Skip to main content
Erschienen in: Seminars in Immunopathology 4/2017

Open Access 27.04.2017 | Review

Future therapeutic targets in rheumatoid arthritis?

verfasst von: Tommy Tsang Cheung, Iain B. McInnes

Erschienen in: Seminars in Immunopathology | Ausgabe 4/2017

Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by persistent joint inflammation. Without adequate treatment, patients with RA will develop joint deformity and progressive functional impairment. With the implementation of treat-to-target strategies and availability of biologic therapies, the outcomes for patients with RA have significantly improved. However, the unmet need in the treatment of RA remains high as some patients do not respond sufficiently to the currently available agents, remission is not always achieved and refractory disease is not uncommon. With better understanding of the pathophysiology of RA, new therapeutic approaches are emerging. Apart from more selective Janus kinase inhibition, there is a great interest in the granulocyte macrophage-colony stimulating factor pathway, Bruton’s tyrosine kinase pathway, phosphoinositide-3-kinase pathway, neural stimulation and dendritic cell-based therapeutics. In this review, we will discuss the therapeutic potential of these novel approaches.
Hinweise
This article is a contribution to the special issue on Immunopathology of Rheumatoid Arthritis - Guest Editors: Cem Gabay and Paul Hasler

Introduction

Rheumatoid arthritis is a chronic inflammatory disease characterized by persistent joint inflammation. Without adequate treatment, patients with rheumatoid arthritis (RA) will develop joint deformity and progressive functional impairment. Substantial evidence indicates that persistent systemic inflammation and immune dysfunction plays a major role in the development of co-morbidities, such as cardiovascular diseases, osteoporosis, interstitial lung disease and malignancies. Large retrospective cohorts have shown that the risk of myocardial infarction is at least 1.5 times higher compared with controls [1, 2] and patients with RA have increased cardiovascular mortality as a result [35]. In addition, many studies consistently indicate an increase in the incidence of malignancies, such as lymphoma [68]. As a result, patients with RA have reduced quality of life and life expectancy.
With the implementation of treat-to-target strategies, the outcomes of patients with RA have significantly improved. The likelihoods of achieving remission and low disease activity are significantly higher compared with usual care and historical controls. As a result, those patients experience less functional impairment [915]. Strategic approaches of this nature not only alleviate clinical symptoms of RA but also demonstrate significant benefits to RA-associated co-morbidities. Osteoporosis is significantly less frequent in patients with disease remission, and a similar trend was also observed for cardiovascular disease [16]. Patients in remission have a significant reduction in cardiovascular risk that is comparable to that of healthy controls [17].
In parallel, biologic therapies have revolutionized the treatment paradigm of RA because they are generally more effective than conventional synthetic disease-modifying anti-rheumatic drugs (csDMARDs). Even biologic therapies currently available only demonstrate clinical efficacy in about two thirds of patients. As a result, the unmet need in the treatment of RA remains high, remission rates are insufficient and new therapeutic approaches should be explored especially for those patients with refractory disease. In this review, we will discuss the potentials of several novel therapeutic agents.

Extracellular target in RA

A range of extracellular targets are currently under consideration. The majority concern previously targeted cytokines, e.g. IL-6R or ligands, IL-6. Recent studies targeting a variety of cytokines, e.g. IL-17, IL-20 and IL-21, have been disappointing [1824]. Herein, we will focus on one novel cytokine that has elicited promising data in early trials.

Granulocyte macrophage-colony stimulating factor

Granulocyte macrophage-colony stimulating factor (GM-CSF) is a haematopoietic growth factor responsible for the differentiation and proliferation of myeloid cells, including neutrophils, dendritic cells and macrophages. In addition, GM-CSF also induces migration and proliferation of endothelial cells [25]. It is produced by a wide variety of cell types, such as myeloid cells, lymphocytes and tissue-resident cells including chondrocytes, fibroblasts, osteoblast and endothelial cells [26, 27]. Production of GM-CSF can be stimulated by multiple agents, such as lipopolysaccharide, tumour necrosis factor, IL-1 and IL-23 [28]. It binds to a heterodimeric GM-CSF receptor, which consists of a ligand-specific binding α-chain and a signal transducing β-chain [29]. Subsequent signalling from the GM-CSF receptor activates Janus kinase-signal transducer and activator of transcription (JAK-STAT), phosphoinositide-3-kinase (PI3K) and MAPK pathway [30, 31].
GM-CSF plays a crucial role in innate immune responses. In general, it enhances the effector functions of neutrophils and macrophages, leading to increased expression of adhesion molecules, production of inflammatory cytokines and activation of phagocytosis [32]. GM-CSF can also polarize macrophages into an inflammatory M1 phenotype, which are involved in synovial inflammation [33]. GM-CSF is also involved in the development, maturation, antigen presentation and cytokine production by dendritic cells [3436]. Several in vitro studies show that GM-CSF stimulates the development of inflammatory dendritic cells. These inflammatory dendritic cells produce pro-inflammatory cytokines, such as TNF, IL-12 and IL-23. Following antigen engagement and conditioning by the pro-inflammatory cytokines, the inflammatory dendritic cells are able to present self-antigens and stimulate T cell in the lymph nodes [37, 38].
In patients with RA, GM-CSF is expressed in the synovial membrane and the level of GM-CSF is increased in the synovial fluid [39]. Increased expression of GM-CSF receptors is found on circulating monocytes [40], which promotes the subsequent maturation and activation of macrophages in the synovium. In addition, GM-CSF receptors are up-regulated in the synovial tissue [41], and in vitro studies show that GM-CSF induces the proliferation of fibroblast-like synoviocytes [42]. GM-CSF also contributes to the differentiation and survival of Th17 cells and dendritic cells [43]. In the presence of GM-CSF, monocyte-derived dendritic cells maintain their inflammatory potential and are resistant to the immunosuppressive effect of IL-10 in vitro [44]. These dendritic cells also produce high levels of IL-1, IL-6 and TNF-α [45] and are able to present auto-antigens via MHC molecules, contributing to the pathogenesis of RA [46].
Based on these findings, GM-CSF inhibition is an attractive therapeutic target for RA. In animal models, administration of GM-CSF exacerbates arthritis in the collagen-induced arthritis (CIA) model, while administration of neutralizing antibodies against GM-CSF prevents disease progression [47, 48]. In view of the robust effects of GM-CSF inhibition demonstrated in pre-clinical studies, the efficacy of GM-CSF inhibitors has been evaluated in clinical trials [49].
Mavrilimumab is a monoclonal antibody against the human GM-CSF receptor alpha chain. In the EARTH EXPLORER I study, 326 patients with active RA and who had previously an inadequate response to DMARDs were randomized to receive different doses of mavrilimumab versus placebo. In this phase IIb study, a greater proportion of patients receiving mavrilimumab achieved a ≥1.2 decrease in disease activity score (DAS)28-CRP from baseline and the 100-mg dose demonstrated a significant effect versus placebo (23.1 vs. 6.7%). Besides, patients receiving mavrilimumab achieved higher American College of Rheumatology (ACR) response rates at week 24 (ACR20—69.2 vs. 40.0%, p = 0.005; ACR50—30.8 vs. 12.0%, p = 0.021; ACR70—17.9 vs. 4.0%, p = 0.030). Adverse events were generally mild or moderate in intensity. No significant hypersensitivity reactions, serious or opportunistic infections, or changes in pulmonary parameters were observed [50]. In the EARTH EXPLORER II study, 138 patients with active RA and had an inadequate response to tumour necrosis factor inhibitors were randomized to receive mavrilimumab 100 mg every 2 weeks or golimumab 50 mg every 4 weeks for 24 weeks. The difference in the numbers of patients achieving ACR20 response was not statistically different between groups (65.6 vs. 62%, p = 0.666) (NCT01715896). As a result, further large-scale studies are warranted to confirm the therapeutic potential of mavrilimumab and to determine its optimal position in the treatment algorithm of RA.

Intracellular targets in RA

Janus kinase-signal transducer and activator of transcription pathway

JAK is a receptor tyrosine kinase that mediates intracellular signalling through the transcription factor STAT. In humans, the JAK-STAT pathway is the principal signalling cascade for a wide variety of cytokines and growth factors [5154]. Intracellular activation of JAK occurs when ligand binding induces the crosslinking of receptor subunits. Activated JAKs phosphorylate the tyrosine residues on the receptors, allowing the binding of STATs in the SRC2 homology domain. JAK then phosphorylates the tyrosine residues on the STATs, leading to dimerization and activation of the STATs. Activated STATs then migrate via the cytoplasm to translocate into the nucleus, where they induce transcription of target genes [54].
The JAK family comprises four members, JAK1, JAK2, JAK3 and Tyk2. JAK1, JAK2 and Tyk2 are expressed ubiquitously, while JAK3 has limited expression in haematopoietic cells [55]. JAK1 interacts with a wide variety of cytokines, through the common γ chain receptor subunit (IL-2 and IL-4 receptor family) and the glycoprotein-130 subunit. JAK1 is also involved in type 1 interferon signal transduction. JAK2 also interacts with cytokines through the glycoprotein-130 subunits, as well as other hormones including erythropoietin, thrombopoietin, prolactin and growth hormone. As a result, the use of JAK2 inhibitors may be associated with anaemia and thrombocytopenia. JAK3 interacts with many inflammatory cytokines through the common γ chain receptor subunit [56], and inactivating mutations in the common γ chain and JAK3 have been shown to cause X-linked severe combined immunodeficiency [57]. Patients with X-linked severe combined immunodeficiency have a significantly impaired adaptive immune system due to the absence T cells and non-functional B cells (Table 1).
Table 1
Cytokines and hormones activating the JAK pathway
JAK1
JAK2
JAK3
Common γ chain receptor family
IL-2, IL-4, IL-7, IL-9, IL-15, IL-21
 
Common γ chain receptor family
IL-2, IL-4, IL-7, IL-9, IL-15, IL-21
Gp130 receptor family
IL-6, IL-11, IL-27, IL-31
Gp130 receptor family
IL-6, IL-11, IL-27, IL-31
 
Interferon
IFNα/β/γ
Interferon
IFNα/β/γ
 
 
Hormones
Erythropoietin
Thrombopoietin
Prolactin
Growth hormone
 
 
GM-CSF receptor family
IL-3R, IL-5R, GM-CSF-R
 
Many JAK inhibitors have been studied for the treatment of RA [58]. Tofacitinib, the first-in-class JAK inhibitor, has been shown to be efficacious in different clinical settings—it blocks JAK1 and JAK3 preferentially [5964] (Table 2). In the ORAL standard trial, patients with an inadequate response to methotrexate were randomized to receive tofacitinib, adalimumab or placebo plus background methotrexate. At 6 months, patients receiving tofacitinib (5 or 10 mg twice daily) and adalimumab 40 mg every 2 weeks achieved higher ACR20 response rates (51.5, 52.6 and 47.2%, respectively), compared with those receiving placebo (28.3%). There were also greater reductions in the Health Assessment Questionnaire Disability Index (HAQ-DI) scores at 3 months and higher percentages of patients achieving DAS remission at 6 months [62]. In the ORAL scan trial, patients receiving tofacitinib (5 or 10 mg twice daily) had less radiological progression. The mean changes in total modified Sharp score for tofacitinib at 5 and 10 mg twice daily were 0.12 and 0.06, respectively, versus 0.47 for placebo [60]. Patients with inadequate response to tumour necrosis factor inhibitors were evaluated in the ORAL step trial. The addition of tofacitinib (5 or 10 mg twice daily) to methotrexate (MTX), compared with placebo plus MTX, resulted in significantly higher ACR20 response rates (42, 48 vs. 24%, respectively) and greater reductions in the HAQ-DI scores at 3 months [61].
Table 2
Clinical trials of tofacitinib
Study name
Number of subjects
Subject characteristics
Intervention
Primary endpoints
Results
ORAL start [59]
958
MTX naive
Tofacitinib (5 or 10 mg) vs. MTX 20 mg per week
ACR70 response
Mean change in modified total Sharp score
25.5, 37.7 vs. 12.0%
0.2, <0.1 vs. 0.8
ORAL scan [60]
797
MTX-IR
Tofacitinib (5 or 10 mg) vs. placebo
ACR20 response
Mean change in modified total Sharp score
Mean change in HAQ-DI
DAS remission
51.5, 61.8 vs. 25.3%
0.12, 0.06 vs. 0.47a
−0.40, −0.54 vs. −0.15
7.2, 16 vs. 1.6%
ORAL solo [63]
611
DMARD-IR*
Tofacitinib (5 or 10 mg) vs. placebo
ACR20 response
Mean change in HAQ-DI
DAS remission
59.8, 65.7 vs. 26.7%
−0.50, −0.57 vs. −0.19
5.6, 8.7 vs. 4.4% (NS)
ORAL sync [64]
792
DMARD-IR*
Tofacitinib (5 or 10 mg) vs. placebo
ACR20 response
Mean change in HAQ-DI
DAS remission
52.1, 56.6 vs. 30.8%
-0.44, -0.53 vs. -0.16
8.5, 12.5 vs. 2.6%
ORAL standard [62]
717
MTX-IR
Tofacitinib (5 or 10 mg) vs. adalimumab 40 mg q2w vs. placebo
ACR20 response
Mean change in HAQ-DI
DAS remission
51.5, 52.6, 47.2 vs. 28.3%
0.55, −0.61, 0.49 vs. −0.24
6.2, 12.5, 6.7 vs. 1.1%
ORAL step [61]
399
TNFi-IR
Tofacitinib (5 or 10 mg) vs. placebo
ACR20 response
Mean change in HAQ-DI
DAS remission
41.7, 48.1 vs. 24.4%
−0.43, −0.46 vs. −0.18
6.7, 8.8 vs. 1.7%
*At least 1 non-biologic or biologic DMARD#262
aSince tofacitinib 5 mg twice daily failed to show statistically significance for radiographic progression, and due to the step-down procedure applied to the primary efficacy endpoints, significance was not declared for the HAQ-DI and DAS remission
The relative safety of tofacitinib has generally appeared similar to that of biologic DMARDs, including increased risk of infections and liver function derangements, cytopenias, hyperlipidaemia and, possibly, increased serum creatinine levels. Gastrointestinal perforations have also been reported. The incidence was similar to the published data of tumour necrosis factor inhibitors and perhaps lower than that associated with tocilizumab. It has been postulated that this potential side effect could be due to a significant inhibition of IL-6 production. The risk of herpes zoster reactivation was found to be significantly increased in patients receiving tofacitinib. Data from the phase II, III and long-term extension studies showed that the incidence rate of herpes zoster reactivation was 4.4 per 100 patient-years in patients receiving tofacitinib, compared to 1.5 per patient-years in the placebo arm. The risk is substantially higher among Asians, the elderly and those using higher doses of glucocorticoids [65].
Baricitinib, another novel JAK inhibitor, has also been evaluated in several phase III clinical trials. It preferentially inhibits JAK1 and JAK2 and demonstrates efficacy in patients with RA in different clinical settings [6669] (Table 3). In the RA-BEAM trial, patients with active RA on background MTX were randomized to receive baricitinib 4 mg daily, adalimumab 40 mg every 2 weeks or placebo (switched to baricitinib at week 24) for 52 weeks. At week 12, patients receiving baricitinib were more likely to achieve ACR20 response compared with those receiving adalimumab or placebo (70 vs. 61 vs. 40%). The ACR20 response rates at week 12 in patients receiving 4 mg baricitinib and placebo were 70 and 40%, respectively. There were also greater reductions in the HAQ-DI scores and progression of mean total modified Sharp scores at 24 weeks [69]. Similar results were also demonstrated in the RA-BUILD trial. Patients with active RA and who had an inadequate response to conventional synthetic DMARDs were randomized to receive baricitinib (2 or 4 mg daily) or placebo. Patients receiving 4 mg baricitinib achieved higher ACR20 response rates than those receiving placebo at 12 weeks [66]. In addition, patients who had an inadequate response to tumour necrosis factor inhibitors also showed a significant improvement after receiving high-dose baricitinib. The ACR20 response rates at week 12 in patients receiving 4 mg baricitinib and placebo were 55 and 27%, respectively [67]. To date, baricitinib is pending approval by the FDA and EMA.
Table 3
Clinical trial of baricitinib
Study name
Number of subjects
Subject characteristics
Intervention
Primary endpoints
Results
RA-BEGIN [68]
588
DMARD naive
Baricitinib 4 mg + MTX 10-20 mg per week vs. baricitinib 4 mg vs. MTX 10–20 mg per week
ACR20 response
77 vs. 62%a
RA-BEAM [69]
1307
MTX-IR
Baricitinib 4 mg vs. adalimumab 40 mg q2w vs. placebo
ACR20 response
70 vs. 61 vs. 40%b
RA-BUILD [66]
684
DMARD-IR
Baricitinib (2 or 4 mg) vs. placebo
ACR20 response
62 vs. 39%c
RA-BEACON [67]
527
TNFi-IR
Baricitinib (2 or 4 mg) vs. placebo
ACR20 response
55 vs. 27%c
RA-BEYOND
Estimated 3073
 
