Schütz G. The potential of magnetic particle imaging in the competitive environment of cardiac diagnostics. In: Buzug T, Borgert J, editors. Magnetic particle imaging. SPPHY 140: Berlin: Springer-Verlag; 2012. pp. 129–134. Good chapter, concerning the potential of MPI for cardiovascular diagnostics.
39.
Zurück zum Zitat Lacroix R, Rahmer J, Borgert J, Bonnefous O, Makram-Ebeid S. Early results on image and signal processing for characterization of blood flow in 4D MPI images. In: International Workshop on Magnetic Particle Imaging; 2013. doi:10.1109/IWMPI.2013.6528356. Lacroix R, Rahmer J, Borgert J, Bonnefous O, Makram-Ebeid S. Early results on image and signal processing for characterization of blood flow in 4D MPI images. In: International Workshop on Magnetic Particle Imaging; 2013. doi:10.​1109/​IWMPI.​2013.​6528356.
40.
Zurück zum Zitat Sigovan M, Bessaad A, Alsaid H, Lancelot E, Corot C, Neyran B, et al. Assessment of age modulated vascular inflammation in ApoE-/- mice by USPIO-enhanced magnetic resonance imaging. Investig Radiol. 2010;45(11):702–7.CrossRef Sigovan M, Bessaad A, Alsaid H, Lancelot E, Corot C, Neyran B, et al. Assessment of age modulated vascular inflammation in ApoE-/- mice by USPIO-enhanced magnetic resonance imaging. Investig Radiol. 2010;45(11):702–7.CrossRef
41.
Zurück zum Zitat Metz S, Beer AJ, Settles M, Pelisek J, Botnar RM, Rummeny EJ, et al. Characterization of carotid artery plaques with USPIO-enhanced MRI: assessment of inflammation and vascularity as in vivo imaging biomarkers for plaque vulnerability. Int J Cardiovasc Imaging. 2011;27(6):901–12.PubMedCrossRef Metz S, Beer AJ, Settles M, Pelisek J, Botnar RM, Rummeny EJ, et al. Characterization of carotid artery plaques with USPIO-enhanced MRI: assessment of inflammation and vascularity as in vivo imaging biomarkers for plaque vulnerability. Int J Cardiovasc Imaging. 2011;27(6):901–12.PubMedCrossRef
42.
Zurück zum Zitat Markov DE, Boeve H, Gleich B, Borgert J, Antonelli A, Sfara C, et al. Human erythrocytes as nanoparticle carriers for magnetic particle imaging. Phys Med Biol. 2010;55(21):6461–73.PubMedCrossRef Markov DE, Boeve H, Gleich B, Borgert J, Antonelli A, Sfara C, et al. Human erythrocytes as nanoparticle carriers for magnetic particle imaging. Phys Med Biol. 2010;55(21):6461–73.PubMedCrossRef
43.
Zurück zum Zitat Bock M, Wacker FK. MR-guided intravascular interventions: techniques and applications. J Magn Reson Imaging. 2008;27(2):326–38.PubMedCrossRef Bock M, Wacker FK. MR-guided intravascular interventions: techniques and applications. J Magn Reson Imaging. 2008;27(2):326–38.PubMedCrossRef
44.
Zurück zum Zitat Kagadis GC, Katsanos K, Karnabatidis D, Loudos G, Nikiforidis GC, Hendee WR. Emerging technologies for image guidance and device navigation in interventional radiology. Med Phys. 2012;39(9):5768–81.PubMedCrossRef Kagadis GC, Katsanos K, Karnabatidis D, Loudos G, Nikiforidis GC, Hendee WR. Emerging technologies for image guidance and device navigation in interventional radiology. Med Phys. 2012;39(9):5768–81.PubMedCrossRef
45.
Zurück zum Zitat Wendt M, Wacker FK. Visualization, tracking, and navigation of instruments for magnetic resonance imaging-guided endovascular procedures. Top Magn Reson Imaging. 2000;11(3):163–72.PubMedCrossRef Wendt M, Wacker FK. Visualization, tracking, and navigation of instruments for magnetic resonance imaging-guided endovascular procedures. Top Magn Reson Imaging. 2000;11(3):163–72.PubMedCrossRef
46.
Zurück zum Zitat Smits HF, Bos C, van der Weide R, Bakker CJ. Interventional MR: vascular applications. Eur Radiol. 1999;9(8):1488–95.PubMedCrossRef Smits HF, Bos C, van der Weide R, Bakker CJ. Interventional MR: vascular applications. Eur Radiol. 1999;9(8):1488–95.PubMedCrossRef
47.
Zurück zum Zitat van der Weide R, Zuiderveld KJ, Bakker CJ, Hoogenboom T, van Vaals JJ, Viergever MA. Image guidance of endovascular interventions on a clinical MR scanner. IEEE Trans Med Imaging. 1998;17(5):779–85.PubMedCrossRef van der Weide R, Zuiderveld KJ, Bakker CJ, Hoogenboom T, van Vaals JJ, Viergever MA. Image guidance of endovascular interventions on a clinical MR scanner. IEEE Trans Med Imaging. 1998;17(5):779–85.PubMedCrossRef
48.
