Skip to main content
Erschienen in: World Journal of Surgical Oncology 1/2017

Open Access 01.12.2017 | Research

Genetic polymorphisms in ERCC1 and ERCC2 genes are associated with response to chemotherapy in osteosarcoma patients among Chinese population: a meta-analysis

verfasst von: Haiguang Zhang, Junbo Ge, Huanyu Hong, Lili Bi, Zhengwen Sun

Erschienen in: World Journal of Surgical Oncology | Ausgabe 1/2017

Abstract

Background

There existed controversies about the association between the response to chemotherapy for osteosarcoma (OS) patients and the genetic polymorphisms in excision repair cross-complementation group (ERCC1 and ERCC2) genes. We aimed to perform a meta-analysis to comprehensively evaluate the association.

Method

We searched multiple databases for literature retrieval including the PubMED (1966 ∼ 2017), Embase (1980 ∼ 2017), and the Web of science (1945 ∼ 2017). The overall odds ratios(OR) and their corresponding 95% confidence interval (CI) were calculated for the three polymorphisms under the dominant, recessive, and allelic models.

Results

From six eligible articles in our study, we found that for ERCC1 rs11615 polymorphism, a significant association was detected between the chemotherapy response and the polymorphism under all three models (dominant model: OR = 2.015, P = 0.005; recessive model: OR = 1.791, P = 0.003; allelic model: OR = 1.677, P = 0.003), and OS patients carrying C allele in rs11615 polymorphism were more likely to response to chemotherapy. In terms of ERCC2 rs1799793 polymorphism, this polymorphism was significantly associated with the response to chemotherapy for OS patients under recessive model (OR = 1.337, P = 0.036), and patients with AG + AA genotype in rs1799793 polymorphism were more appropriate to receive chemotherapy. With respect to ERCC2 rs13181 polymorphism, this polymorphism was not correlated with the response to chemotherapy for OS patients under all three models.

Conclusions

Our meta-analysis suggested that among Chinese population, the rs11615 and rs1799793 polymorphisms were significantly correlated with the response to chemotherapy for patients with OS, and patients with CC or TC + CC genotypes in ERCC1 rs11615 polymorphism or AG + AA genotype in ERCC2 rs1799793 polymorphism were more suitable for chemotherapy.
Abkürzungen
CI
Confidence interval
ERCC1
Excision repair cross-complementation group 1
NER
Nucleotide excision repair
OR
Odds ratios
OS
Osteosarcoma
SNPs
Single nucleotide polymorphisms

Background

Osteosarcoma, the most common primary malignancy of bone, is a devastating disease due to its rapid dissemination and poor prognosis [13]. Approximately 60% of OS sufferers are pediatric patients whose ages are ranged from 10 to 20 years old [4]. Patients with OS usually have some clinical symptoms characterized by pain and swelling in the affected bone, which is too intense and intolerable to wake them from sleep [5]. There are 15–30% of cases who have pulmonary metastasis when they are diagnosed as OS, which frequently results in patient death [6].
The current well-established strategy for the treatment of newly diagnosed OS was the combination of neoadjuvant chemotherapy, surgical resection for metastatic OS patients, and the adjuvant chemotherapy after surgery [5]. The neoadjuvant therapy for OS is the combination of cisplatin with doxorubicin, methotrexate, and ifosfamide, which contributes to an improved 5-year survival rate for patients without metastasis [7]. Among the chemotherapy agents, cisplatin, a platinum analog which can prevent cell division and growth by interfering with DNA, is a commonly used treatment for various kinds of tumors [8]. Moreover, accumulating large cooperative group studies and international collaboration have documented cisplatin as one of the ideal agents of the effective combined chemotherapy for OS treatment [5].
The nucleotide excision repair (NER) pathway, a highly powerful and sophisticated DNA damage removal pathway, has been believed to play important roles in cancer progression and response to platinum-based chemotherapy [7, 9]. Excision repair cross-complementation groups 1 (ERCC1) and 2 (ERCC2) are genes encoding two key enzymes in NER pathway [10]. It has been reported that single nucleotide polymorphisms (SNPs) of ERCC1 and ERCC2 genes are associated with the response to chemotherapy for OS. A retrospective study showed that ERCC2 rs1799793, a DNA repair polymorphism, was a predictive factor for chemotherapy response in OS patients [11]. A study published on 2015 suggested that the polymorphism of ERCC1 rs11615 affected on the response to chemotherapy in OS treatment [12]. However, there is debate on the predictive value of SNPs in ERCC1 and ERCC2 genes for the response to chemotherapy for OS. Study from Yang et al. found that polymorphism of ERCC1 rs11615 did not significantly influence the response to chemotherapy in patients with OS [13]. The ERCC2 rs1799793 polymorphism has been proved to not be associated with the response to chemotherapy for OS by a prospective study [14]. Herein, in order to comprehensively evaluate the association between the response to chemotherapy for OS patients and the SNPs in ERCC1 and ERCC2 genes including rs11615, rs1799793, and rs13181 polymorphisms, we pooled all related data together and performed the current meta-analysis.