Baricitinib (2 or 4 mg)
1 drug-related adverse event or any serious adverse events
Ongoing
aThe primary endpoint is a non-inferiority comparison of baricitinib monotherapy to MTX monotherapy
bThe primary endpoint is a superiority comparison of baricitinib therapy to placebo. Baricitinib therapy is compared with adalimumab based on non-inferiority design
cThe primary endpoint is the comparison between baricitinib 4mg and placebo
Meanwhile, other JAK inhibitors are being evaluated in phase III clinical trials. Filgotinib developed by Galapagos NV/Gilead and ABT-494 by AbbVie are both selective JAK1 inhibitors. The use of these agents can theoretically reduce the risk of JAK2- and JAK3-associated adverse reactions. Both filgotinib and ABT-494 showed promising results in patients with RA in phase IIb studies [7073], and phase III studies are being conducted to evaluate their therapeutic efficacies (Table 4).
Table 4
Clinical trials of filgotinib and ABT-494
Study drug
Estimated enrolment
Subject characteristics
Intervention
Primary endpoints
Filgotinib
1200
MTX naive
Filgotinib + MTX vs. filgotinib vs. MTX
ACR20 response
NCT02886728
1650
MTX-IR
Filgotinib vs. adalimumab vs. placebo
ACR20 response
NCT02889796
423
bDMARD-IR
Filgotinib vs. placebo
ACR20 response
NCT02873936
ABT-494
975
MTX naive
ABT-494 vs. MTX
ACR50 response;
DAS28-CRP remission
NCT02706873
1500
MTX-IR
ABT-494 vs. adalimumab vs. placebo
ACR20 response
NCT02629159
600
MTX-IR
ABT-494 vs. MTX
ACR20 response;
DAS28-CRP LDA
NCT02706951
600
csDMARD-IR
ABT-494 vs. placebo
ACR20 response;
DAS28-CRP LDA
NCT02675426

Bruton’s tyrosine kinase pathway

Bruton’s tyrosine kinase (BTK) is another key intracellular kinase being actively investigated for the treatment of RA in addition to other immune-mediated disorders, e.g. SLE. It is a member of the Tec family of non-receptor tyrosine kinases with restricted expression in B cells and myeloid cells, such as macrophages and dendritic cells [74]. It plays a crucial role in B cell development and activation. When an antigen binds to the B cell receptor, spleen tyrosine kinase (SYK) is activated and leads to subsequent phosphorylation of adaptor proteins recruiting PI3K to the plasma membrane. As a result, intracellular levels of phosphatidylinositol-3,4,5-triphosphate (PIP3) increases [75]. PIP3 binds to the pleckstrin homology domain of BTK and thereby promotes the recruitment of BTK to the plasma membrane [76]. Subsequent phosphorylation of BTK by the Src-kinases and SYK activates phospholipase C-γ2, which leads to nuclear factor κB and nuclear factor of activated T cells transcriptional activation [77]. Through these signalling pathways, BTK activation induces B cell survival, proliferation and differentiation into plasma cell. Mutations of the BTK genes are associated with the development of X-linked agammaglobulinaemia in human and X-linked immunodeficiency in mice [78, 79]. In addition to B cell receptor signalling, BTK is also associated with macrophage signalling through the FCγ receptors. In the absence of BTK, FCγ receptor-associated functions are impaired. In animal models, macrophages from mice with X-linked immunodeficiency produce less nitric oxide, TNF-α and IL-Iβ [80, 81].
Given that BTK is functionally active in both B cells and myeloid cell function, it is an attractive therapeutic target for RA. In particular, inhibiting the kinase activity of BTK would block multiple signalling pathways in different cell populations. In the CIA model, mice with mutations in BTK have decreased susceptibility to develop arthritis [82]. Similarly, FCγ receptor-deficient mice do not develop arthritis, even with the presence of auto-antibodies [83]. Consequently, several small molecule BTK inhibitors have been developed and demonstrated efficacy in animal models of RA [84]. However, only six BTK inhibitors are currently reported to be in clinical development for RA. All of the inhibitors selectively target the ATP-binding pocket of BTK, and the irreversible inhibitors covalently bind the cysteine residue in the active site of the kinase domain [85].
CC-292 is the first irreversible BTK inhibitor that has been evaluated in a phase II study. Forty-seven patients with active RA and had an inadequate response to methotrexate were randomized to receive either CC-292 375 mg daily versus placebo. The primary endpoint was the ACR20 response at 4 weeks. The study was completed in March 2016 but the results have not been published so far (NCT01975610). Other potential BTK inhibitors are still being investigated in pre-clinical or early phase clinical studies. The phase I study on HM71224 (NCT01765478), developed by Hamni, has just been completed, while the phase I study on TK-020 (NCT02413255), developed by Takeda, is still ongoing [86].

Phosphoinositide-3-kinase pathway

PI3Ks are lipid-signalling kinases that phosphorylate phosphoinositides to produce phosphorylated inositol lipids. PI3Ks are classified into class I, II and III according to their structures, regulations and lipid substrate specificities [87, 88]. To date, only the functions of class I PI3Ks have been well characterized, whereas the roles of class II and III PI3Ks in humans are yet to be elucidated. Class I PI3Ks, which include PI3Kα, PI3Kβ, PI3Kδ and PI3Kγ, catalyze the phosphorylation of phosphatidylinositol-4,5-bisphosphate to phosphatidylinositol-3,4,5-trisphosphate (Table 5). Through subsequent signalling cascades, class I PI3Ks control many cellular functions, such as growth, proliferation, survival and apoptosis, as well as leukocyte adhesion and migration. PI3Kα and PI3Kβ are ubiquitously expressed, whereas PI3Kδ and PI3Kγ are preferentially expressed in leukocytes and play a crucial role in innate and adaptive immune response.
Table 5
Isoforms of PI3K
 
PI3K isoform
Catalytic subunit
Regulatory subunits
Substrate
Product
Class IA
PI3Kα
PI3Kβ
PI3Kδ
p110α
p110β
p110δ
p85α, p85β, p55α, p55γ, p50α
PI-4,5-P2
PIP3
Class IB
PI3Kγ
p110γ
p101, p84
PI-4,5-P2
PIP3
Class II
 
PIK3-C2
PIK3-C3
PIK3-C2
 
PI-4-P
PI
PI-3,4P2
PI-3-P
Class III
 
VPS34
P150
PI
PI-3-P
In T cells, class I PI3Ks are activated by T cell receptor (TCR) or IL-2 receptor engagement. In p110γ knockout T cells, TCR-mediated early signalling is relatively unaffected, but they proliferate less after stimulation with CD3-specific antibody and produce lower levels of cytokines in vitro [89]. Similarly, PI3Kδ kinase inactive knockin mice also show reduced T cell proliferation and activation in vitro, and impaired antigen-specific T cell responses in vivo [90]. In addition, PI3Kδ is involved in the differentiation of T cells. In animal models, p110δ mutant mice had impaired differentiation along the T helper (Th) 1 and Th 2 lineage [91] and exhibited a significant decrease in T helper 2 cytokine responses [92]. P110δ mutant mice also had reduced regulatory T cell (Treg) populations in the spleen and lymph nodes, implicating PI3Kδ in the maintenance of Treg in the periphery. Moreover, Treg cells with inactive PI3Kδ had attenuated secretion of IL-10 to suppress T cell proliferation in vitro [93].
PI3Kδ is essential for B cell development and function as it generates survival signals even without antigen binding to the B cell receptors [9496]. In animal models, PI3Kδ mutant mice have significant reductions in the IgM producing B cell and marginal zone B cell populations [96]. B cell proliferative responses to IL-4 stimulation and T cell-independent antibody responses in PI3Kδ mutant mice are also attenuated [97, 98]. Furthermore, B cells deficient in p110δ showed diminished chemotactic responses to CXCL13 and CXCR5-dependent B cell homing to Peyer’s patches [99].
In common with other leucocytes, class I PI3Ks are markedly enriched in neutrophils. In p110γ knockout mice, neutrophils migrate less efficiently towards chemokines and chemo-attractants, such as complement C5a and bacterial peptide N-formyl-methionyl-leucyl-pehnylalamine (fMLP) [100, 101]. Neutrophils with inactive p110γ also demonstrated impaired reactive oxygen species production [101] and neutrophil respiratory burst in response to fMLP [102]. Apart from neutrophils, dendritic cells from p110γ knockout mice also developed impaired migration to the site of inflammation [103]. Although the involvement of PI3Kδ in neutrophil functions has been controversial, PI3Kδ may have a role in promoting IL-6 release in response to cKit stimulation on dendritic cells [104].
Based on these findings, PI3Kδ and PI3Kγ have attracted considerable interest as pharmacological targets in the treatment of RA [105, 106]. In the CIA model, mice treated with a p110γ selective inhibitor show significant reduction in joint inflammation. Histological measures of synovial inflammation and neutrophil infiltration in arthritic joints are also significantly attenuated [107]. PI3Kγ is also implicated in the regulation of synovial fibroblasts, in which p110γ deficiency leads to a milder inflammatory-erosive arthritis and TNF-mediated cartilage destruction through reduced expression of matrix metalloproteinases in fibroblasts and chondrocytes. In vitro analyses confirmed that the decreased invasiveness of fibroblasts is mediated by reduced phosphorylation of Akt and extracellular signal-regulated kinase. Similar findings using a PI3Kγ-specific inhibitor in human synovial fibroblasts from patients with RA who exhibit disease-specific up-regulation of PI3Kγ was also confirmed in this study [108]. A recent study also reported the role of PI3K signalling pathway in synovial angiogenesis in the CIA model. Hypoxia-inducible factor 1α and vascular endothelial growth factor are up-regulated through PI3K signalling and mediates subsequent neovascularization of the synovium [109].
At present, PI3K inhibition is a major focus in the field of oncology. Idelalisib, the first-in-class PI3K inhibitor, appears efficacious in refractory chronic lymphocytic leukaemia and indolent non-Hodgkin’s lymphoma and has provided some safety data concerning PI3K inhibition [110113]. Many pharmaceutical companies are exploring the potential of PI3K inhibitors in autoimmune diseases, like RA. However, no PI3K inhibitor has yet entered a clinical development programme to our knowledge.

Neuropathways in RA

The reciprocal effects of the nervous system on immunity has raised recent interest. It is well known that the nervous system regulates inflammation through peripheral nerves and a variety of neurotransmitters and neuropeptides. In animal models, peripheral denervation attenuates joint inflammation in mice with adjuvant induced arthritis [114]. An imbalance of the autonomic nervous system has been implicated in many inflammatory conditions. In general, activation of para-sympathetic nervous system mediates an anti-inflammatory response, while the sympathetic nervous system may have both pro-inflammatory and anti-inflammatory properties [115]. The para-sympathetic nervous system, through the vagus nerve, exerts anti-inflammatory actions. In a mouse model, electrical stimulation of the peripheral part of the vagus nerve significantly decreases serum TNF-α levels in rats with bilateral cervical vagotomy. In vitro studies showed that acetylcholine (ACh) inhibits pro-inflammatory cytokine release by the macrophages in a dose dependent fashion [116]. Subsequent research had identified the neuronal type α7-ACh receptor subtype as the essential regulator of the anti-inflammatory effects mediated by the para-sympathetic nervous system [117]. α7-ACh receptors are not only found on neurons but also widely expressed in immune cells and fibroblast like synoviocytes [118120]. In the CIA model, administration of a specific α7-ACh receptor agonist showed effective attenuation of arthritis and systemic inflammatory responses [121, 122]. Conversely, α7-ACh receptor knockout mice developed more severe arthritis compared with the wild type controls [123]. Apart from the effects mediated by immune cells, activation of the α7-ACh receptor in the fibroblast like synoviocytes also suppresses the production of pro-inflammatory cytokines [119, 124]. The spleen also plays an important role in the regulation of systemic inflammation. Although there is no evidence showing that lymphoid organs are directly innervated by the para-sympathetic innervation, studies have shown that the spleen is able to receive signals from the para-sympathetic system and vagus nerve activation may inhibit TNF-α production by splenic macrophages via the celiac superior mesenteric plexus [125, 126]. Recently a clinical trial provided proof of concept that vagal nerve stimulation could be therapeutically feasible in RA [127]. In this study, 17 patients with RA received vagus nerve stimulation. At day 42, DAS28-CRP levels significantly improved from baseline (6.05 ± 0.18 vs. 4.16) and the results were more robust in biologic naive patients. The proportions of patients achieving ACR20, ACR50 and ACR70 response were 71.4, 57.1 and 28.6%, respectively. Among patients who responded to vagus nerve stimulation, their serum IL-6 levels were significantly reduced from baseline and the reduction in IL-6 levels correlated with the improvement in disease activity [127].
The sympathetic nervous system, in turn, mediates its effect on the immune system via catecholamine production. Both primary and secondary lymphoid organs are innervated by the sympathetic nervous system [128, 129]. Lymphocytes primarily express the β2 adrenergic receptors while cells of the innate immune systems express α1, α2 and β2 adrenergic receptors [129]. The effect of sympathetic nervous system on the immune system is more complex. In general, sympathetic activation is able to inhibit the development of a Th1 immune response [128]. Patients with RA have an imbalance of the autonomic nervous system, with increased sympathetic and reduced para-sympathetic activities [130]. However, peripheral mononuclear cells from patients with RA express lower levels of β2 adrenergic receptors and, therefore, less effective in suppressing T cell activation and proliferation via β2 adrenergic activation [131]. In contrary, catecholamines mediate their effects through α1 adrenergic receptors on the peripheral mononuclear cells [132], leading to increased production of IL-6 [133]. In addition, α2 stimulation promotes the proliferation of fibroblast-like synoviocytes in patients with RA and subsequent production of pro-inflammatory cytokines [134]. At present, modulations of the sympathetic nervous system yield inconsistent effects in animal arthritis models, and none of them has been evaluated in clinical development programme.