Zurück zum Zitat Saeed M, Hetts SW, English J, Wilson M. MR fluoroscopy in vascular and cardiac interventions (review). Int J Cardiovasc Imaging. 2012;28(1):117–37.PubMedCrossRef Saeed M, Hetts SW, English J, Wilson M. MR fluoroscopy in vascular and cardiac interventions (review). Int J Cardiovasc Imaging. 2012;28(1):117–37.PubMedCrossRef
49.
Zurück zum Zitat Settecase F, Hetts SW, Martin AJ, Roberts TP, Bernhardt AF, Evans L, et al. RF heating of MRI-assisted catheter steering coils for interventional MRI. Acad Radiol. 2011;18(3):277–85.PubMedCrossRef Settecase F, Hetts SW, Martin AJ, Roberts TP, Bernhardt AF, Evans L, et al. RF heating of MRI-assisted catheter steering coils for interventional MRI. Acad Radiol. 2011;18(3):277–85.PubMedCrossRef
50.
Zurück zum Zitat Tong N, Shmatukha A, Asmah P, Stainsby J. Practical aspects of MR imaging in the presence of conductive guide wires. Phys Med Biol. 2010;55(1):N13–22.PubMedCrossRef Tong N, Shmatukha A, Asmah P, Stainsby J. Practical aspects of MR imaging in the presence of conductive guide wires. Phys Med Biol. 2010;55(1):N13–22.PubMedCrossRef
51.
Zurück zum Zitat Martin AJ, Baek B, Acevedo-Bolton G, Higashida RT, Comstock J, Saloner DA. MR imaging during endovascular procedures: an evaluation of the potential for catheter heating. Magn Reson Med. 2009;61(1):45–53.PubMedCrossRef Martin AJ, Baek B, Acevedo-Bolton G, Higashida RT, Comstock J, Saloner DA. MR imaging during endovascular procedures: an evaluation of the potential for catheter heating. Magn Reson Med. 2009;61(1):45–53.PubMedCrossRef
52.
Zurück zum Zitat • Haegele J, Rahmer J, Gleich B, Borgert J, Wojtczyk H, Panagiotopoulos N, et al. Magnetic particle imaging: visualization of instruments for cardiovascular intervention. Radiology. 2012;265(3):933–8. Good paper addressing the visualization of interventional instruments in MPI.PubMedCrossRef • Haegele J, Rahmer J, Gleich B, Borgert J, Wojtczyk H, Panagiotopoulos N, et al. Magnetic particle imaging: visualization of instruments for cardiovascular intervention. Radiology. 2012;265(3):933–8. Good paper addressing the visualization of interventional instruments in MPI.PubMedCrossRef
53.
Zurück zum Zitat Haegele J, Biederer S, Wojtczyk H, Graeser M, Knopp T, Buzug TM, et al. Toward cardiovascular interventions guided by magnetic particle imaging: first instrument characterization. Magn Reson Med. Epub: 2012/07/26. Haegele J, Biederer S, Wojtczyk H, Graeser M, Knopp T, Buzug TM, et al. Toward cardiovascular interventions guided by magnetic particle imaging: first instrument characterization. Magn Reson Med. Epub: 2012/07/26.
54.
Zurück zum Zitat Duschka RL, Wojtczyk H, Panagiotopoulos N, Haegele J, Bringout G, Rahmer J, et al. Heating of interventional instruments in magnetic particle imaging—first experiences of safety measurements. In: International Workshop on Magnetic Particle Imaging; 2013. doi:10.1109/IWMPI.2013.6528370. Duschka RL, Wojtczyk H, Panagiotopoulos N, Haegele J, Bringout G, Rahmer J, et al. Heating of interventional instruments in magnetic particle imaging—first experiences of safety measurements. In: International Workshop on Magnetic Particle Imaging; 2013. doi:10.​1109/​IWMPI.​2013.​6528370.
55.
Zurück zum Zitat Johnson L, Pinder SE, Douek M. Deposition of superparamagnetic iron-oxide nanoparticles in axillary sentinel lymph nodes following subcutaneous injection. Histopathology. 2013;62(3):481–6.PubMedCrossRef Johnson L, Pinder SE, Douek M. Deposition of superparamagnetic iron-oxide nanoparticles in axillary sentinel lymph nodes following subcutaneous injection. Histopathology. 2013;62(3):481–6.PubMedCrossRef
56.
Zurück zum Zitat Finas D, Baumann K, Heinrich K, Ruhland B, Sydow L, Gräfe K, et al. Distribution of Superparamagnetic nanoparticles in lymphatic tissue for sentinel lymph node detection in breast cancer by magnetic particle imaging. In: Buzug TM, Borgert J, editors. Magnetic particle imaging. vol SPPHY 140: Berlin: Springer; 2012. p. 187–191. Finas D, Baumann K, Heinrich K, Ruhland B, Sydow L, Gräfe K, et al. Distribution of Superparamagnetic nanoparticles in lymphatic tissue for sentinel lymph node detection in breast cancer by magnetic particle imaging. In: Buzug TM, Borgert J, editors. Magnetic particle imaging. vol SPPHY 140: Berlin: Springer; 2012. p. 187–191.