Methods

Search strategy

The PubMED (1966 ∼ 2017), Embase (1980 ∼ 2017), and the Web of science(1945 ∼ 2017) were searched for study retrieval with a combination of Medical Subject Headings (MeSH) and text words relating to “ERCC1”, “ERCC2”, “osteosarcoma”, and “chemotherapy” as the search strategy. We retrieved literatures from the database inception to March 5th, 2017. The reference lists of identified articles and related reviews were examined to avoid any omission of eligible studies by the above electronic search strategy.

Inclusion and exclusion criteria

In order to get more reliable estimations, we pre-defined strict inclusion criteria as follows: (1) all the participants were OS patients treated with chemotherapy; (2) detecting the relationship between the response to chemotherapy, and the SNPs in ERCC1 and ERCC2 genes such as rs11615, rs1799793, and rs13181 polymorphisms; (3) studies conducted on Chinese population; (4) providing available genotype data of relevant polymorphisms in ERCC1 and ERCC2 genes; (5) full-text studies published in English. Articles were eliminated if one of the following existed: (1) other SNPs rather than rs11615, rs1799793, and rs13181 polymorphisms; (2) SNPs of ERCC1 and ERCC2 genes are risk factors for OS survival; (3) literature types such as news, books, communications, letters, and reviews.

Data extraction

The following data were collected independently from incorporated studies by two reviewers according to the mentioned inclusion and exclusion criteria: the first author, year of publication, number of patients, treatment approaches, genotyping methods, the age and gender ratio of patients, and genotyping data of ERCC1 rs11615, ERCC2 rs1799793, and ERCC2 rs13181 polymorphisms.

Statistical analysis

We followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines [15]. In our study, the analyses were done with the STATA 12 software (STATACorp LP, College Station, TX, USA), and the value of P less than 0.05 was regarded as statistically significant. The pooled odds ratios (ORs) were calculated for dominant model, recessive model, and allelic model for ERCC1 rs11615, ERCC2 rs1799793, and ERCC2 rs13181 polymorphisms, respectively. The evaluation of response to chemotherapy was identified as the previous relevant studies [12, 16, 17]. An OR > 1 refers less OS patients with poor response to chemotherapy occur in the reference group, and patients in reference group have higher response rate to chemotherapy. We firstly used the Mantel-Haenszel (M-H) fixed-effects model to calculate the I 2 index as assessment of the heterogeneity among the incorporated studies. If the I 2 was less than 50%, we believed there was no significant heterogeneity and adopted the fixed-effects model to calculate the OR and its corresponding 95% CI. Otherwise, the DerSimonian and Laird (D-L) random-effects model was selected for the calculation of OR and 95% CI. Begg’s funnel plots were constructed to examine the publication bias. The noticeable asymmetry in the shape of funnel plot indicates publication bias. Egger’s tests were performed for further investigation, and the significance level was set at 0.05. The Rosenthal’s fail-safe numbers were calculated to estimate stability of the results [18]. The formula is as follows: N fs0.05 = (ΣZ/1.64)2n, where Z is Z scores for the individual significance values, and n is the number of studies. A fail-safe number is often considered robust if it is greater than 5n + 10 [19].