Long-term remission strategies and immune homeostasis

Dendritic cell therapeutics

Dendritic cells (DCs) play a key role in both the innate and adaptive immunity. In the periphery, DCs exist as immature cells and undergo differentiation after exposure to pro-inflammatory cytokines, immune complexes or pathogens and endogenous inflammatory factors that are recognized by the Toll-like receptors. Mature DCs then migrate to lymph nodes and present antigens on the MHC molecules to the naive T cells. Cytokines produced by the DCs also promote the differentiation and maturation of T and B cells [135]. DCs are important for maintaining intra-thymic and peripheral tolerance. Immature DCs recognize and phagocytose apoptotic cells [136], rendering DCs tolerogenic as they produce immunosuppressive cytokines and promote cross tolerance of the T cells by inducing T cell anergy, clonal deletion or Treg and suppressor T cell differentiation [137139]. In normal circumstances, this process does not result in DC maturation. However, failed clearance of apoptotic cells or exposure to maturation signals may induce the production of immunogenic DCs [140, 141].
In patients with RA, the synovial DCs are activated in response to pro-inflammatory cytokines, with up-regulation of MHC and co-stimulatory molecule expression [142, 143]. They also produce IL-12 and IL-23 to potentially promote the differentiation of Th1 and Th17 cell [144]. Treatment with TNFi not only ameliorates the clinical symptoms of RA but also reduces the number of activated DCs and inhibits DC maturation [145, 146]. These observations support the strategy of targeting dendritic cells for the treatment of RA.
In CIA models, administration of low doses of semi-mature DCs inhibits disease progression by enhancing Treg populations and suppresses antigen-specific Th1- and Th17-mediated immunity [147]. Treatment of CIA mice with tolerogenic DCs modified by tacrolimus significantly inhibited the severity and progression of disease with the alteration of the proportion of the Th1 and Th17 in the spleen [148]. Similar results have been confirmed by administration of tolerogenic DCs generated by GM-CSF and IL-4 stimulations [149]. These data provide a better understanding and consolidate the role of tolerogenic DCs in the treatment of RA [150, 151].
The first clinical study using tolerogenic DCs was carried out in the University of Queensland. In this phase 1 study, tolerogenic DCs were generated by treatment of monocyte-derived DCs with an inhibitor of NFkB signalling. These tolerogenic DCs are deficient for CD40 expression but express high levels of CD86 [152]. After priming with citrullinated peptide antigens, the tolerogenic DCs were injected intradermally to 18 patients with RA positive for HLA-DR expression. The treatment was well tolerated with no major adverse effects. The results of another phase 1 trial were published recently. It is a randomized, unblinded, placebo-controlled, dose-escalation phase I study. The tolerogenic DCs were generated by pharmacological modulation of monocyte-derived DCs from patients with dexamethasone and vitamin D3, together with a Toll-like receptor-4 agonist. The tolerogenic DCs express high levels of MHC class II molecules and intermediate levels of co-stimulatory molecules CD80 and CD86 and produce high levels of IL-10 and TGF-β [150]. Instead of intradermal injection, 13 patients received three different doses of tolerogenic DCs through intra-articular injection under arthroscopic guidance. The primary objective was to assess the safety of intra-articular injection of tolerogenic DCs in patients with RA. No patient developed an exacerbation of arthritis in the target knee within 5 days of treatment. At day 14, arthroscopic synovitis was present in all participants except for one who received 10 × 106 tolerogenic DCs. Two patients receiving 3 × 106 tolerogenic DCs and one patient receiving 10 × 106 tolerogenic DCs demonstrated improvement in vascularity on day 14, whereas no improvement was seen in six patients receiving 1 × 106 tolerogenic DCs or placebo. Synovitis improved in one of three patients in each of the 1 × 106 and 3 × 106 tolerogenic DC cohorts and in both assessable patients in the 10 × 106 tolerogenic DC cohorts. There were no trends in DAS28 or HAQ score or consistent immunomodulatory effects in peripheral blood [153].
Although tolerogenic DC therapy demonstrates promising results in patients with RA, there are some important issues to be tackled for further clinical evaluation. Administration of tolerogenic DC therapy in patients with established autoimmunity may be less efficacious, and therefore, it should perhaps ideally be given to the patient with RA as early as possible. However, the timing of the treatment is still controversial as potentially elevation of regulatory pathways may suffice. Secondly, the selection of auto-antigens for the generation of tolerogenic DCs may be critical for the efficacy of tolerogenic DC therapy in patients with RA. However, these auto-antigens are not always detected and little is known about the immunodominant profile of these auto-antigens in association with RA pathogenesis and disease progression. Besides, careful consideration should be given to the dose of tolerogenic DCs administered because a high dose of tolerogenic DCs may be potentially immunogenic [154156]. At present, there is no reliable biomarker of tolerance induction that can be measured after administration of tolerogenic DC therapy. Therefore, further studies are necessary for the development of this immunotherapy.

Conclusion

Recent advances in the understanding of the pathophysiology of RA facilitate the development of new therapeutic agents. Inhibition of the JAK pathway has already been used in clinical practice, and more selective JAK inhibitors are expected to be available in the near future. The therapeutic potential of BTK inhibitors is being evaluated in phase II studies. As a result, it is expected that over time we will see a balance of therapeutic interventions between biologic and small molecule targeted synthetic DMARDs.