57.
Zurück zum Zitat Sattel TF, Erbe M, Biederer S, Knopp T, Finas D, Diedrich K, et al. Single-sided magnetic particle imaging device for the sentinel lymph node biopsy scenario. In: Proc. SPIE 8317, medical imaging: biomedical applications in molecular, structural and functional imaging; 2012. Sattel TF, Erbe M, Biederer S, Knopp T, Finas D, Diedrich K, et al. Single-sided magnetic particle imaging device for the sentinel lymph node biopsy scenario. In: Proc. SPIE 8317, medical imaging: biomedical applications in molecular, structural and functional imaging; 2012.
58.
Zurück zum Zitat Gräfe K, Sattel TF, Luedtke-Buzug K, Finas D, Borgert J, Buzug TM. Magnetic particle imaging for sentinel lymph node biopsy in breast cancer. In: Buzug TM, Borgert J, editors. Magnetic particle imaging. vol SPPHY 140: Berlin: Springer; 2012. p. 237–241. Gräfe K, Sattel TF, Luedtke-Buzug K, Finas D, Borgert J, Buzug TM. Magnetic particle imaging for sentinel lymph node biopsy in breast cancer. In: Buzug TM, Borgert J, editors. Magnetic particle imaging. vol SPPHY 140: Berlin: Springer; 2012. p. 237–241.
59.
Zurück zum Zitat Zheng B, Vazin T, Yang W, Goodwill PW, Saritas E, Croft L, et al. Quantitative stem cell imaging with magnetic particle imaging. In: International workshop on magnetic particle imaging; 2013. doi:10.1109/IWMPI.2013.6528323. Zheng B, Vazin T, Yang W, Goodwill PW, Saritas E, Croft L, et al. Quantitative stem cell imaging with magnetic particle imaging. In: International workshop on magnetic particle imaging; 2013. doi:10.​1109/​IWMPI.​2013.​6528323.
60.
Zurück zum Zitat • Saritas E, Goodwill P, Zhang G, Wenxiao Y, Conolly S. Safety limits for human-size magnetic particle imaging systems. In: Buzug TM, Borgert J, editors. Magnetic particle imaging. vol. SPPHY 140: Berlin: Springer-Verlag; 2012. pp. 325–330. Good paper of safety limits for humans in MPI. • Saritas E, Goodwill P, Zhang G, Wenxiao Y, Conolly S. Safety limits for human-size magnetic particle imaging systems. In: Buzug TM, Borgert J, editors. Magnetic particle imaging. vol. SPPHY 140: Berlin: Springer-Verlag; 2012. pp. 325–330. Good paper of safety limits for humans in MPI.
61.
Zurück zum Zitat • Weinberg IN, Stepanov PY, Fricke ST, Probst R, Urdaneta M, Warnow D, et al. Increasing the oscillation frequency of strong magnetic fields above 101 kHz significantly raises peripheral nerve excitation thresholds. Med Phys. 2012;39(5):2578–83. Good paper of thresholds for peripheral nerve stimulation in MPI.PubMedCrossRef • Weinberg IN, Stepanov PY, Fricke ST, Probst R, Urdaneta M, Warnow D, et al. Increasing the oscillation frequency of strong magnetic fields above 101 kHz significantly raises peripheral nerve excitation thresholds. Med Phys. 2012;39(5):2578–83. Good paper of thresholds for peripheral nerve stimulation in MPI.PubMedCrossRef
62.
Zurück zum Zitat Gleich B, Weizenecker J, Timminger H, Bontus C, Schmale I, Rahmer J, et al. Fast MPI demonstrator with enlarged field of view. In: International Society for Magnetic Resonance in Medicine, 18th Annual Meeting. vol. 18th Annual Meeting. Stockholm; 2010: 218. Gleich B, Weizenecker J, Timminger H, Bontus C, Schmale I, Rahmer J, et al. Fast MPI demonstrator with enlarged field of view. In: International Society for Magnetic Resonance in Medicine, 18th Annual Meeting. vol. 18th Annual Meeting. Stockholm; 2010: 218.
Metadaten
Titel
Fundamentals and Potential of Magnetic Particle Imaging
verfasst von
Robert L. Duschka
Julian Haegele
Nikolaos Panagiotopoulos
Hanne Wojtczyk
Joerg Barkhausen
Florian M. Vogt
Thorsten M. Buzug
Kerstin Lüdtke-Buzug
Publikationsdatum
01.10.2013
Verlag
Springer US
Erschienen in
Current Cardiovascular Imaging Reports / Ausgabe 5/2013
Print ISSN: 1941-9066
Elektronische ISSN: 1941-9074
DOI
https://doi.org/10.1007/s12410-013-9217-1

Weitere Artikel der Ausgabe 5/2013

Current Cardiovascular Imaging Reports 5/2013 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.