Results

Study characteristics

Based on our search strategy, we retrieved 56 literatures from PUBMED, 86 from Embase, and 43 from the Web of science. Twenty-five duplicated articles were removed, leaving 130 literatures for further assessment. After screening the titles, 54 literatures were eliminated. Then the remaining 76 articles were estimated for eligibility according to our inclusion and exclusion criteria. Finally six eligible articles [1214, 17, 20, 21] were included in our meta-analysis. The flow diagram of study selection process and reasons for exclusion was represented in Fig. 1. Table 1 gives a summary of the characteristics of each included study.
Table 1
Summary of characteristics of studies in the meta-analysis
Study
Number of patients
Treatment approaches
Genotyping methods
Age
Male (%)
Z.H. Cao (2015)
186
Cisplatin-based chemotherapy
PCR-RFLP
19.2 ± 9.4
57.53
Z.F. Liu (2015)
115
Cisplatin-based chemotherapy
MALDI-TOF MS
56.52
Y.J. Sun (2015)
175
Chemotherapy
PCR-RFLP
17.8 ± 9.7
66.28
W.P. Ji (2015)
214
Cisplatin-based chemotherapy
PCR-RFLP
18.7 ± 11.5
62.15
Q. Zhang (2015)
260
Cisplatin-based chemotherapy
PCR-RFLP
18.4 ± 8.5
43.84
L.M. Yang(2012)
187
Neoadjuvant chemotherapy
PCR-RFLP
17.7 ± 9.6
56.68
PCR-RFLP polymerase chain reaction restriction fragment length polymorphism assay, MALDI-TOF MS matrix-assisted laser desorption/ionization time-of-flight mass spectrometry method, – unavailable

The relationship between the response to chemotherapy for OS patients and the ERCC1 rs11615 polymorphism

Five studies including 1019 OS patients were incorporated to evaluate the association of the rs11615 polymorphism and the response to chemotherapy. The results could be found in Table 2. For dominant (TT + TC versus CC) and allelic models (T versus C), the random effects model was chosen to calculate the OR and 95% CI due to the large heterogeneity. The ORs for TT + TC versus CC and T versus C were 2.015 and 1.677, respectively (TT + TC versus CC: 95% CI:1.242–3.271, P = 0.005, Fig. 2; T versus C: 95% CI: 1.194–2.356, P = 0.003, Fig. 2), which suggested that significant association was detected between the rs11615 polymorphism and the response to chemotherapy for OS patients under the dominant and allelic models, and there were more responders to chemotherapy in patients with CC genotype in rs11615 polymorphism. With regard to the recessive model (TT versus CC + TC), considering the small heterogeneity, we selected the fixed-effects model to yield the OR for this model. The OR for TT versus CC + TC was 1.791 (95% CI:1.353–2.372, P = 0.003, Fig. 2), revealing that the rs11615 polymorphism was significantly associated with the response to chemotherapy for OS patients under recessive model, and patients with CC + TC genotype in rs11615 polymorphism had higher response rate to chemotherapy.
Table 2
Meta-analysis of the association of the response to chemotherapy for OS patients and the rs11615, rs1799793, and rs13181 polymorphisms
SNP
Total patients (n)
Model
OR
Lower limit
Upper limit
P (OR)
I 2 (%)
P (Heterogeneity)
P (Begg’s test)
P (Egger’s test)
FSN
rs11615
1019
Dominant model (TT + TC/CC)
2.015
1.242
3.271
0.005
53.30
0.073
0.462
0.168
25.000
Recessive model(TT/TC + CC)
1.791
1.353
2.372
0.003
36.60
0.177
0.462
0.508
22.393
Allelic model(T/C)
1.677
1.194
2.356
0.003
67.30
0.016
0.806
0.927
105.107
rs13181
1133
Dominant model (AA + AC/CC)
1.058
0.739
1.516
0.757
<0.01
0.572
0.707
0.511
3.434
Recessive model(AA/AC + CC)
1.135
0.868
1.484
0.355
16.10
0.31
0.26
0.079
3.160
Allelic model(A/C)
1.091
0.894
1.331
0.392
37.40
0.157
0.452
0.271
14.151
rs1799793
949
Dominant model (GG + GA/AA)
1.54
0.982
2.413
0.06
22.30
0.272
0.221
0.317
44.628
Recessive model(GG/AG + AA)
1.337
1.019
1.754
0.036
36.70
0.177
1.000
0.98
56.223
Allelic model(G/A)
1.328
0.943
1.87
0.105
57.60
0.051
1.000
0.973
92.857
n number of participants, FSN fail-safe numbers

The relationship between the response to chemotherapy for OS patients and the ERCC2 rs13181 polymorphism

All eligible studies together pooled 1133 OS patients involved in the association of the response to chemotherapy and the rs13181polymorphism. Table 2 gave a summary of the results. The values of I 2were lower than 50% for all the three models, so the fixed-effects model was used to achieve the OR and 95% CI. The ORs for dominant model (AA + AC versus CC), recessive model (AA versus AC + CC), and allelic model (A versus C) were 1.058 (95% CI: 0.793–1.516, P = 0.757, Fig. 3), 1.135 (95% CI: 0.868–1.484, P = 0.355, Fig. 3) and 1.091 (95% CI: 0.894–1.331, P = 0.392, Fig. 3), respectively, which demonstrated that no significant association was found between the rs13181 polymorphism and the response to chemotherapy for OS patients under all the three models.