Compliance with ethical standards

Conflict of interest

There is no conflict of interest for TC. IBM has received honoraria or research funding from AbbVie, BMS, Janssen, Novartis, Pfizer, Roche and UCB.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Solomon DH, Karlson EW, Rimm EB, Cannuscio CC, Mandl LA, Manson JE, Stampfer MJ, Curhan GC (2003) Cardiovascular morbidity and mortality in women diagnosed with rheumatoid arthritis. Circulation 107(9):1303–1307PubMedCrossRef Solomon DH, Karlson EW, Rimm EB, Cannuscio CC, Mandl LA, Manson JE, Stampfer MJ, Curhan GC (2003) Cardiovascular morbidity and mortality in women diagnosed with rheumatoid arthritis. Circulation 107(9):1303–1307PubMedCrossRef
2.
Zurück zum Zitat Semb AG, Kvien TK, Aastveit AH, Jungner I, Pedersen TR, Walldius G, Holme I (2010) Lipids, myocardial infarction and ischaemic stroke in patients with rheumatoid arthritis in the Apolipoprotein-related Mortality RISk (AMORIS) study. Ann Rheum Dis 69(11):1996–2001PubMedCrossRef Semb AG, Kvien TK, Aastveit AH, Jungner I, Pedersen TR, Walldius G, Holme I (2010) Lipids, myocardial infarction and ischaemic stroke in patients with rheumatoid arthritis in the Apolipoprotein-related Mortality RISk (AMORIS) study. Ann Rheum Dis 69(11):1996–2001PubMedCrossRef
3.
Zurück zum Zitat Peters MJ, Symmons DP, McCarey D, Dijkmans BA, Nicola P, Kvien TK, McInnes IB, Haentzschel H, Gonzalez-Gay MA, Provan S, Semb A, Sidiropoulos P, Kitas G, Smulders YM, Soubrier M, Szekanecz Z, Sattar N, Nurmohamed MT (2010) EULAR evidence-based recommendations for cardiovascular risk management in patients with rheumatoid arthritis and other forms of inflammatory arthritis. Ann Rheum Dis 69(2):325–331PubMedCrossRef Peters MJ, Symmons DP, McCarey D, Dijkmans BA, Nicola P, Kvien TK, McInnes IB, Haentzschel H, Gonzalez-Gay MA, Provan S, Semb A, Sidiropoulos P, Kitas G, Smulders YM, Soubrier M, Szekanecz Z, Sattar N, Nurmohamed MT (2010) EULAR evidence-based recommendations for cardiovascular risk management in patients with rheumatoid arthritis and other forms of inflammatory arthritis. Ann Rheum Dis 69(2):325–331PubMedCrossRef
4.
Zurück zum Zitat Meune C, Touze E, Trinquart L, Allanore Y (2009) Trends in cardiovascular mortality in patients with rheumatoid arthritis over 50 years: a systematic review and meta-analysis of cohort studies. Rheumatology (Oxford) 48(10):1309–1313CrossRef Meune C, Touze E, Trinquart L, Allanore Y (2009) Trends in cardiovascular mortality in patients with rheumatoid arthritis over 50 years: a systematic review and meta-analysis of cohort studies. Rheumatology (Oxford) 48(10):1309–1313CrossRef
5.
Zurück zum Zitat Avina-Zubieta JA, Choi HK, Sadatsafavi M, Etminan M, Esdaile JM, Lacaille D (2008) Risk of cardiovascular mortality in patients with rheumatoid arthritis: a meta-analysis of observational studies. Arthritis Rheum 59(12):1690–1697PubMedCrossRef Avina-Zubieta JA, Choi HK, Sadatsafavi M, Etminan M, Esdaile JM, Lacaille D (2008) Risk of cardiovascular mortality in patients with rheumatoid arthritis: a meta-analysis of observational studies. Arthritis Rheum 59(12):1690–1697PubMedCrossRef
6.
Zurück zum Zitat Askling J, Fored CM, Brandt L, Baecklund E, Bertilsson L, Feltelius N, Coster L, Geborek P, Jacobsson LT, Lindblad S, Lysholm J, Rantapaa-Dahlqvist S, Saxne T, Klareskog L (2005) Risks of solid cancers in patients with rheumatoid arthritis and after treatment with tumour necrosis factor antagonists. Ann Rheum Dis 64(10):1421–1426PubMedPubMedCentralCrossRef Askling J, Fored CM, Brandt L, Baecklund E, Bertilsson L, Feltelius N, Coster L, Geborek P, Jacobsson LT, Lindblad S, Lysholm J, Rantapaa-Dahlqvist S, Saxne T, Klareskog L (2005) Risks of solid cancers in patients with rheumatoid arthritis and after treatment with tumour necrosis factor antagonists. Ann Rheum Dis 64(10):1421–1426PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Geborek P, Bladstrom A, Turesson C, Gulfe A, Petersson IF, Saxne T, Olsson H, Jacobsson LT (2005) Tumour necrosis factor blockers do not increase overall tumour risk in patients with rheumatoid arthritis, but may be associated with an increased risk of lymphomas. Ann Rheum Dis 64(5):699–703PubMedPubMedCentralCrossRef Geborek P, Bladstrom A, Turesson C, Gulfe A, Petersson IF, Saxne T, Olsson H, Jacobsson LT (2005) Tumour necrosis factor blockers do not increase overall tumour risk in patients with rheumatoid arthritis, but may be associated with an increased risk of lymphomas. Ann Rheum Dis 64(5):699–703PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Thomas E, Brewster DH, Black RJ, Macfarlane GJ (2000) Risk of malignancy among patients with rheumatic conditions. Int J Cancer 88(3):497–502PubMedCrossRef Thomas E, Brewster DH, Black RJ, Macfarlane GJ (2000) Risk of malignancy among patients with rheumatic conditions. Int J Cancer 88(3):497–502PubMedCrossRef
9.
Zurück zum Zitat Smolen JS, Breedveld FC, Burmester GR, Bykerk V, Dougados M, Emery P, Kvien TK, Navarro-Compan MV, Oliver S, Schoels M, Scholte-Voshaar M, Stamm T, Stoffer M, Takeuchi T, Aletaha D, Andreu JL, Aringer M, Bergman M, Betteridge N, Bijlsma H, Burkhardt H, Cardiel M, Combe B, Durez P, Fonseca JE, Gibofsky A, Gomez-Reino JJ, Graninger W, Hannonen P, Haraoui B, Kouloumas M, Landewe R, Martin-Mola E, Nash P, Ostergaard M, Ostor A, Richards P, Sokka-Isler T, Thorne C, Tzioufas AG, van Vollenhoven R, de Wit M, van der Heijde D (2016) Treating rheumatoid arthritis to target: 2014 update of the recommendations of an international task force. Ann Rheum Dis 75(1):3–15PubMedCrossRef Smolen JS, Breedveld FC, Burmester GR, Bykerk V, Dougados M, Emery P, Kvien TK, Navarro-Compan MV, Oliver S, Schoels M, Scholte-Voshaar M, Stamm T, Stoffer M, Takeuchi T, Aletaha D, Andreu JL, Aringer M, Bergman M, Betteridge N, Bijlsma H, Burkhardt H, Cardiel M, Combe B, Durez P, Fonseca JE, Gibofsky A, Gomez-Reino JJ, Graninger W, Hannonen P, Haraoui B, Kouloumas M, Landewe R, Martin-Mola E, Nash P, Ostergaard M, Ostor A, Richards P, Sokka-Isler T, Thorne C, Tzioufas AG, van Vollenhoven R, de Wit M, van der Heijde D (2016) Treating rheumatoid arthritis to target: 2014 update of the recommendations of an international task force. Ann Rheum Dis 75(1):3–15PubMedCrossRef
10.
Zurück zum Zitat van Eijk IC, Nielen MM, van der Horst-Bruinsma I, Tijhuis GJ, Boers M, Dijkmans BA, van Schaardenburg D (2012) Aggressive therapy in patients with early arthritis results in similar outcome compared with conventional care: the STREAM randomized trial. Rheumatology (Oxford) 51(4):686–694CrossRef van Eijk IC, Nielen MM, van der Horst-Bruinsma I, Tijhuis GJ, Boers M, Dijkmans BA, van Schaardenburg D (2012) Aggressive therapy in patients with early arthritis results in similar outcome compared with conventional care: the STREAM randomized trial. Rheumatology (Oxford) 51(4):686–694CrossRef
11.
Zurück zum Zitat Schipper LG, Vermeer M, Kuper HH, Hoekstra MO, Haagsma CJ, Den Broeder AA, van Riel P, Fransen J, van de Laar MA (2012) A tight control treatment strategy aiming for remission in early rheumatoid arthritis is more effective than usual care treatment in daily clinical practice: a study of two cohorts in the Dutch Rheumatoid Arthritis Monitoring registry. Ann Rheum Dis 71(6):845–850PubMedCrossRef Schipper LG, Vermeer M, Kuper HH, Hoekstra MO, Haagsma CJ, Den Broeder AA, van Riel P, Fransen J, van de Laar MA (2012) A tight control treatment strategy aiming for remission in early rheumatoid arthritis is more effective than usual care treatment in daily clinical practice: a study of two cohorts in the Dutch Rheumatoid Arthritis Monitoring registry. Ann Rheum Dis 71(6):845–850PubMedCrossRef
12.
Zurück zum Zitat Goekoop-Ruiterman YP, de Vries-Bouwstra JK, Kerstens PJ, Nielen MM, Vos K, van Schaardenburg D, Speyer I, Seys PE, Breedveld FC, Allaart CF, Dijkmans BA (2010) DAS-driven therapy versus routine care in patients with recent-onset active rheumatoid arthritis. Ann Rheum Dis 69(1):65–69PubMedCrossRef Goekoop-Ruiterman YP, de Vries-Bouwstra JK, Kerstens PJ, Nielen MM, Vos K, van Schaardenburg D, Speyer I, Seys PE, Breedveld FC, Allaart CF, Dijkmans BA (2010) DAS-driven therapy versus routine care in patients with recent-onset active rheumatoid arthritis. Ann Rheum Dis 69(1):65–69PubMedCrossRef
13.
Zurück zum Zitat Soubrier M, Lukas C, Sibilia J, Fautrel B, Roux F, Gossec L, Patternotte S, Dougados M (2011) Disease activity score-driven therapy versus routine care in patients with recent-onset active rheumatoid arthritis: data from the GUEPARD trial and ESPOIR cohort. Ann Rheum Dis 70(4):611–615PubMedPubMedCentralCrossRef Soubrier M, Lukas C, Sibilia J, Fautrel B, Roux F, Gossec L, Patternotte S, Dougados M (2011) Disease activity score-driven therapy versus routine care in patients with recent-onset active rheumatoid arthritis: data from the GUEPARD trial and ESPOIR cohort. Ann Rheum Dis 70(4):611–615PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Gullick NJ, Oakley SP, Zain A, Gibson T, Jones T, Mistlin A, Rees JD, Panayi GS, Kirkham BW (2012) Goal-directed therapy for RA in routine practice is associated with improved function in patients with disease duration up to 15 years. Rheumatology (Oxford) 51(4):759–761CrossRef Gullick NJ, Oakley SP, Zain A, Gibson T, Jones T, Mistlin A, Rees JD, Panayi GS, Kirkham BW (2012) Goal-directed therapy for RA in routine practice is associated with improved function in patients with disease duration up to 15 years. Rheumatology (Oxford) 51(4):759–761CrossRef
15.
Zurück zum Zitat Brenol CV, da Chakr RM, Andrade NP, Toni M, Laurindo IM, Brenol JC, Xavier RM (2015) Daily practice feasibility and effectiveness of treating long-standing rheumatoid arthritis to target with synthetic disease-modifying antirheumatic drugs: a prospective cohort study. Clin Rheumatol 34(10):1781–1785PubMedCrossRef Brenol CV, da Chakr RM, Andrade NP, Toni M, Laurindo IM, Brenol JC, Xavier RM (2015) Daily practice feasibility and effectiveness of treating long-standing rheumatoid arthritis to target with synthetic disease-modifying antirheumatic drugs: a prospective cohort study. Clin Rheumatol 34(10):1781–1785PubMedCrossRef
16.
Zurück zum Zitat Thiele K, Huscher D, Bischoff S, Spathling-Mestekemper S, Backhaus M, Aringer M, Kohlmann T, Zink A, German Collaborative Arthritis (2013) Performance of the 2011 ACR/EULAR preliminary remission criteria compared with DAS28 remission in unselected patients with rheumatoid arthritis. Ann Rheum Dis 72(7):1194–1199PubMedCrossRef Thiele K, Huscher D, Bischoff S, Spathling-Mestekemper S, Backhaus M, Aringer M, Kohlmann T, Zink A, German Collaborative Arthritis (2013) Performance of the 2011 ACR/EULAR preliminary remission criteria compared with DAS28 remission in unselected patients with rheumatoid arthritis. Ann Rheum Dis 72(7):1194–1199PubMedCrossRef
17.
Zurück zum Zitat Provan SA, Semb AG, Hisdal J, Stranden E, Agewall S, Dagfinrud H, Angel K, Atar D, Kvien TK (2011) Remission is the goal for cardiovascular risk management in patients with rheumatoid arthritis: a cross-sectional comparative study. Ann Rheum Dis 70(5):812–817PubMedCrossRef Provan SA, Semb AG, Hisdal J, Stranden E, Agewall S, Dagfinrud H, Angel K, Atar D, Kvien TK (2011) Remission is the goal for cardiovascular risk management in patients with rheumatoid arthritis: a cross-sectional comparative study. Ann Rheum Dis 70(5):812–817PubMedCrossRef
18.
Zurück zum Zitat Pavelka K, Chon Y, Newmark R, Lin SL, Baumgartner S, Erondu N (2015) A study to evaluate the safety, tolerability, and efficacy of brodalumab in subjects with rheumatoid arthritis and an inadequate response to methotrexate. J Rheumatol 42(6):912–919PubMedCrossRef Pavelka K, Chon Y, Newmark R, Lin SL, Baumgartner S, Erondu N (2015) A study to evaluate the safety, tolerability, and efficacy of brodalumab in subjects with rheumatoid arthritis and an inadequate response to methotrexate. J Rheumatol 42(6):912–919PubMedCrossRef
19.
Zurück zum Zitat Genovese MC, Braun DK, Erickson JS, Berclaz PY, Banerjee S, Heffernan MP, Carlier H (2016) Safety and efficacy of open-label subcutaneous ixekizumab treatment for 48 weeks in a phase II study in biologic-naive and TNF-IR patients with rheumatoid arthritis. J Rheumatol 43(2):289–297PubMedCrossRef Genovese MC, Braun DK, Erickson JS, Berclaz PY, Banerjee S, Heffernan MP, Carlier H (2016) Safety and efficacy of open-label subcutaneous ixekizumab treatment for 48 weeks in a phase II study in biologic-naive and TNF-IR patients with rheumatoid arthritis. J Rheumatol 43(2):289–297PubMedCrossRef
20.
Zurück zum Zitat Genovese MC, Greenwald M, Cho CS, Berman A, Jin L, Cameron GS, Benichou O, Xie L, Braun D, Berclaz PY, Banerjee S (2014) A phase II randomized study of subcutaneous ixekizumab, an anti-interleukin-17 monoclonal antibody, in rheumatoid arthritis patients who were naive to biologic agents or had an inadequate response to tumor necrosis factor inhibitors. Arthritis & Rheumatology 66(7):1693–1704CrossRef Genovese MC, Greenwald M, Cho CS, Berman A, Jin L, Cameron GS, Benichou O, Xie L, Braun D, Berclaz PY, Banerjee S (2014) A phase II randomized study of subcutaneous ixekizumab, an anti-interleukin-17 monoclonal antibody, in rheumatoid arthritis patients who were naive to biologic agents or had an inadequate response to tumor necrosis factor inhibitors. Arthritis & Rheumatology 66(7):1693–1704CrossRef
21.
Zurück zum Zitat Blanco FJ, Moricke R, Dokoupilova E, Codding C, Neal J, Andersson M, Rohrer S, Richards H. (2017) Secukinumab in active rheumatoid arthritis: a randomized, double-blind placebo and active comparator controlled phase 3 study. Arthritis Rheumatol. doi:0.1002/art.40070 Blanco FJ, Moricke R, Dokoupilova E, Codding C, Neal J, Andersson M, Rohrer S, Richards H. (2017) Secukinumab in active rheumatoid arthritis: a randomized, double-blind placebo and active comparator controlled phase 3 study. Arthritis Rheumatol. doi:0.1002/art.40070
22.
Zurück zum Zitat Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Aelion JA, Lee SH, Codding CE, Kellner H, Ikawa T, Hugot S, Ligozio G, Mpofu S (2014) One-year efficacy and safety results of secukinumab in patients with rheumatoid arthritis: phase II, dose-finding, double-blind, randomized, placebo-controlled study. J Rheumatol 41(3):414–421PubMedCrossRef Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Aelion JA, Lee SH, Codding CE, Kellner H, Ikawa T, Hugot S, Ligozio G, Mpofu S (2014) One-year efficacy and safety results of secukinumab in patients with rheumatoid arthritis: phase II, dose-finding, double-blind, randomized, placebo-controlled study. J Rheumatol 41(3):414–421PubMedCrossRef
23.
Zurück zum Zitat Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Mazurov V, Aelion JA, Lee SH, Codding CE, Kellner H, Ikawa T, Hugot S, Mpofu S (2013) Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann Rheum Dis 72(6):863–869PubMedCrossRef Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Mazurov V, Aelion JA, Lee SH, Codding CE, Kellner H, Ikawa T, Hugot S, Mpofu S (2013) Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann Rheum Dis 72(6):863–869PubMedCrossRef
24.
Zurück zum Zitat Senolt L, Leszczynski P, Dokoupilova E, Gothberg M, Valencia X, Hansen BB, Canete JD (2015) Efficacy and safety of anti-interleukin-20 monoclonal antibody in patients with rheumatoid arthritis: a randomized phase IIa trial. Arthritis & Rheumatology 67(6):1438–1448CrossRef Senolt L, Leszczynski P, Dokoupilova E, Gothberg M, Valencia X, Hansen BB, Canete JD (2015) Efficacy and safety of anti-interleukin-20 monoclonal antibody in patients with rheumatoid arthritis: a randomized phase IIa trial. Arthritis & Rheumatology 67(6):1438–1448CrossRef
25.
Zurück zum Zitat Bussolino F, Wang JM, Defilippi P, Turrini F, Sanavio F, Edgell CJ, Aglietta M, Arese P, Mantovani A (1989) Granulocyte- and granulocyte-macrophage-colony stimulating factors induce human endothelial cells to migrate and proliferate. Nature 337(6206):471–473PubMedCrossRef Bussolino F, Wang JM, Defilippi P, Turrini F, Sanavio F, Edgell CJ, Aglietta M, Arese P, Mantovani A (1989) Granulocyte- and granulocyte-macrophage-colony stimulating factors induce human endothelial cells to migrate and proliferate. Nature 337(6206):471–473PubMedCrossRef
26.
Zurück zum Zitat Leizer T, Cebon J, Layton JE, Hamilton JA (1990) Cytokine regulation of colony-stimulating factor production in cultured human synovial fibroblasts: I. Induction of GM-CSF and G-CSF production by interleukin-1 and tumor necrosis factor. Blood 76(10):1989–1996PubMed Leizer T, Cebon J, Layton JE, Hamilton JA (1990) Cytokine regulation of colony-stimulating factor production in cultured human synovial fibroblasts: I. Induction of GM-CSF and G-CSF production by interleukin-1 and tumor necrosis factor. Blood 76(10):1989–1996PubMed
27.
Zurück zum Zitat Campbell IK, Novak U, Cebon J, Layton JE, Hamilton JA (1991) Human articular cartilage and chondrocytes produce hemopoietic colony-stimulating factors in culture in response to IL-1. J Immunol 147(4):1238–1246PubMed Campbell IK, Novak U, Cebon J, Layton JE, Hamilton JA (1991) Human articular cartilage and chondrocytes produce hemopoietic colony-stimulating factors in culture in response to IL-1. J Immunol 147(4):1238–1246PubMed
28.
Zurück zum Zitat Hamilton JA (2008) Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 8(7):533–544PubMedCrossRef Hamilton JA (2008) Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 8(7):533–544PubMedCrossRef
29.
Zurück zum Zitat Hansen G, Hercus TR, McClure BJ, Stomski FC, Dottore M, Powell J, Ramshaw H, Woodcock JM, Xu Y, Guthridge M, McKinstry WJ, Lopez AF, Parker MW (2008) The structure of the GM-CSF receptor complex reveals a distinct mode of cytokine receptor activation. Cell 134(3):496–507PubMedCrossRef Hansen G, Hercus TR, McClure BJ, Stomski FC, Dottore M, Powell J, Ramshaw H, Woodcock JM, Xu Y, Guthridge M, McKinstry WJ, Lopez AF, Parker MW (2008) The structure of the GM-CSF receptor complex reveals a distinct mode of cytokine receptor activation. Cell 134(3):496–507PubMedCrossRef
30.
Zurück zum Zitat Jenkins BJ, Blake TJ, Gonda TJ (1998) Saturation mutagenesis of the beta subunit of the human granulocyte-macrophage colony-stimulating factor receptor shows clustering of constitutive mutations, activation of ERK MAP kinase and STAT pathways, and differential beta subunit tyrosine phosphorylation. Blood 92(6):1989–2002PubMed Jenkins BJ, Blake TJ, Gonda TJ (1998) Saturation mutagenesis of the beta subunit of the human granulocyte-macrophage colony-stimulating factor receptor shows clustering of constitutive mutations, activation of ERK MAP kinase and STAT pathways, and differential beta subunit tyrosine phosphorylation. Blood 92(6):1989–2002PubMed
31.
Zurück zum Zitat Sato N, Sakamaki K, Terada N, Arai K, Miyajima A (1993) Signal transduction by the high-affinity GM-CSF receptor: two distinct cytoplasmic regions of the common beta subunit responsible for different signaling. EMBO J 12(11):4181–4189PubMedPubMedCentral Sato N, Sakamaki K, Terada N, Arai K, Miyajima A (1993) Signal transduction by the high-affinity GM-CSF receptor: two distinct cytoplasmic regions of the common beta subunit responsible for different signaling. EMBO J 12(11):4181–4189PubMedPubMedCentral
32.
Zurück zum Zitat Fleetwood AJ, Cook AD, Hamilton JA (2005) Functions of granulocyte-macrophage colony-stimulating factor. Crit Rev Immunol 25(5):405–428PubMedCrossRef Fleetwood AJ, Cook AD, Hamilton JA (2005) Functions of granulocyte-macrophage colony-stimulating factor. Crit Rev Immunol 25(5):405–428PubMedCrossRef
33.
Zurück zum Zitat Fleetwood AJ, Lawrence T, Hamilton JA, Cook AD (2007) Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J Immunol 178(8):5245–5252PubMedCrossRef Fleetwood AJ, Lawrence T, Hamilton JA, Cook AD (2007) Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J Immunol 178(8):5245–5252PubMedCrossRef
34.
Zurück zum Zitat Xu Y, Zhan Y, Lew AM, Naik SH, Kershaw MH (2007) Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking. J Immunol 179(11):7577–7584PubMedCrossRef Xu Y, Zhan Y, Lew AM, Naik SH, Kershaw MH (2007) Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking. J Immunol 179(11):7577–7584PubMedCrossRef
35.
Zurück zum Zitat Gilliet M, Boonstra A, Paturel C, Antonenko S, Xu XL, Trinchieri G, O’Garra A, Liu YJ (2002) The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. J Exp Med 195(7):953–958PubMedPubMedCentralCrossRef Gilliet M, Boonstra A, Paturel C, Antonenko S, Xu XL, Trinchieri G, O’Garra A, Liu YJ (2002) The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. J Exp Med 195(7):953–958PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Li BZ, Ye QL, Xu WD, Li JH, Ye DQ, Xu Y (2013) GM-CSF alters dendritic cells in autoimmune diseases. Autoimmunity 46(7):409–418PubMedCrossRef Li BZ, Ye QL, Xu WD, Li JH, Ye DQ, Xu Y (2013) GM-CSF alters dendritic cells in autoimmune diseases. Autoimmunity 46(7):409–418PubMedCrossRef
37.
Zurück zum Zitat Conti L, Gessani S (2008) GM-CSF in the generation of dendritic cells from human blood monocyte precursors: recent advances. Immunobiology 213(9–10):859–870PubMedCrossRef Conti L, Gessani S (2008) GM-CSF in the generation of dendritic cells from human blood monocyte precursors: recent advances. Immunobiology 213(9–10):859–870PubMedCrossRef
38.
Zurück zum Zitat Lebre MC, Tak PP (2008) Dendritic cell subsets: their roles in rheumatoid arthritis. Acta reumatologica portuguesa 33(1):35–45PubMed Lebre MC, Tak PP (2008) Dendritic cell subsets: their roles in rheumatoid arthritis. Acta reumatologica portuguesa 33(1):35–45PubMed
39.
Zurück zum Zitat Bell AL, Magill MK, McKane WR, Kirk F, Irvine AE (1995) Measurement of colony-stimulating factors in synovial fluid: potential clinical value. Rheumatol Int 14(5):177–182PubMedCrossRef Bell AL, Magill MK, McKane WR, Kirk F, Irvine AE (1995) Measurement of colony-stimulating factors in synovial fluid: potential clinical value. Rheumatol Int 14(5):177–182PubMedCrossRef
40.
Zurück zum Zitat Field M, Clinton L (1993) Expression of GM-CSF receptor in rheumatoid arthritis. Lancet 342(8881):1244PubMedCrossRef Field M, Clinton L (1993) Expression of GM-CSF receptor in rheumatoid arthritis. Lancet 342(8881):1244PubMedCrossRef
41.
Zurück zum Zitat Berenbaum F, Rajzbaum G, Amor B, Toubert A (1994) Evidence for GM-CSF receptor expression in synovial tissue. An analysis by semi-quantitative polymerase chain reaction on rheumatoid arthritis and osteoarthritis synovial biopsies. Eur Cytokine Netw 5(1):43–46PubMed Berenbaum F, Rajzbaum G, Amor B, Toubert A (1994) Evidence for GM-CSF receptor expression in synovial tissue. An analysis by semi-quantitative polymerase chain reaction on rheumatoid arthritis and osteoarthritis synovial biopsies. Eur Cytokine Netw 5(1):43–46PubMed
42.
Zurück zum Zitat Jang J, Lim DS, Choi YE, Jeong Y, Yoo SA, Kim WU, Bae YS (2006) MLN51 and GM-CSF involvement in the proliferation of fibroblast-like synoviocytes in the pathogenesis of rheumatoid arthritis. Arthritis Research & Therapy 8(6):R170CrossRef Jang J, Lim DS, Choi YE, Jeong Y, Yoo SA, Kim WU, Bae YS (2006) MLN51 and GM-CSF involvement in the proliferation of fibroblast-like synoviocytes in the pathogenesis of rheumatoid arthritis. Arthritis Research & Therapy 8(6):R170CrossRef
43.
Zurück zum Zitat Torchinsky MB, Garaude J, Martin AP, Blander JM (2009) Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation. Nature 458(7234):78–82PubMedCrossRef Torchinsky MB, Garaude J, Martin AP, Blander JM (2009) Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation. Nature 458(7234):78–82PubMedCrossRef
44.
Zurück zum Zitat MacDonald KP, Pettit AR, Quinn C, Thomas GJ, Thomas R (1999) Resistance of rheumatoid synovial dendritic cells to the immunosuppressive effects of IL-10. J Immunol 163(10):5599–5607PubMed MacDonald KP, Pettit AR, Quinn C, Thomas GJ, Thomas R (1999) Resistance of rheumatoid synovial dendritic cells to the immunosuppressive effects of IL-10. J Immunol 163(10):5599–5607PubMed
45.
Zurück zum Zitat Radstake TR, van Lent PL, Pesman GJ, Blom AB, Sweep FG, Ronnelid J, Adema GJ, Barrera P, van den Berg WB (2004) High production of proinflammatory and Th1 cytokines by dendritic cells from patients with rheumatoid arthritis, and down regulation upon FcgammaR triggering. Ann Rheum Dis 63(6):696–702PubMedPubMedCentralCrossRef Radstake TR, van Lent PL, Pesman GJ, Blom AB, Sweep FG, Ronnelid J, Adema GJ, Barrera P, van den Berg WB (2004) High production of proinflammatory and Th1 cytokines by dendritic cells from patients with rheumatoid arthritis, and down regulation upon FcgammaR triggering. Ann Rheum Dis 63(6):696–702PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Tsark EC, Wang W, Teng YC, Arkfeld D, Dodge GR, Kovats S (2002) Differential MHC class II-mediated presentation of rheumatoid arthritis autoantigens by human dendritic cells and macrophages. J Immunol 169(11):6625–6633PubMedCrossRef Tsark EC, Wang W, Teng YC, Arkfeld D, Dodge GR, Kovats S (2002) Differential MHC class II-mediated presentation of rheumatoid arthritis autoantigens by human dendritic cells and macrophages. J Immunol 169(11):6625–6633PubMedCrossRef
47.
Zurück zum Zitat Cook AD, Braine EL, Campbell IK, Rich MJ, Hamilton JA (2001) Blockade of collagen-induced arthritis post-onset by antibody to granulocyte-macrophage colony-stimulating factor (GM-CSF): requirement for GM-CSF in the effector phase of disease. Arthritis Res 3(5):293–298PubMedPubMedCentralCrossRef Cook AD, Braine EL, Campbell IK, Rich MJ, Hamilton JA (2001) Blockade of collagen-induced arthritis post-onset by antibody to granulocyte-macrophage colony-stimulating factor (GM-CSF): requirement for GM-CSF in the effector phase of disease. Arthritis Res 3(5):293–298PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Cornish AL, Campbell IK, McKenzie BS, Chatfield S, Wicks IP (2009) G-CSF and GM-CSF as therapeutic targets in rheumatoid arthritis. Nat Rev Rheumatol 5(10):554–559PubMedCrossRef Cornish AL, Campbell IK, McKenzie BS, Chatfield S, Wicks IP (2009) G-CSF and GM-CSF as therapeutic targets in rheumatoid arthritis. Nat Rev Rheumatol 5(10):554–559PubMedCrossRef
49.
Zurück zum Zitat Avci AB, Feist E, Burmester GR (2016) Targeting GM-CSF in rheumatoid arthritis. Clin Exp Rheumatol 34(4 Suppl 98):39–44PubMed Avci AB, Feist E, Burmester GR (2016) Targeting GM-CSF in rheumatoid arthritis. Clin Exp Rheumatol 34(4 Suppl 98):39–44PubMed
50.
Zurück zum Zitat Burmester GR, Weinblatt ME, McInnes IB, Porter D, Barbarash O, Vatutin M, Szombati I, Esfandiari E, Sleeman MA, Kane CD, Cavet G, Wang B, Godwood A, Magrini F, E.S. Group (2013) Efficacy and safety of mavrilimumab in subjects with rheumatoid arthritis. Ann Rheum Dis 72(9):1445–1452PubMedCrossRef Burmester GR, Weinblatt ME, McInnes IB, Porter D, Barbarash O, Vatutin M, Szombati I, Esfandiari E, Sleeman MA, Kane CD, Cavet G, Wang B, Godwood A, Magrini F, E.S. Group (2013) Efficacy and safety of mavrilimumab in subjects with rheumatoid arthritis. Ann Rheum Dis 72(9):1445–1452PubMedCrossRef
51.
Zurück zum Zitat Heinrich PC, Behrmann I, Muller-Newen G, Schaper F, Graeve L (1998) Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 334(Pt 2):297–314PubMedPubMedCentralCrossRef Heinrich PC, Behrmann I, Muller-Newen G, Schaper F, Graeve L (1998) Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 334(Pt 2):297–314PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Schindler C, Levy DE, Decker T (2007) JAK-STAT signaling: from interferons to cytokines. J Biol Chem 282(28):20059–20063PubMedCrossRef Schindler C, Levy DE, Decker T (2007) JAK-STAT signaling: from interferons to cytokines. J Biol Chem 282(28):20059–20063PubMedCrossRef
54.
Zurück zum Zitat Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117(Pt 8):1281–1283PubMedCrossRef Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117(Pt 8):1281–1283PubMedCrossRef
56.
Zurück zum Zitat Shuai K, Liu B (2003) Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 3(11):900–911PubMedCrossRef Shuai K, Liu B (2003) Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 3(11):900–911PubMedCrossRef
57.
Zurück zum Zitat Pesu M, Candotti F, Husa M, Hofmann SR, Notarangelo LD, O'Shea JJ (2005) Jak3, severe combined immunodeficiency, and a new class of immunosuppressive drugs. Immunol Rev 203:127–142PubMedCrossRef Pesu M, Candotti F, Husa M, Hofmann SR, Notarangelo LD, O'Shea JJ (2005) Jak3, severe combined immunodeficiency, and a new class of immunosuppressive drugs. Immunol Rev 203:127–142PubMedCrossRef
58.
Zurück zum Zitat Feist E, Burmester GR (2013) Small molecules targeting JAKs—a new approach in the treatment of rheumatoid arthritis. Rheumatology (Oxford) 52(8):1352–1357CrossRef Feist E, Burmester GR (2013) Small molecules targeting JAKs—a new approach in the treatment of rheumatoid arthritis. Rheumatology (Oxford) 52(8):1352–1357CrossRef
59.
Zurück zum Zitat Lee EB, Fleischmann R, Hall S, Wilkinson B, Bradley JD, Gruben D, Koncz T, Krishnaswami S, Wallenstein GV, Zang C, Zwillich SH, van Vollenhoven RF, Investigators OS (2014) Tofacitinib versus methotrexate in rheumatoid arthritis. N Engl J Med 370(25):2377–2386PubMedCrossRef Lee EB, Fleischmann R, Hall S, Wilkinson B, Bradley JD, Gruben D, Koncz T, Krishnaswami S, Wallenstein GV, Zang C, Zwillich SH, van Vollenhoven RF, Investigators OS (2014) Tofacitinib versus methotrexate in rheumatoid arthritis. N Engl J Med 370(25):2377–2386PubMedCrossRef
60.
Zurück zum Zitat van der Heijde D, Tanaka Y, Fleischmann R, Keystone E, Kremer J, Zerbini C, Cardiel MH, Cohen S, Nash P, Song YW, Tegzova D, Wyman BT, Gruben D, Benda B, Wallenstein G, Krishnaswami S, Zwillich SH, Bradley JD, Connell CA, Investigators OS (2013) Tofacitinib (CP-690,550) in patients with rheumatoid arthritis receiving methotrexate: twelve-month data from a twenty-four-month phase III randomized radiographic study. Arthritis Rheum 65(3):559–570PubMedCrossRef van der Heijde D, Tanaka Y, Fleischmann R, Keystone E, Kremer J, Zerbini C, Cardiel MH, Cohen S, Nash P, Song YW, Tegzova D, Wyman BT, Gruben D, Benda B, Wallenstein G, Krishnaswami S, Zwillich SH, Bradley JD, Connell CA, Investigators OS (2013) Tofacitinib (CP-690,550) in patients with rheumatoid arthritis receiving methotrexate: twelve-month data from a twenty-four-month phase III randomized radiographic study. Arthritis Rheum 65(3):559–570PubMedCrossRef