The relationship between the response to chemotherapy for OS patients and the ERCC2 rs1799793 polymorphism

There were five eligible studies for the analysis of association between the rs1799793 polymorphism and the response to chemotherapy for OS patients. The results were displayed in Table 2. For the dominant (GG + GA versus AA) and recessive models (GG versus AG + AA), the fixed-effects model was adopted for the estimation of OR and 95% CI. The ORs for GG + GA versus AA and GG versus AG + AA were 1.54 (95% CI: 0.982–2.413, P = 0.06, Fig. 4) and 1.337 (95% CI: 1.019–1.754, P = 0.036, Fig. 4), respectively, suggesting that the rs1799793 polymorphism was significantly associated with the response to chemotherapy for OS patients under recessive model, and patients with GG genotype in rs179973 polymorphism had poor response to chemotherapy. In terms of the allelic model, the I 2 was 57.60%, so the random effects model was applied for yielding the OR and 95% CI. The OR for G versus A was 1.328 (95% CI: 0.943–1.87, Fig. 4), and the P was higher than 0.05, which implied that no significant association was observed under allelic model.

Publication bias

We observed no obvious asymmetry in the shape of funnel plots (Figs. 5, 6 and 7), referring that there was no significant publication bias in the analyses. Moreover, all the values of P in both Begg’s and Egger’s test were higher than 0.05, which further provided evidence of no publication bias in our study. Rosenthal’s fail-save number suggested that the results in allelic model of rs11615 groups and all three rs1799793 groups were comparatively reliable. However, the publication bias could not be ignored in dominant model and recessive model of rs11615 groups, and all three rs13181 groups (Table 2).

Discussion

In the current study, we performed a meta-analysis to assess the association of the response to chemotherapy for OS patients and the rs11615, rs1799793 and rs13181 polymorphisms. Our results showed that for ERCC1rs11615, OS patients carrying CC or TC + CC genotypes were more likely to respond to the chemotherapy, and patients with C allele in rs11615 polymorphism were more appropriate to receive chemotherapy. With respect to ERCC2 rs1799793, the response rate to chemotherapy in patients with AG + AA genotype was significantly higher than that in patients carrying GG genotype, and patients carrying AG + AA genotype in rs1799793 polymorphism were more suitable for chemotherapy, while for ERCC2 rs13181, the polymorphism had a null effect on the response to chemotherapy for OS patients.
Despite there is only 3 cases of OS per 1,000,000 individuals, OS is the most primary malignant of bone tumor worldwide occupying approximately 56% of all bone tumors [22, 23]. It has been reported that OS arises from mesenchymal cells undergoing abnormal modifications during the differentiation progress, which leads OS to a heterogenic tumor [4]. With the usage of preoperative and postoperative chemotherapy in clinic, the prognosis of OS without metastasis has been improved obviously, and the 5-year overall survival rate is elevated to 77%, while the prognosis for patients with metastatic OS is poor with a lower (less than 20%) 5-year overall survival rate due to its resistance to conventional chemotherapy [24]. Not only factors such as the age, gender, and ethnicity impact on the incidence of OS, but also genetic polymorphisms including CTLA-4 + 49A/G and TGF-β1 29 T/C variants are reported to be significantly correlated with OS susceptibility [25].
ERCC1, located at 19q13, encodes a rate-limiting enzyme in NER pathway, which can repair chemical drug-induced DNA damage [26, 27]. The rs11615, one of the common polymorphisms in ERCC1, may decrease the expression of ERCC1 mRNA, thus reducing the resistance to chemotherapy for cancer patients [26]. Cancer cells overexpressing ERCC1 were correlated with drug resistance to chemotherapy containing cisplatin, carboplatin, or oxaliplatin in several types of tumors such as gastric, bladder, ovarian, colorectal, and lung carcinomas [28]. Zhang et al. observed that the ERCC1 rs11615 polymorphism might influence the clinical outcomes and response to chemotherapy for patients with OS, and patients with CC genotype in ERCC1 rs11615 polymorphism had better response to chemotherapy [20] which was also confirmed in our meta-analysis, we furthermore incorporated all relevant data together and considered OS patients with CC or TC + CC genotypes had better response to chemotherapy. Thus, the genetic polymorphism of rs11615 is a potentially alternative target for OS patients in clinical diagnosis, and the C allele in ERCC1 rs11615 polymorphism for patients with OS could be an underlying candidate predictor in clinical chemotherapy treatment.
ERCC2, located at 9q13.3, encodes a DNA helicase which causes repair of single-strand DNA injury [29]. ERCC2 gene possesses more than 500 SNPs, among which rs13181 and rs1799793 are the two common polymorphisms that can alter the amino acid sequence in the ERCC2 gene [30]. The ERCC2 rs13181 polymorphism has been documented to be associated with a higher susceptibility to glioma among the Chinese population [31]. And the ERCC2 rs1799793 polymorphism, together with ERCC1 rs11615 polymorphism, may play roles in the response to chemotherapy and overall survival for patients with gastric cancer [32]. As to the polymorphism in ERCC2 for OS patients, Liu et al. found that the rs1799793 polymorphism in ERCC2 gene was likely to influence the chemotherapy response, and OS patients with AA genotype in ERCC2 rs1799793 were likely to have better chemotherapy response, whereas the rs13181 polymorphism was not associated with the chemotherapy response [17], which was not exactly the same as our results. We indicated that the polymorphism of rs13181 in ERCC2 gene was also not correlated with the response to chemotherapy for patients with OS. However, when enlarging the sample size by pooling all related data together in our meta-analysis, we detected that OS patients with AG + AA genotype of rs1799793 polymorphism were more likely to have good chemotherapy response which suggested AG + AA genotype could be a potential predictor for OS patients in clinical diagnosis and chemotherapeutic treatment. What we found were significant supplements to the molecular mechanism research of OS and will greatly benefit the OS patients in the future.
During the study retrieval, we found nine papers regarding the relationship between the chemotherapy response and the rs11615, rs1799793, and rs13181 polymorphisms in ERCC1 and ERCC2 genes for OS patients. Considering the different genetic and nationality backgrounds, studies conducted on Spanish [33], Slovenian [34] and Italian [7] populations were excluded, and only studies related to Chinese population were included and incorporated to get a more reliable and precise evaluation of the association between the response to chemotherapy and the polymorphisms of rs11615, rs1799793, and rs13181 in ERCC1 and ERCC2 genes for patients with OS among Chinese population.
To our knowledge, the present study is the first meta-analysis to explore the correlation of the chemotherapy response and the rs11615, rs1799793, and rs13181 polymorphisms in ERCC1 and ERCC2 genes for OS patients among Chinese population. However, there are some limitations in the current study. Firstly, as we mentioned above, there is only one article assessing the association between the response to chemotherapy and the polymorphisms of rs11615, rs1799793, and rs13181 for OS patients for three different nationalities including Spanish, Slovenian, and Italian, respectively. Although, we performed our meta-analysis on Chinese population with six eligible studies incorporated, with more studies becoming available for other nationalities, the overall meta-analysis and subgroup analysis stratified by nationalities would be conducted. Secondly, the genotyping methods in the included studies were not exactly the same, which might cause bias in our meta-analysis. Additionally, unpublished articles were not considered in our study.

Conclusions

The current meta-analysis suggested that for OS patients among Chinese population, the rs11615 and rs1799793 polymorphisms were significantly associated with the chemotherapy response, and patients with CC or TC + CC genotypes in ERCC1 rs11615 polymorphism or AG + AA genotype in ERCC2 rs1799793 polymorphism were more likely to have good response to chemotherapy. These SNPs may be candidate pharmacogenomic factors capable of indentifying OS patients who are more appropriate to receive chemotherapy.

Acknowledgements

Not applicable.

Funding

No funding was involved in this study.

Availability of data and materials

All data are fully available without restriction.