61.
Zurück zum Zitat Burmester GR, Blanco R, Charles-Schoeman C, Wollenhaupt J, Zerbini C, Benda B, Gruben D, Wallenstein G, Krishnaswami S, Zwillich SH, Koncz T, Soma K, Bradley J, Mebus C, O.S. investigators (2013) Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet 381(9865):451–460PubMedCrossRef Burmester GR, Blanco R, Charles-Schoeman C, Wollenhaupt J, Zerbini C, Benda B, Gruben D, Wallenstein G, Krishnaswami S, Zwillich SH, Koncz T, Soma K, Bradley J, Mebus C, O.S. investigators (2013) Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet 381(9865):451–460PubMedCrossRef
62.
Zurück zum Zitat van Vollenhoven RF, Fleischmann R, Cohen S, Lee EB, Garcia Meijide JA, Wagner S, Forejtova S, Zwillich SH, Gruben D, Koncz T, Wallenstein GV, Krishnaswami S, Bradley JD, Wilkinson B, Investigators OS (2012) Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N Engl J Med 367(6):508–519PubMedCrossRef van Vollenhoven RF, Fleischmann R, Cohen S, Lee EB, Garcia Meijide JA, Wagner S, Forejtova S, Zwillich SH, Gruben D, Koncz T, Wallenstein GV, Krishnaswami S, Bradley JD, Wilkinson B, Investigators OS (2012) Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N Engl J Med 367(6):508–519PubMedCrossRef
63.
Zurück zum Zitat Fleischmann R, Kremer J, Cush J, Schulze-Koops H, Connell CA, Bradley JD, Gruben D, Wallenstein GV, Zwillich SH, Kanik KS, Investigators OS (2012) Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med 367(6):495–507PubMedCrossRef Fleischmann R, Kremer J, Cush J, Schulze-Koops H, Connell CA, Bradley JD, Gruben D, Wallenstein GV, Zwillich SH, Kanik KS, Investigators OS (2012) Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med 367(6):495–507PubMedCrossRef
64.
Zurück zum Zitat Kremer J, Li ZG, Hall S, Fleischmann R, Genovese M, Martin-Mola E, Isaacs JD, Gruben D, Wallenstein G, Krishnaswami S, Zwillich SH, Koncz T, Riese R, Bradley J (2013) Tofacitinib in combination with nonbiologic disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis: a randomized trial. Ann Intern Med 159(4):253–261PubMedCrossRef Kremer J, Li ZG, Hall S, Fleischmann R, Genovese M, Martin-Mola E, Isaacs JD, Gruben D, Wallenstein G, Krishnaswami S, Zwillich SH, Koncz T, Riese R, Bradley J (2013) Tofacitinib in combination with nonbiologic disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis: a randomized trial. Ann Intern Med 159(4):253–261PubMedCrossRef
65.
Zurück zum Zitat Winthrop KL, Yamanaka H, Valdez H, Mortensen E, Chew R, Krishnaswami S, Kawabata T, Riese R (2014) Herpes zoster and tofacitinib therapy in patients with rheumatoid arthritis. Arthritis & Rheumatology 66(10):2675–2684CrossRef Winthrop KL, Yamanaka H, Valdez H, Mortensen E, Chew R, Krishnaswami S, Kawabata T, Riese R (2014) Herpes zoster and tofacitinib therapy in patients with rheumatoid arthritis. Arthritis & Rheumatology 66(10):2675–2684CrossRef
66.
Zurück zum Zitat Dougados M, van der Heijde D, Chen YC, Greenwald M, Drescher E, Liu J, Beattie S, Witt S, de la Torre I, Gaich C, Rooney T, Schlichting D, de Bono S, Emery P (2017) Baricitinib in patients with inadequate response or intolerance to conventional synthetic DMARDs: results from the RA-BUILD study. Ann Rheum Dis 76(1):88–95PubMedCrossRef Dougados M, van der Heijde D, Chen YC, Greenwald M, Drescher E, Liu J, Beattie S, Witt S, de la Torre I, Gaich C, Rooney T, Schlichting D, de Bono S, Emery P (2017) Baricitinib in patients with inadequate response or intolerance to conventional synthetic DMARDs: results from the RA-BUILD study. Ann Rheum Dis 76(1):88–95PubMedCrossRef
67.
Zurück zum Zitat Genovese MC, Kremer J, Zamani O, Ludivico C, Krogulec M, Xie L, Beattie SD, Koch AE, Cardillo TE, Rooney TP, Macias WL, de Bono S, Schlichting DE, Smolen JS (2016) Baricitinib in patients with refractory rheumatoid arthritis. N Engl J Med 374(13):1243–1252PubMedCrossRef Genovese MC, Kremer J, Zamani O, Ludivico C, Krogulec M, Xie L, Beattie SD, Koch AE, Cardillo TE, Rooney TP, Macias WL, de Bono S, Schlichting DE, Smolen JS (2016) Baricitinib in patients with refractory rheumatoid arthritis. N Engl J Med 374(13):1243–1252PubMedCrossRef
68.
Zurück zum Zitat Fleischmann R, Schiff M, van der Heijde D, Ramos-Remus C, Spindler A, Stanislav M, Zerbini CA, Gurbuz S, Dickson C, de Bono S, Schlichting D, Beattie S, Kuo WL, Rooney T, Macias W, Takeuchi T (2016) Baricitinib, methotrexate, or combination in patients with rheumatoid arthritis and no or limited prior disease-modifying antirheumatic drug treatment. Arthritis Rheumatol 69(3):506–517CrossRef Fleischmann R, Schiff M, van der Heijde D, Ramos-Remus C, Spindler A, Stanislav M, Zerbini CA, Gurbuz S, Dickson C, de Bono S, Schlichting D, Beattie S, Kuo WL, Rooney T, Macias W, Takeuchi T (2016) Baricitinib, methotrexate, or combination in patients with rheumatoid arthritis and no or limited prior disease-modifying antirheumatic drug treatment. Arthritis Rheumatol 69(3):506–517CrossRef
69.
Zurück zum Zitat Taylor PC, Keystone EC, van der Heijde D, Weinblatt ME, Del Carmen Morales L, Reyes Gonzaga J, Yakushin S, Ishii T, Emoto K, Beattie S, Arora V, Gaich C, Rooney T, Schlichting D, Macias WL, de Bono S, Tanaka Y (2017) Baricitinib versus placebo or adalimumab in rheumatoid arthritis. N Engl J Med 376(7):652–662PubMedCrossRef Taylor PC, Keystone EC, van der Heijde D, Weinblatt ME, Del Carmen Morales L, Reyes Gonzaga J, Yakushin S, Ishii T, Emoto K, Beattie S, Arora V, Gaich C, Rooney T, Schlichting D, Macias WL, de Bono S, Tanaka Y (2017) Baricitinib versus placebo or adalimumab in rheumatoid arthritis. N Engl J Med 376(7):652–662PubMedCrossRef
70.
Zurück zum Zitat Westhovens R, Taylor PC, Alten R, Pavlova D, Enriquez-Sosa F, Mazur M, Greenwald M, Van der Aa A, Vanhoutte F, Tasset C, Harrison P (2016) Filgotinib (GLPG0634/GS-6034), an oral JAK1 selective inhibitor, is effective in combination with methotrexate (MTX) in patients with active rheumatoid arthritis and insufficient response to MTX: results from a randomised, dose-finding study (DARWIN 1). Ann Rheum Dis. doi:10.1136/annrheumdis-2016-210104 Westhovens R, Taylor PC, Alten R, Pavlova D, Enriquez-Sosa F, Mazur M, Greenwald M, Van der Aa A, Vanhoutte F, Tasset C, Harrison P (2016) Filgotinib (GLPG0634/GS-6034), an oral JAK1 selective inhibitor, is effective in combination with methotrexate (MTX) in patients with active rheumatoid arthritis and insufficient response to MTX: results from a randomised, dose-finding study (DARWIN 1). Ann Rheum Dis. doi:10.​1136/​annrheumdis-2016-210104
71.
Zurück zum Zitat Kavanaugh A, Kremer J, Ponce L, Cseuz R, Reshetko OV, Stanislavchuk M, Greenwald M, Van der Aa A,Vanhoutte F,Tasset C,Harrison P (2016) Filgotinib (GLPG0634/GS-6034), an oral selective JAK1 inhibitor, is effective as monotherapy in patients with active rheumatoid arthritis: results from a randomised, dose-finding study (DARWIN 2). Ann Rheum Dis. 10.1136/annrheumdis-2016-210105 Kavanaugh A, Kremer J, Ponce L, Cseuz R, Reshetko OV, Stanislavchuk M, Greenwald M, Van der Aa A,Vanhoutte F,Tasset C,Harrison P (2016) Filgotinib (GLPG0634/GS-6034), an oral selective JAK1 inhibitor, is effective as monotherapy in patients with active rheumatoid arthritis: results from a randomised, dose-finding study (DARWIN 2). Ann Rheum Dis. 10.​1136/​annrheumdis-2016-210105
72.
Zurück zum Zitat Genovese MC, Smolen JS, Weinblatt ME, Burmester GR, Meerwein S, Camp HS, Wang L, Othman AA, Khan N, Pangan AL, Jungerwirth S (2016) Efficacy and safety of ABT-494, a selective JAK-1 inhibitor, in a phase IIb study in patients with rheumatoid arthritis and an inadequate response to methotrexate. Arthritis & rheumatology 68(12):2857–2866CrossRef Genovese MC, Smolen JS, Weinblatt ME, Burmester GR, Meerwein S, Camp HS, Wang L, Othman AA, Khan N, Pangan AL, Jungerwirth S (2016) Efficacy and safety of ABT-494, a selective JAK-1 inhibitor, in a phase IIb study in patients with rheumatoid arthritis and an inadequate response to methotrexate. Arthritis & rheumatology 68(12):2857–2866CrossRef
73.
Zurück zum Zitat Kremer JM, Emery P, Camp HS, Friedman A, Wang L, Othman AA, Khan N, Pangan AL, Jungerwirth S, Keystone EC (2016) A phase IIb study of ABT-494, a selective JAK-1 inhibitor, in patients with rheumatoid arthritis and an inadequate response to anti-tumor necrosis factor therapy. Arthritis & rheumatology 68(12):2867–2877CrossRef Kremer JM, Emery P, Camp HS, Friedman A, Wang L, Othman AA, Khan N, Pangan AL, Jungerwirth S, Keystone EC (2016) A phase IIb study of ABT-494, a selective JAK-1 inhibitor, in patients with rheumatoid arthritis and an inadequate response to anti-tumor necrosis factor therapy. Arthritis & rheumatology 68(12):2867–2877CrossRef
74.
Zurück zum Zitat Satterthwaite AB, Li Z, Witte ON (1998) Btk function in B cell development and response. Semin Immunol 10(4):309–316PubMedCrossRef Satterthwaite AB, Li Z, Witte ON (1998) Btk function in B cell development and response. Semin Immunol 10(4):309–316PubMedCrossRef
76.
Zurück zum Zitat Mohamed AJ, Yu L, Backesjo CM, Vargas L, Faryal R, Aints A, Christensson B, Berglof A, Vihinen M, Nore BF, Smith CI (2009) Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev 228(1):58–73PubMedCrossRef Mohamed AJ, Yu L, Backesjo CM, Vargas L, Faryal R, Aints A, Christensson B, Berglof A, Vihinen M, Nore BF, Smith CI (2009) Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev 228(1):58–73PubMedCrossRef
77.
Zurück zum Zitat Khan WN (2001) Regulation of B lymphocyte development and activation by Bruton’s tyrosine kinase. Immunol Res 23(2–3):147–156PubMedCrossRef Khan WN (2001) Regulation of B lymphocyte development and activation by Bruton’s tyrosine kinase. Immunol Res 23(2–3):147–156PubMedCrossRef
78.
Zurück zum Zitat Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, Sparkes RS, Kubagawa H, Mohandas T, Quan S et al (1993) Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 72(2):279–290PubMedCrossRef Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, Sparkes RS, Kubagawa H, Mohandas T, Quan S et al (1993) Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 72(2):279–290PubMedCrossRef
79.
Zurück zum Zitat Rawlings DJ, Saffran DC, Tsukada S, Largaespada DA, Grimaldi JC, Cohen L, Mohr RN, Bazan JF, Howard M, Copeland NG et al (1993) Mutation of unique region of Bruton’s tyrosine kinase in immunodeficient XID mice. Science 261(5119):358–361PubMedCrossRef Rawlings DJ, Saffran DC, Tsukada S, Largaespada DA, Grimaldi JC, Cohen L, Mohr RN, Bazan JF, Howard M, Copeland NG et al (1993) Mutation of unique region of Bruton’s tyrosine kinase in immunodeficient XID mice. Science 261(5119):358–361PubMedCrossRef
80.
Zurück zum Zitat Mukhopadhyay S, Mohanty M, Mangla A, George A, Bal V, Rath S, Ravindran B (2002) Macrophage effector functions controlled by Bruton’s tyrosine kinase are more crucial than the cytokine balance of T cell responses for microfilarial clearance. J Immunol 168(6):2914–2921PubMedCrossRef Mukhopadhyay S, Mohanty M, Mangla A, George A, Bal V, Rath S, Ravindran B (2002) Macrophage effector functions controlled by Bruton’s tyrosine kinase are more crucial than the cytokine balance of T cell responses for microfilarial clearance. J Immunol 168(6):2914–2921PubMedCrossRef
81.
Zurück zum Zitat Mukhopadhyay S, George A, Bal V, Ravindran B, Rath S (1999) Bruton’s tyrosine kinase deficiency in macrophages inhibits nitric oxide generation leading to enhancement of IL-12 induction. J Immunol 163(4):1786–1792PubMed Mukhopadhyay S, George A, Bal V, Ravindran B, Rath S (1999) Bruton’s tyrosine kinase deficiency in macrophages inhibits nitric oxide generation leading to enhancement of IL-12 induction. J Immunol 163(4):1786–1792PubMed
82.
Zurück zum Zitat Jansson L, Holmdahl R (1993) Genes on the X chromosome affect development of collagen-induced arthritis in mice. Clin Exp Immunol 94(3):459–465PubMedPubMedCentralCrossRef Jansson L, Holmdahl R (1993) Genes on the X chromosome affect development of collagen-induced arthritis in mice. Clin Exp Immunol 94(3):459–465PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Kleinau S, Martinsson P, Heyman B (2000) Induction and suppression of collagen-induced arthritis is dependent on distinct fcgamma receptors. J Exp Med 191(9):1611–1616PubMedPubMedCentralCrossRef Kleinau S, Martinsson P, Heyman B (2000) Induction and suppression of collagen-induced arthritis is dependent on distinct fcgamma receptors. J Exp Med 191(9):1611–1616PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Evans EK, Tester R, Aslanian S, Karp R, Sheets M, Labenski MT, Witowski SR, Lounsbury H, Chaturvedi P, Mazdiyasni H, Zhu Z, Nacht M, Freed MI, Petter RC, Dubrovskiy A, Singh J, Westlin WF (2013) Inhibition of Btk with CC-292 provides early pharmacodynamic assessment of activity in mice and humans. J Pharmacol Exp Ther 346(2):219–228PubMedCrossRef Evans EK, Tester R, Aslanian S, Karp R, Sheets M, Labenski MT, Witowski SR, Lounsbury H, Chaturvedi P, Mazdiyasni H, Zhu Z, Nacht M, Freed MI, Petter RC, Dubrovskiy A, Singh J, Westlin WF (2013) Inhibition of Btk with CC-292 provides early pharmacodynamic assessment of activity in mice and humans. J Pharmacol Exp Ther 346(2):219–228PubMedCrossRef
85.
Zurück zum Zitat Pan Z, Scheerens H, Li SJ, Schultz BE, Sprengeler PA, Burrill LC, Mendonca RV, Sweeney MD, Scott KC, Grothaus PG, Jeffery DA, Spoerke JM, Honigberg LA, Young PR, Dalrymple SA, Palmer JT (2007) Discovery of selective irreversible inhibitors for Bruton’s tyrosine kinase. ChemMedChem 2(1):58–61PubMedCrossRef Pan Z, Scheerens H, Li SJ, Schultz BE, Sprengeler PA, Burrill LC, Mendonca RV, Sweeney MD, Scott KC, Grothaus PG, Jeffery DA, Spoerke JM, Honigberg LA, Young PR, Dalrymple SA, Palmer JT (2007) Discovery of selective irreversible inhibitors for Bruton’s tyrosine kinase. ChemMedChem 2(1):58–61PubMedCrossRef
86.
Zurück zum Zitat Norman P (2016) Investigational Bruton’s tyrosine kinase inhibitors for the treatment of rheumatoid arthritis. Expert Opin Investig Drugs 25(8):891–899PubMedCrossRef Norman P (2016) Investigational Bruton’s tyrosine kinase inhibitors for the treatment of rheumatoid arthritis. Expert Opin Investig Drugs 25(8):891–899PubMedCrossRef
87.
88.
Zurück zum Zitat Foster FM, Traer CJ, Abraham SM, Fry MJ (2003) The phosphoinositide (PI) 3-kinase family. J Cell Sci 116(Pt 15):3037–3040PubMedCrossRef Foster FM, Traer CJ, Abraham SM, Fry MJ (2003) The phosphoinositide (PI) 3-kinase family. J Cell Sci 116(Pt 15):3037–3040PubMedCrossRef
89.
Zurück zum Zitat Okkenhaug K, Vanhaesebroeck B (2003) PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol 3(4):317–330PubMedCrossRef Okkenhaug K, Vanhaesebroeck B (2003) PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol 3(4):317–330PubMedCrossRef
90.
Zurück zum Zitat Okkenhaug K, Bilancio A, Farjot G, Priddle H, Sancho S, Peskett E, Pearce W, Meek SE, Salpekar A, Waterfield MD, Smith AJ, Vanhaesebroeck B (2002) Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science 297(5583):1031–1034PubMed Okkenhaug K, Bilancio A, Farjot G, Priddle H, Sancho S, Peskett E, Pearce W, Meek SE, Salpekar A, Waterfield MD, Smith AJ, Vanhaesebroeck B (2002) Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science 297(5583):1031–1034PubMed
91.
Zurück zum Zitat Okkenhaug K, Patton DT, Bilancio A, Garcon F, Rowan WC, Vanhaesebroeck B (2006) The p110delta isoform of phosphoinositide 3-kinase controls clonal expansion and differentiation of Th cells. J Immunol 177(8):5122–5128PubMedCrossRef Okkenhaug K, Patton DT, Bilancio A, Garcon F, Rowan WC, Vanhaesebroeck B (2006) The p110delta isoform of phosphoinositide 3-kinase controls clonal expansion and differentiation of Th cells. J Immunol 177(8):5122–5128PubMedCrossRef
92.
Zurück zum Zitat Nashed BF, Zhang T, Al-Alwan M, Srinivasan G, Halayko AJ, Okkenhaug K, Vanhaesebroeck B, Hayglass KT, Marshall AJ (2007) Role of the phosphoinositide 3-kinase p110delta in generation of type 2 cytokine responses and allergic airway inflammation. Eur J Immunol 37(2):416–424PubMedCrossRef Nashed BF, Zhang T, Al-Alwan M, Srinivasan G, Halayko AJ, Okkenhaug K, Vanhaesebroeck B, Hayglass KT, Marshall AJ (2007) Role of the phosphoinositide 3-kinase p110delta in generation of type 2 cytokine responses and allergic airway inflammation. Eur J Immunol 37(2):416–424PubMedCrossRef
93.
Zurück zum Zitat Patton DT, Garden OA, Pearce WP, Clough LE, Monk CR, Leung E, Rowan WC, Sancho S, Walker LS, Vanhaesebroeck B, Okkenhaug K (2006) Cutting edge: the phosphoinositide 3-kinase p110 delta is critical for the function of CD4+CD25+Foxp3+ regulatory T cells. J Immunol 177(10):6598–6602PubMedCrossRef Patton DT, Garden OA, Pearce WP, Clough LE, Monk CR, Leung E, Rowan WC, Sancho S, Walker LS, Vanhaesebroeck B, Okkenhaug K (2006) Cutting edge: the phosphoinositide 3-kinase p110 delta is critical for the function of CD4+CD25+Foxp3+ regulatory T cells. J Immunol 177(10):6598–6602PubMedCrossRef
94.
Zurück zum Zitat Bilancio A, Okkenhaug K, Camps M, Emery JL, Ruckle T, Rommel C, Vanhaesebroeck B (2006) Key role of the p110delta isoform of PI3K in B-cell antigen and IL-4 receptor signaling: comparative analysis of genetic and pharmacologic interference with p110delta function in B cells. Blood 107(2):642–650PubMedCrossRef Bilancio A, Okkenhaug K, Camps M, Emery JL, Ruckle T, Rommel C, Vanhaesebroeck B (2006) Key role of the p110delta isoform of PI3K in B-cell antigen and IL-4 receptor signaling: comparative analysis of genetic and pharmacologic interference with p110delta function in B cells. Blood 107(2):642–650PubMedCrossRef
95.
Zurück zum Zitat Jou ST, Carpino N, Takahashi Y, Piekorz R, Chao JR, Carpino N, Wang D, Ihle JN (2002) Essential, nonredundant role for the phosphoinositide 3-kinase p110delta in signaling by the B-cell receptor complex. Mol Cell Biol 22(24):8580–8591PubMedPubMedCentralCrossRef Jou ST, Carpino N, Takahashi Y, Piekorz R, Chao JR, Carpino N, Wang D, Ihle JN (2002) Essential, nonredundant role for the phosphoinositide 3-kinase p110delta in signaling by the B-cell receptor complex. Mol Cell Biol 22(24):8580–8591PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Ramadani F, Bolland DJ, Garcon F, Emery JL, Vanhaesebroeck B, Corcoran AE, Okkenhaug K (2010) The PI3K isoforms p110alpha and p110delta are essential for pre-B cell receptor signaling and B cell development. Sci Signal 3(134):ra60PubMedPubMedCentralCrossRef Ramadani F, Bolland DJ, Garcon F, Emery JL, Vanhaesebroeck B, Corcoran AE, Okkenhaug K (2010) The PI3K isoforms p110alpha and p110delta are essential for pre-B cell receptor signaling and B cell development. Sci Signal 3(134):ra60PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Clayton E, Bardi G, Bell SE, Chantry D, Downes CP, Gray A, Humphries LA, Rawlings D, Reynolds H, Vigorito E, Turner M (2002) A crucial role for the p110delta subunit of phosphatidylinositol 3-kinase in B cell development and activation. J Exp Med 196(6):753–763PubMedPubMedCentralCrossRef Clayton E, Bardi G, Bell SE, Chantry D, Downes CP, Gray A, Humphries LA, Rawlings D, Reynolds H, Vigorito E, Turner M (2002) A crucial role for the p110delta subunit of phosphatidylinositol 3-kinase in B cell development and activation. J Exp Med 196(6):753–763PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Thomas MS, Mitchell JS, DeNucci CC, Martin AL, Shimizu Y (2008) The p110gamma isoform of phosphatidylinositol 3-kinase regulates migration of effector CD4 T lymphocytes into peripheral inflammatory sites. J Leukoc Biol 84(3):814–823PubMedPubMedCentralCrossRef Thomas MS, Mitchell JS, DeNucci CC, Martin AL, Shimizu Y (2008) The p110gamma isoform of phosphatidylinositol 3-kinase regulates migration of effector CD4 T lymphocytes into peripheral inflammatory sites. J Leukoc Biol 84(3):814–823PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Reif K, Okkenhaug K, Sasaki T, Penninger JM, Vanhaesebroeck B, Cyster JG (2004) Cutting edge: differential roles for phosphoinositide 3-kinases, p110gamma and p110delta, in lymphocyte chemotaxis and homing. J Immunol 173(4):2236–2240PubMedCrossRef Reif K, Okkenhaug K, Sasaki T, Penninger JM, Vanhaesebroeck B, Cyster JG (2004) Cutting edge: differential roles for phosphoinositide 3-kinases, p110gamma and p110delta, in lymphocyte chemotaxis and homing. J Immunol 173(4):2236–2240PubMedCrossRef
100.
Zurück zum Zitat Li Z, Jiang H, Xie W, Zhang Z, Smrcka AV, Wu D (2000) Roles of PLC-beta2 and -beta3 and PI3Kgamma in chemoattractant-mediated signal transduction. Science 287(5455):1046–1049PubMedCrossRef Li Z, Jiang H, Xie W, Zhang Z, Smrcka AV, Wu D (2000) Roles of PLC-beta2 and -beta3 and PI3Kgamma in chemoattractant-mediated signal transduction. Science 287(5455):1046–1049PubMedCrossRef
101.
Zurück zum Zitat Hirsch E, Katanaev VL, Garlanda C, Azzolino O, Pirola L, Silengo L, Sozzani S, Mantovani A, Altruda F, Wymann MP (2000) Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 287(5455):1049–1053PubMedCrossRef Hirsch E, Katanaev VL, Garlanda C, Azzolino O, Pirola L, Silengo L, Sozzani S, Mantovani A, Altruda F, Wymann MP (2000) Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 287(5455):1049–1053PubMedCrossRef
102.
Zurück zum Zitat Condliffe AM, Davidson K, Anderson KE, Ellson CD, Crabbe T, Okkenhaug K, Vanhaesebroeck B, Turner M, Webb L, Wymann MP, Hirsch E, Ruckle T, Camps M, Rommel C, Jackson SP, Chilvers ER, Stephens LR, Hawkins PT (2005) Sequential activation of class IB and class IA PI3K is important for the primed respiratory burst of human but not murine neutrophils. Blood 106(4):1432–1440PubMedCrossRef Condliffe AM, Davidson K, Anderson KE, Ellson CD, Crabbe T, Okkenhaug K, Vanhaesebroeck B, Turner M, Webb L, Wymann MP, Hirsch E, Ruckle T, Camps M, Rommel C, Jackson SP, Chilvers ER, Stephens LR, Hawkins PT (2005) Sequential activation of class IB and class IA PI3K is important for the primed respiratory burst of human but not murine neutrophils. Blood 106(4):1432–1440PubMedCrossRef
103.
Zurück zum Zitat Del Prete A, Vermi W, Dander E, Otero K, Barberis L, Luini W, Bernasconi S, Sironi M, Santoro A, Garlanda C, Facchetti F, Wymann MP, Vecchi A, Hirsch E, Mantovani A, Sozzani S (2004) Defective dendritic cell migration and activation of adaptive immunity in PI3Kgamma-deficient mice. EMBO J 23(17):3505–3515PubMedPubMedCentralCrossRef Del Prete A, Vermi W, Dander E, Otero K, Barberis L, Luini W, Bernasconi S, Sironi M, Santoro A, Garlanda C, Facchetti F, Wymann MP, Vecchi A, Hirsch E, Mantovani A, Sozzani S (2004) Defective dendritic cell migration and activation of adaptive immunity in PI3Kgamma-deficient mice. EMBO J 23(17):3505–3515PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Krishnamoorthy N, Oriss TB, Paglia M, Fei M, Yarlagadda M, Vanhaesebroeck B, Ray A, Ray P (2008) Activation of c-Kit in dendritic cells regulates T helper cell differentiation and allergic asthma. Nat Med 14(5):565–573PubMedPubMedCentralCrossRef Krishnamoorthy N, Oriss TB, Paglia M, Fei M, Yarlagadda M, Vanhaesebroeck B, Ray A, Ray P (2008) Activation of c-Kit in dendritic cells regulates T helper cell differentiation and allergic asthma. Nat Med 14(5):565–573PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Rommel C, Camps M, Ji H (2007) PI3K delta and PI3K gamma: partners in crime in inflammation in rheumatoid arthritis and beyond? Nat Rev Immunol 7(3):191–201PubMedCrossRef Rommel C, Camps M, Ji H (2007) PI3K delta and PI3K gamma: partners in crime in inflammation in rheumatoid arthritis and beyond? Nat Rev Immunol 7(3):191–201PubMedCrossRef
106.
Zurück zum Zitat Banham-Hall E, Clatworthy MR, Okkenhaug K (2012) The therapeutic potential for PI3K inhibitors in autoimmune rheumatic diseases. Open Rheumatol J 6:245–258PubMedPubMedCentralCrossRef Banham-Hall E, Clatworthy MR, Okkenhaug K (2012) The therapeutic potential for PI3K inhibitors in autoimmune rheumatic diseases. Open Rheumatol J 6:245–258PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Camps M, Ruckle T, Ji H, Ardissone V, Rintelen F, Shaw J, Ferrandi C, Chabert C, Gillieron C, Francon B, Martin T, Gretener D, Perrin D, Leroy D, Vitte PA, Hirsch E, Wymann MP, Cirillo R, Schwarz MK, Rommel C (2005) Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat Med 11(9):936–943PubMed Camps M, Ruckle T, Ji H, Ardissone V, Rintelen F, Shaw J, Ferrandi C, Chabert C, Gillieron C, Francon B, Martin T, Gretener D, Perrin D, Leroy D, Vitte PA, Hirsch E, Wymann MP, Cirillo R, Schwarz MK, Rommel C (2005) Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat Med 11(9):936–943PubMed
108.
Zurück zum Zitat Hayer S, Pundt N, Peters MA, Wunrau C, Kuhnel I, Neugebauer K, Strietholt S, Zwerina J, Korb A, Penninger J, Joosten LA, Gay S, Ruckle T, Schett G, Pap T (2009) PI3Kgamma regulates cartilage damage in chronic inflammatory arthritis. FASEB J 23(12):4288–4298PubMedCrossRef Hayer S, Pundt N, Peters MA, Wunrau C, Kuhnel I, Neugebauer K, Strietholt S, Zwerina J, Korb A, Penninger J, Joosten LA, Gay S, Ruckle T, Schett G, Pap T (2009) PI3Kgamma regulates cartilage damage in chronic inflammatory arthritis. FASEB J 23(12):4288–4298PubMedCrossRef
109.
Zurück zum Zitat Zou L, Zhang G, Liu L, Chen C, Cao X, Cai J (2016) Relationship between PI3K pathway and angiogenesis in CIA rat synovium. Am J Transl Res 8(7):3141–3147PubMedPubMedCentral Zou L, Zhang G, Liu L, Chen C, Cao X, Cai J (2016) Relationship between PI3K pathway and angiogenesis in CIA rat synovium. Am J Transl Res 8(7):3141–3147PubMedPubMedCentral
110.
Zurück zum Zitat Sujobert P, Rioufol C, Salles GA (2016) Idelalisib: targeting the PI3 kinase pathway in non-Hodgkin lymphoma. Cancer J 22(1):12–16PubMedCrossRef Sujobert P, Rioufol C, Salles GA (2016) Idelalisib: targeting the PI3 kinase pathway in non-Hodgkin lymphoma. Cancer J 22(1):12–16PubMedCrossRef
111.
Zurück zum Zitat Nair KS, Cheson B (2016) The role of idelalisib in the treatment of relapsed and refractory chronic lymphocytic leukemia. Ther Adv Hematol 7(2):69–84PubMedPubMedCentralCrossRef Nair KS, Cheson B (2016) The role of idelalisib in the treatment of relapsed and refractory chronic lymphocytic leukemia. Ther Adv Hematol 7(2):69–84PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Barrientos JC (2016) Idelalisib for the treatment of indolent non-Hodgkin lymphoma: a review of its clinical potential. Onco Targets Ther 9:2945–2953PubMedPubMedCentralCrossRef Barrientos JC (2016) Idelalisib for the treatment of indolent non-Hodgkin lymphoma: a review of its clinical potential. Onco Targets Ther 9:2945–2953PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Yang Q, Modi P, Newcomb T, Queva C, Gandhi V (2015) Idelalisib: first-in-class PI3K delta inhibitor for the treatment of chronic lymphocytic leukemia, small lymphocytic leukemia, and follicular lymphoma. Clin Cancer Res 21(7):1537–1542PubMedPubMedCentralCrossRef Yang Q, Modi P, Newcomb T, Queva C, Gandhi V (2015) Idelalisib: first-in-class PI3K delta inhibitor for the treatment of chronic lymphocytic leukemia, small lymphocytic leukemia, and follicular lymphoma. Clin Cancer Res 21(7):1537–1542PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Courtright LJ, Kuzell WC (1965) Sparing effect of neurological deficit and trauma on the course of adjuvant arthritis in the rat. Ann Rheum Dis 24(4):360–368PubMedPubMedCentralCrossRef Courtright LJ, Kuzell WC (1965) Sparing effect of neurological deficit and trauma on the course of adjuvant arthritis in the rat. Ann Rheum Dis 24(4):360–368PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Koopman FA, Stoof SP, Straub RH, Van Maanen MA, Vervoordeldonk MJ, Tak PP (2011) Restoring the balance of the autonomic nervous system as an innovative approach to the treatment of rheumatoid arthritis. Mol Med 17(9–10):937–948PubMedPubMedCentral Koopman FA, Stoof SP, Straub RH, Van Maanen MA, Vervoordeldonk MJ, Tak PP (2011) Restoring the balance of the autonomic nervous system as an innovative approach to the treatment of rheumatoid arthritis. Mol Med 17(9–10):937–948PubMedPubMedCentral
116.
Zurück zum Zitat Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):458–462PubMedCrossRef Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):458–462PubMedCrossRef
117.
Zurück zum Zitat Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421(6921):384–388PubMedCrossRef Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421(6921):384–388PubMedCrossRef
118.
Zurück zum Zitat de Jonge WJ, Ulloa L (2007) The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. Br J Pharmacol 151(7):915–929PubMedPubMedCentralCrossRef de Jonge WJ, Ulloa L (2007) The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. Br J Pharmacol 151(7):915–929PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat van Maanen MA, Stoof SP, van der Zanden EP, de Jonge WJ, Janssen RA, Fischer DF, Vandeghinste N, Brys R, Vervoordeldonk MJ, Tak PP (2009) The alpha7 nicotinic acetylcholine receptor on fibroblast-like synoviocytes and in synovial tissue from rheumatoid arthritis patients: a possible role for a key neurotransmitter in synovial inflammation. Arthritis Rheum 60(5):1272–1281PubMedCrossRef van Maanen MA, Stoof SP, van der Zanden EP, de Jonge WJ, Janssen RA, Fischer DF, Vandeghinste N, Brys R, Vervoordeldonk MJ, Tak PP (2009) The alpha7 nicotinic acetylcholine receptor on fibroblast-like synoviocytes and in synovial tissue from rheumatoid arthritis patients: a possible role for a key neurotransmitter in synovial inflammation. Arthritis Rheum 60(5):1272–1281PubMedCrossRef
120.