Authors’ contributions

ZHG and GJB designed the research. GJB and HHY performed the research. HHY and BLL contributed the new reagents or analytic tools. BLL and SZW analyzed the data. ZHG and GJB wrote the paper. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Not applicable.
Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Ritter J, Bielack SS. Osteosarcoma. Ann Oncol. 2010;21 Suppl 7:vii320–5.PubMed Ritter J, Bielack SS. Osteosarcoma. Ann Oncol. 2010;21 Suppl 7:vii320–5.PubMed
2.
Zurück zum Zitat Mans DR, et al. Incidence, and gender, age and ethnic distribution of sarcomas in the republic of suriname from 1980 to 2008. West Indian Med J. 2014;63(2):121–7.PubMed Mans DR, et al. Incidence, and gender, age and ethnic distribution of sarcomas in the republic of suriname from 1980 to 2008. West Indian Med J. 2014;63(2):121–7.PubMed
3.
Zurück zum Zitat Denduluri SK, et al. Molecular pathogenesis and therapeutic strategies of human osteosarcoma. J Biomed Res. 2016;30(1):5–18. Denduluri SK, et al. Molecular pathogenesis and therapeutic strategies of human osteosarcoma. J Biomed Res. 2016;30(1):5–18.
6.
Zurück zum Zitat Kumar RMR, Fuchs B. Hedgehog signaling inhibitors as anti-cancer agents in osteosarcoma. Cancers. 2015;7(2):784–94.CrossRefPubMed Kumar RMR, Fuchs B. Hedgehog signaling inhibitors as anti-cancer agents in osteosarcoma. Cancers. 2015;7(2):784–94.CrossRefPubMed
7.
Zurück zum Zitat Biason P, et al. Nucleotide excision repair gene variants and association with survival in osteosarcoma patients treated with neoadjuvant chemotherapy. Pharmacogenomics J. 2012;12(6):476–83.CrossRefPubMed Biason P, et al. Nucleotide excision repair gene variants and association with survival in osteosarcoma patients treated with neoadjuvant chemotherapy. Pharmacogenomics J. 2012;12(6):476–83.CrossRefPubMed
9.
Zurück zum Zitat Simon GR, Ismail-Khan R, Bepler G. Nuclear excision repair-based personalized therapy for non-small cell lung cancer: from hypothesis to reality. Int J Biochem Cell Biol. 2007;39(7-8):1318–28.CrossRefPubMedPubMedCentral Simon GR, Ismail-Khan R, Bepler G. Nuclear excision repair-based personalized therapy for non-small cell lung cancer: from hypothesis to reality. Int J Biochem Cell Biol. 2007;39(7-8):1318–28.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Kiyohara C, Yoshimasu K. Genetic polymorphisms in the nucleotide excision repair pathway and lung cancer risk: a meta-analysis. Int J Med Sci. 2007;4(2):59–71.CrossRefPubMedPubMedCentral Kiyohara C, Yoshimasu K. Genetic polymorphisms in the nucleotide excision repair pathway and lung cancer risk: a meta-analysis. Int J Med Sci. 2007;4(2):59–71.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Goricar K, et al. Genetic variability of DNA repair mechanisms and glutathione-S-transferase genes influences treatment outcome in osteosarcoma. Cancer Epidemiol. 2015;39(2):182–8.CrossRefPubMed Goricar K, et al. Genetic variability of DNA repair mechanisms and glutathione-S-transferase genes influences treatment outcome in osteosarcoma. Cancer Epidemiol. 2015;39(2):182–8.CrossRefPubMed
12.
Zurück zum Zitat Cao ZH, et al. Association between ERCC1 and ERCC2 gene polymorphisms and chemotherapy response and overall survival in osteosarcoma. Genet Mol Res. 2015;14(3):10145–51.CrossRefPubMed Cao ZH, et al. Association between ERCC1 and ERCC2 gene polymorphisms and chemotherapy response and overall survival in osteosarcoma. Genet Mol Res. 2015;14(3):10145–51.CrossRefPubMed
13.
Zurück zum Zitat Yang LM, Li XH, Bao CF. Glutathione S-transferase P1 and DNA polymorphisms influence response to chemotherapy and prognosis of bone tumors. Asian Pac J Cancer Prev. 2012;13(11):5883–6.CrossRefPubMed Yang LM, Li XH, Bao CF. Glutathione S-transferase P1 and DNA polymorphisms influence response to chemotherapy and prognosis of bone tumors. Asian Pac J Cancer Prev. 2012;13(11):5883–6.CrossRefPubMed
14.
Zurück zum Zitat Sun Y, et al. Genetic polymorphisms in nucleotide excision repair pathway influences response to chemotherapy and overall survival in osteosarcoma. Int J Clin Exp Pathol. 2015;8(7):7905–12.PubMedPubMedCentral Sun Y, et al. Genetic polymorphisms in nucleotide excision repair pathway influences response to chemotherapy and overall survival in osteosarcoma. Int J Clin Exp Pathol. 2015;8(7):7905–12.PubMedPubMedCentral
15.
Zurück zum Zitat Moher D, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006–12.CrossRefPubMed Moher D, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006–12.CrossRefPubMed
16.
Zurück zum Zitat Sun Z, et al. Single-nucleotide gene polymorphisms involving cell death pathways: a study of Chinese patients with lumbar disc herniation. Connect Tissue Res. 2013;54(1):55–61.CrossRefPubMed Sun Z, et al. Single-nucleotide gene polymorphisms involving cell death pathways: a study of Chinese patients with lumbar disc herniation. Connect Tissue Res. 2013;54(1):55–61.CrossRefPubMed
17.
Zurück zum Zitat Liu ZF, et al. Influence of ERCC2 gene polymorphisms on the treatment outcome of osteosarcoma. Genet Mol Res. 2015;14(4):12967–72.CrossRefPubMed Liu ZF, et al. Influence of ERCC2 gene polymorphisms on the treatment outcome of osteosarcoma. Genet Mol Res. 2015;14(4):12967–72.CrossRefPubMed
18.
Zurück zum Zitat Rosenthal R. The file drawer problem and tolerance for null results. Psychol Bull. 1979;86(86):638–41.CrossRef Rosenthal R. The file drawer problem and tolerance for null results. Psychol Bull. 1979;86(86):638–41.CrossRef
19.
Zurück zum Zitat Rosenberg MS. The file-drawer problem revisited: A general weighted method for calculating fail-safe numbers in meta-analysis. Evolution. 2005;59(2):464-8. Rosenberg MS. The file-drawer problem revisited: A general weighted method for calculating fail-safe numbers in meta-analysis. Evolution. 2005;59(2):464-8.
20.
Zurück zum Zitat Zhang Q, et al. Investigation of ERCC1 and ERCC2 gene polymorphisms and response to chemotherapy and overall survival in osteosarcoma. Genet Mol Res. 2015;14(3):11235–41.CrossRefPubMed Zhang Q, et al. Investigation of ERCC1 and ERCC2 gene polymorphisms and response to chemotherapy and overall survival in osteosarcoma. Genet Mol Res. 2015;14(3):11235–41.CrossRefPubMed
21.
Zurück zum Zitat Ji WP, He NB. Investigation on the DNA repaired gene polymorphisms and response to chemotherapy and overall survival of osteosarcoma. Int J Clin Exp Pathol. 2015;8(1):894–9.PubMedPubMedCentral Ji WP, He NB. Investigation on the DNA repaired gene polymorphisms and response to chemotherapy and overall survival of osteosarcoma. Int J Clin Exp Pathol. 2015;8(1):894–9.PubMedPubMedCentral
22.
23.
Zurück zum Zitat Schwab JH, et al. What’s new in primary bone tumors. J Bone Joint Surg. 2012;94(20):1913–9.CrossRefPubMed Schwab JH, et al. What’s new in primary bone tumors. J Bone Joint Surg. 2012;94(20):1913–9.CrossRefPubMed
24.
Zurück zum Zitat He JP, et al. Review of the molecular pathogenesis of osteosarcoma. Asian Pac J Cancer Prev. 2014;15(15):5967–76.CrossRefPubMed He JP, et al. Review of the molecular pathogenesis of osteosarcoma. Asian Pac J Cancer Prev. 2014;15(15):5967–76.CrossRefPubMed
25.
Zurück zum Zitat Bian Z, et al. Association of genetic polymorphisms with osteosarcoma risk: a meta-analysis. Int J Clin Exp Med. 2015;8(6):8317.PubMedPubMedCentral Bian Z, et al. Association of genetic polymorphisms with osteosarcoma risk: a meta-analysis. Int J Clin Exp Med. 2015;8(6):8317.PubMedPubMedCentral
26.
Zurück zum Zitat Qixing M, et al. Predictive value of ERCC1 and Xpd polymorphisms for clinical outcomes of patients receiving neoadjuvant therapy: A prisma-compliant meta-Analysis. Medicine (United States). 2015;94(39):e1593. Qixing M, et al. Predictive value of ERCC1 and Xpd polymorphisms for clinical outcomes of patients receiving neoadjuvant therapy: A prisma-compliant meta-Analysis. Medicine (United States). 2015;94(39):e1593.
27.