Zurück zum Zitat Westman M, Engstrom M, Catrina AI, Lampa J (2009) Cell specific synovial expression of nicotinic alpha 7 acetylcholine receptor in rheumatoid arthritis and psoriatic arthritis. Scand J Immunol 70(2):136–140PubMedCrossRef Westman M, Engstrom M, Catrina AI, Lampa J (2009) Cell specific synovial expression of nicotinic alpha 7 acetylcholine receptor in rheumatoid arthritis and psoriatic arthritis. Scand J Immunol 70(2):136–140PubMedCrossRef
121.
Zurück zum Zitat van Maanen MA, Lebre MC, van der Poll T, LaRosa GJ, Elbaum D, Vervoordeldonk MJ, Tak PP (2009) Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice. Arthritis Rheum 60(1):114–122PubMedCrossRef van Maanen MA, Lebre MC, van der Poll T, LaRosa GJ, Elbaum D, Vervoordeldonk MJ, Tak PP (2009) Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice. Arthritis Rheum 60(1):114–122PubMedCrossRef
122.
Zurück zum Zitat Li T, Zuo X, Zhou Y, Wang Y, Zhuang H, Zhang L, Zhang H, Xiao X (2010) The vagus nerve and nicotinic receptors involve inhibition of HMGB1 release and early pro-inflammatory cytokines function in collagen-induced arthritis. J Clin Immunol 30(2):213–220PubMedCrossRef Li T, Zuo X, Zhou Y, Wang Y, Zhuang H, Zhang L, Zhang H, Xiao X (2010) The vagus nerve and nicotinic receptors involve inhibition of HMGB1 release and early pro-inflammatory cytokines function in collagen-induced arthritis. J Clin Immunol 30(2):213–220PubMedCrossRef
123.
Zurück zum Zitat van Maanen MA, Stoof SP, Larosa GJ, Vervoordeldonk MJ, Tak PP (2010) Role of the cholinergic nervous system in rheumatoid arthritis: aggravation of arthritis in nicotinic acetylcholine receptor alpha7 subunit gene knockout mice. Ann Rheum Dis 69(9):1717–1723PubMedCrossRef van Maanen MA, Stoof SP, Larosa GJ, Vervoordeldonk MJ, Tak PP (2010) Role of the cholinergic nervous system in rheumatoid arthritis: aggravation of arthritis in nicotinic acetylcholine receptor alpha7 subunit gene knockout mice. Ann Rheum Dis 69(9):1717–1723PubMedCrossRef
124.
Zurück zum Zitat Waldburger JM, Boyle DL, Pavlov VA, Tracey KJ, Firestein GS (2008) Acetylcholine regulation of synoviocyte cytokine expression by the alpha7 nicotinic receptor. Arthritis Rheum 58(11):3439–3449PubMedPubMedCentralCrossRef Waldburger JM, Boyle DL, Pavlov VA, Tracey KJ, Firestein GS (2008) Acetylcholine regulation of synoviocyte cytokine expression by the alpha7 nicotinic receptor. Arthritis Rheum 58(11):3439–3449PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Buijs RM, van der Vliet J, Garidou ML, Huitinga I, Escobar C (2008) Spleen vagal denervation inhibits the production of antibodies to circulating antigens. PLoS One 3(9):e3152PubMedPubMedCentralCrossRef Buijs RM, van der Vliet J, Garidou ML, Huitinga I, Escobar C (2008) Spleen vagal denervation inhibits the production of antibodies to circulating antigens. PLoS One 3(9):e3152PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Rosas-Ballina M, Ochani M, Parrish WR, Ochani K, Harris YT, Huston JM, Chavan S, Tracey KJ (2008) Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci U S A 105(31):11008–11013PubMedPubMedCentralCrossRef Rosas-Ballina M, Ochani M, Parrish WR, Ochani K, Harris YT, Huston JM, Chavan S, Tracey KJ (2008) Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci U S A 105(31):11008–11013PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Koopman FA, Chavan SS, Miljko S, Grazio S, Sokolovic S, Schuurman PR, Mehta AD, Levine YA, Faltys M, Zitnik R, Tracey KJ, Tak PP (2016) Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci U S A 113(29):8284–8289PubMedPubMedCentralCrossRef Koopman FA, Chavan SS, Miljko S, Grazio S, Sokolovic S, Schuurman PR, Mehta AD, Levine YA, Faltys M, Zitnik R, Tracey KJ, Tak PP (2016) Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci U S A 113(29):8284–8289PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52(4):595–638PubMed Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52(4):595–638PubMed
129.
130.
Zurück zum Zitat Evrengul H, Dursunoglu D, Cobankara V, Polat B, Seleci D, Kabukcu S, Kaftan A, Semiz E, Kilic M (2004) Heart rate variability in patients with rheumatoid arthritis. Rheumatol Int 24(4):198–202PubMedCrossRef Evrengul H, Dursunoglu D, Cobankara V, Polat B, Seleci D, Kabukcu S, Kaftan A, Semiz E, Kilic M (2004) Heart rate variability in patients with rheumatoid arthritis. Rheumatol Int 24(4):198–202PubMedCrossRef
131.
Zurück zum Zitat Baerwald C, Graefe C, Muhl C, Von Wichert P, Krause A (1992) Beta 2-adrenergic receptors on peripheral blood mononuclear cells in patients with rheumatic diseases. Eur J Clin Investig 22(Suppl 1):42–46 Baerwald C, Graefe C, Muhl C, Von Wichert P, Krause A (1992) Beta 2-adrenergic receptors on peripheral blood mononuclear cells in patients with rheumatic diseases. Eur J Clin Investig 22(Suppl 1):42–46
132.
Zurück zum Zitat Straub RH, Harle P (2005) Sympathetic neurotransmitters in joint inflammation. Rheum Dis Clin N Am 31(1):43–59 viii CrossRef Straub RH, Harle P (2005) Sympathetic neurotransmitters in joint inflammation. Rheum Dis Clin N Am 31(1):43–59 viii CrossRef
133.
Zurück zum Zitat Heijnen CJ, Rouppe van der Voort C, Wulffraat N, van der Net J, Kuis W, Kavelaars A (1996) Functional alpha 1-adrenergic receptors on leukocytes of patients with polyarticular juvenile rheumatoid arthritis. J Neuroimmunol 71(1–2):223–226PubMedCrossRef Heijnen CJ, Rouppe van der Voort C, Wulffraat N, van der Net J, Kuis W, Kavelaars A (1996) Functional alpha 1-adrenergic receptors on leukocytes of patients with polyarticular juvenile rheumatoid arthritis. J Neuroimmunol 71(1–2):223–226PubMedCrossRef
134.
Zurück zum Zitat Bellinger DL, Millar BA, Perez S, Carter J, Wood C, ThyagaRajan S, Molinaro C, Lubahn C, Lorton D (2008) Sympathetic modulation of immunity: relevance to disease. Cell Immunol 252(1–2):27–56PubMedPubMedCentralCrossRef Bellinger DL, Millar BA, Perez S, Carter J, Wood C, ThyagaRajan S, Molinaro C, Lubahn C, Lorton D (2008) Sympathetic modulation of immunity: relevance to disease. Cell Immunol 252(1–2):27–56PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Steinman RM (2012) Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 30:1–22PubMedCrossRef Steinman RM (2012) Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 30:1–22PubMedCrossRef
136.
137.
Zurück zum Zitat Steinman RM, Nussenzweig MC (2002) Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A 99(1):351–358PubMedPubMedCentralCrossRef Steinman RM, Nussenzweig MC (2002) Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A 99(1):351–358PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK (2006) Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 212:28–50PubMedCrossRef Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK (2006) Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 212:28–50PubMedCrossRef
140.
Zurück zum Zitat Skoberne M, Beignon AS, Larsson M, Bhardwaj N (2005) Apoptotic cells at the crossroads of tolerance and immunity. Curr Top Microbiol Immunol 289:259–292PubMed Skoberne M, Beignon AS, Larsson M, Bhardwaj N (2005) Apoptotic cells at the crossroads of tolerance and immunity. Curr Top Microbiol Immunol 289:259–292PubMed
141.
Zurück zum Zitat Skoberne M, Somersan S, Almodovar W, Truong T, Petrova K, Henson PM, Bhardwaj N (2006) The apoptotic-cell receptor CR3, but not alphavbeta5, is a regulator of human dendritic-cell immunostimulatory function. Blood 108(3):947–955PubMedPubMedCentralCrossRef Skoberne M, Somersan S, Almodovar W, Truong T, Petrova K, Henson PM, Bhardwaj N (2006) The apoptotic-cell receptor CR3, but not alphavbeta5, is a regulator of human dendritic-cell immunostimulatory function. Blood 108(3):947–955PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Pettit AR, MacDonald KP, O'Sullivan B, Thomas R (2000) Differentiated dendritic cells expressing nuclear RelB are predominantly located in rheumatoid synovial tissue perivascular mononuclear cell aggregates. Arthritis Rheum 43(4):791–800PubMedCrossRef Pettit AR, MacDonald KP, O'Sullivan B, Thomas R (2000) Differentiated dendritic cells expressing nuclear RelB are predominantly located in rheumatoid synovial tissue perivascular mononuclear cell aggregates. Arthritis Rheum 43(4):791–800PubMedCrossRef
143.
Zurück zum Zitat Martin CA, Carsons SE, Kowalewski R, Bernstein D, Valentino M, Santiago-Schwarz F (2003) Aberrant extracellular and dendritic cell (DC) surface expression of heat shock protein (hsp)70 in the rheumatoid joint: possible mechanisms of hsp/DC-mediated cross-priming. J Immunol 171(11):5736–5742PubMedCrossRef Martin CA, Carsons SE, Kowalewski R, Bernstein D, Valentino M, Santiago-Schwarz F (2003) Aberrant extracellular and dendritic cell (DC) surface expression of heat shock protein (hsp)70 in the rheumatoid joint: possible mechanisms of hsp/DC-mediated cross-priming. J Immunol 171(11):5736–5742PubMedCrossRef
144.
Zurück zum Zitat Lebre MC, Jongbloed SL, Tas SW, Smeets TJ, McInnes IB, Tak PP (2008) Rheumatoid arthritis synovium contains two subsets of CD83-DC-LAMP- dendritic cells with distinct cytokine profiles. Am J Pathol 172(4):940–950PubMedPubMedCentralCrossRef Lebre MC, Jongbloed SL, Tas SW, Smeets TJ, McInnes IB, Tak PP (2008) Rheumatoid arthritis synovium contains two subsets of CD83-DC-LAMP- dendritic cells with distinct cytokine profiles. Am J Pathol 172(4):940–950PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat van Lieshout AW, Barrera P, Smeets RL, Pesman GJ, van Riel PL, van den Berg WB, Radstake TR (2005) Inhibition of TNF alpha during maturation of dendritic cells results in the development of semi-mature cells: a potential mechanism for the beneficial effects of TNF alpha blockade in rheumatoid arthritis. Ann Rheum Dis 64(3):408–414PubMedCrossRef van Lieshout AW, Barrera P, Smeets RL, Pesman GJ, van Riel PL, van den Berg WB, Radstake TR (2005) Inhibition of TNF alpha during maturation of dendritic cells results in the development of semi-mature cells: a potential mechanism for the beneficial effects of TNF alpha blockade in rheumatoid arthritis. Ann Rheum Dis 64(3):408–414PubMedCrossRef
146.
Zurück zum Zitat Balanescu A, Radu E, Nat R, Regalia T, Bojinca V, Ionescu R, Balanescu S, Savu C, Predeteanu D (2005) Early and late effect of infliximab on circulating dendritic cells phenotype in rheumatoid arthritis patients. Int J Clin Pharmacol Res 25(1):9–18PubMed Balanescu A, Radu E, Nat R, Regalia T, Bojinca V, Ionescu R, Balanescu S, Savu C, Predeteanu D (2005) Early and late effect of infliximab on circulating dendritic cells phenotype in rheumatoid arthritis patients. Int J Clin Pharmacol Res 25(1):9–18PubMed
147.
Zurück zum Zitat Park JE, Jang J, Choi JH, Kang MS, Woo YJ, Seong YR, Choi CB, Lee HS, Bae SC, Bae YS (2015) DC-based immunotherapy combined with low-dose methotrexate effective in the treatment of advanced CIA in mice. J Immunol Res 2015:834085PubMedPubMedCentral Park JE, Jang J, Choi JH, Kang MS, Woo YJ, Seong YR, Choi CB, Lee HS, Bae SC, Bae YS (2015) DC-based immunotherapy combined with low-dose methotrexate effective in the treatment of advanced CIA in mice. J Immunol Res 2015:834085PubMedPubMedCentral
148.
Zurück zum Zitat Ren Y, Yang Y, Yang J, Xie R, Fan H (2014) Tolerogenic dendritic cells modified by tacrolimus suppress CD4(+) T-cell proliferation and inhibit collagen-induced arthritis in mice. Int Immunopharmacol 21(1):247–254PubMedCrossRef Ren Y, Yang Y, Yang J, Xie R, Fan H (2014) Tolerogenic dendritic cells modified by tacrolimus suppress CD4(+) T-cell proliferation and inhibit collagen-induced arthritis in mice. Int Immunopharmacol 21(1):247–254PubMedCrossRef
149.
Zurück zum Zitat Zhang L, Fu J, Sheng K, Li Y, Song S, Li P, Song S, Wang Q, Chen J, Yu J, Wei W (2015) Bone marrow CD11b(+)F4/80(+) dendritic cells ameliorate collagen-induced arthritis through modulating the balance between Treg and Th17. Int Immunopharmacol 25(1):96–105PubMedCrossRef Zhang L, Fu J, Sheng K, Li Y, Song S, Li P, Song S, Wang Q, Chen J, Yu J, Wei W (2015) Bone marrow CD11b(+)F4/80(+) dendritic cells ameliorate collagen-induced arthritis through modulating the balance between Treg and Th17. Int Immunopharmacol 25(1):96–105PubMedCrossRef
150.
151.
152.
Zurück zum Zitat Martin E, O'Sullivan B, Low P, Thomas R (2003) Antigen-specific suppression of a primed immune response by dendritic cells mediated by regulatory T cells secreting interleukin-10. Immunity 18(1):155–167PubMedCrossRef Martin E, O'Sullivan B, Low P, Thomas R (2003) Antigen-specific suppression of a primed immune response by dendritic cells mediated by regulatory T cells secreting interleukin-10. Immunity 18(1):155–167PubMedCrossRef
153.
Zurück zum Zitat Bell GM, Anderson AE, Diboll J, Reece R, Eltherington O, Harry RA, Fouweather T, MacDonald C, Chadwick T, McColl E, Dunn J, Dickinson AM, Hilkens CM, Isaacs JD (2017) Autologous tolerogenic dendritic cells for rheumatoid and inflammatory arthritis. Ann Rheum Dis 76(1):227–234PubMedCrossRef Bell GM, Anderson AE, Diboll J, Reece R, Eltherington O, Harry RA, Fouweather T, MacDonald C, Chadwick T, McColl E, Dunn J, Dickinson AM, Hilkens CM, Isaacs JD (2017) Autologous tolerogenic dendritic cells for rheumatoid and inflammatory arthritis. Ann Rheum Dis 76(1):227–234PubMedCrossRef
154.
Zurück zum Zitat Voigtlander C, Rossner S, Cierpka E, Theiner G, Wiethe C, Menges M, Schuler G, Lutz MB (2006) Dendritic cells matured with TNF can be further activated in vitro and after subcutaneous injection in vivo which converts their tolerogenicity into immunogenicity. J Immunother 29(4):407–415PubMedCrossRef Voigtlander C, Rossner S, Cierpka E, Theiner G, Wiethe C, Menges M, Schuler G, Lutz MB (2006) Dendritic cells matured with TNF can be further activated in vitro and after subcutaneous injection in vivo which converts their tolerogenicity into immunogenicity. J Immunother 29(4):407–415PubMedCrossRef
155.
Zurück zum Zitat Lim DS, Kang MS, Jeong JA, Bae YS (2009) Semi-mature DC are immunogenic and not tolerogenic when inoculated at a high dose in collagen-induced arthritis mice. Eur J Immunol 39(5):1334–1343PubMedCrossRef Lim DS, Kang MS, Jeong JA, Bae YS (2009) Semi-mature DC are immunogenic and not tolerogenic when inoculated at a high dose in collagen-induced arthritis mice. Eur J Immunol 39(5):1334–1343PubMedCrossRef
156.
Zurück zum Zitat Ludewig B, Ochsenbein AF, Odermatt B, Paulin D, Hengartner H, Zinkernagel RM (2000) Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J Exp Med 191(5):795–804PubMedPubMedCentralCrossRef Ludewig B, Ochsenbein AF, Odermatt B, Paulin D, Hengartner H, Zinkernagel RM (2000) Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J Exp Med 191(5):795–804PubMedPubMedCentralCrossRef
Metadaten
Titel
Future therapeutic targets in rheumatoid arthritis?
verfasst von
Tommy Tsang Cheung
Iain B. McInnes
Publikationsdatum
27.04.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Seminars in Immunopathology / Ausgabe 4/2017
Print ISSN: 1863-2297
Elektronische ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-017-0623-3

Weitere Artikel der Ausgabe 4/2017

Seminars in Immunopathology 4/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.