Zurück zum Zitat Jiang C, et al. DNA repair gene ERCC1 polymorphisms and glioma susceptibility among Chinese population: a meta-analysis. Int J Clin Exp Med. 2015;8(7):10248.PubMedPubMedCentral Jiang C, et al. DNA repair gene ERCC1 polymorphisms and glioma susceptibility among Chinese population: a meta-analysis. Int J Clin Exp Med. 2015;8(7):10248.PubMedPubMedCentral
28.
Zurück zum Zitat Massuti B, et al. Are we ready to use biomarkers for staging, prognosis and treatment selection in early-stage non-small-cell lung cancer? Transl Lung Cancer Res. 2013;2(3):208.PubMedPubMedCentral Massuti B, et al. Are we ready to use biomarkers for staging, prognosis and treatment selection in early-stage non-small-cell lung cancer? Transl Lung Cancer Res. 2013;2(3):208.PubMedPubMedCentral
29.
Zurück zum Zitat Ikeda S, Hansel DE, Kurzrock R. Beyond conventional chemotherapy: emerging molecular targeted and immunotherapy strategies in urothelial carcinoma. Cancer Treat Rev. 2015;41(8):699–706.CrossRefPubMed Ikeda S, Hansel DE, Kurzrock R. Beyond conventional chemotherapy: emerging molecular targeted and immunotherapy strategies in urothelial carcinoma. Cancer Treat Rev. 2015;41(8):699–706.CrossRefPubMed
30.
31.
Zurück zum Zitat Jia TL, et al. Association between the ERCC2 rs13181 polymorphism and the risk of glioma: a meta-analysis. Genet Mol Res. 2015;14(4):12577–84.CrossRefPubMed Jia TL, et al. Association between the ERCC2 rs13181 polymorphism and the risk of glioma: a meta-analysis. Genet Mol Res. 2015;14(4):12577–84.CrossRefPubMed
32.
Zurück zum Zitat Zhou J, et al. Genetic polymorphisms of DNA repair pathways influence the response to chemotherapy and overall survival of gastric cancer. Tumor Biol. 2015;36(4):3017–23.CrossRef Zhou J, et al. Genetic polymorphisms of DNA repair pathways influence the response to chemotherapy and overall survival of gastric cancer. Tumor Biol. 2015;36(4):3017–23.CrossRef
33.
Zurück zum Zitat Caronia D, et al. Common variations in ERCC2 are associated with response to cisplatin chemotherapy and clinical outcome in osteosarcoma patients. Pharmacogenomics J. 2009;9(5):347–53.CrossRefPubMed Caronia D, et al. Common variations in ERCC2 are associated with response to cisplatin chemotherapy and clinical outcome in osteosarcoma patients. Pharmacogenomics J. 2009;9(5):347–53.CrossRefPubMed
34.
Zurück zum Zitat Goričar K, et al. Genetic variability of DNA repair mechanisms and glutathione-S-transferase genes influences treatment outcome in osteosarcoma. Cancer Epidemiol. 2015;39(2):182–8.CrossRefPubMed Goričar K, et al. Genetic variability of DNA repair mechanisms and glutathione-S-transferase genes influences treatment outcome in osteosarcoma. Cancer Epidemiol. 2015;39(2):182–8.CrossRefPubMed
Metadaten
Titel
Genetic polymorphisms in ERCC1 and ERCC2 genes are associated with response to chemotherapy in osteosarcoma patients among Chinese population: a meta-analysis
verfasst von
Haiguang Zhang
Junbo Ge
Huanyu Hong
Lili Bi
Zhengwen Sun
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
World Journal of Surgical Oncology / Ausgabe 1/2017
Elektronische ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-017-1142-3

Weitere Artikel der Ausgabe 1/2017

World Journal of Surgical Oncology 1/2017 Zur Ausgabe

Wie erfolgreich ist eine Re-Ablation nach Rezidiv?

23.04.2024 Ablationstherapie Nachrichten

Nach der Katheterablation von Vorhofflimmern kommt es bei etwa einem Drittel der Patienten zu Rezidiven, meist binnen eines Jahres. Wie sich spätere Rückfälle auf die Erfolgschancen einer erneuten Ablation auswirken, haben Schweizer Kardiologen erforscht.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Ureterstriktur: Innovative OP-Technik bewährt sich

19.04.2024 EAU 2024 Kongressbericht

Die Ureterstriktur ist eine relativ seltene Komplikation, trotzdem bedarf sie einer differenzierten Versorgung. In komplexen Fällen wird dies durch die roboterassistierte OP-Technik gewährleistet. Erste Resultate ermutigen.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.