Skip to main content

01.12.2018 | Research | Ausgabe 1/2018 Open Access

Antimicrobial Resistance & Infection Control 1/2018

Genome-based analysis of Carbapenemase-producing Klebsiella pneumoniae isolates from German hospital patients, 2008-2014

Antimicrobial Resistance & Infection Control > Ausgabe 1/2018
Laura Becker, Martin Kaase, Yvonne Pfeifer, Stephan Fuchs, Annicka Reuss, Anja von Laer, Muna Abu Sin, Miriam Korte-Berwanger, Sören Gatermann, Guido Werner
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s13756-018-0352-y) contains supplementary material, which is available to authorized users.



By using whole genome sequence data we aimed at describing a population snapshot of carbapenemase-producing K. pneumoniae isolated from hospitalized patients in Germany between 2008 and 2014.


We selected a representative subset of 107 carbapenemase-producing K. pneumoniae clinical isolates possessing the four most prevalent carbapenemase types in Germany (KPC-2, KPC-3, OXA-48, NDM-1). Isolates were processed via illumina NGS. Data were analysed using different SNP-based mapping and de-novo assembly approaches. Relevant information was extracted from NGS data (antibiotic resistance determinants, wzi gene/cps type, virulence genes). NGS data from the present study were also compared with 238 genome data from two previous international studies on K. pneumoniae.


NGS-based analyses revealed a preferred prevalence of KPC-2-producing ST258 and KPC-3-producing ST512 isolates. OXA-48, being the most prevalent carbapenemase type in Germany, was associated with various K. pneumoniae strain types; most of them possessing IncL/M plasmid replicons suggesting a preferred dissemination of blaOXA-48 via this well-known plasmid type. Clusters ST15, ST147, ST258, and ST512 demonstrated an intermingled subset structure consisting of German and other European K. pneumoniae isolates. ST23 being the most frequent MLST type in Asia was found only once in Germany. This latter isolate contained an almost complete set of virulence genes and a K1 capsule suggesting occurrence of a hypervirulent ST23 strain producing OXA-48 in Germany.


Our study results suggest prevalence of “classical” K. pneumonaie strain types associated with widely distributed carbapenemase genes such as ST258/KPC-2 or ST512/KPC-3 also in Germany. The finding of a supposed hypervirulent and OXA-48-producing ST23 K. pneumoniae isolates outside Asia is highly worrisome and requires intense molecular surveillance.
Additional file 1: Figure S1. Origin of the 107 German carbapenemase-producing K. pneumoniae isolates. Regions are shown, where isolates originated from. Isolates from Saxony could not be elucidated further due to the lack of additional geographic information. Number of isolates is given by the size of the circle (see legend). Image is from: © Bundesamt für Kartographie und Geodäsie, Frankfurt am Main, Germany. Figure S2. Virulence gene content in 107 carbapenemase-producing K. pneumonaie isolates from Germany. Data are given in % of isolates showing possession of the corresponding gene cluster. The graph shows four most frequent virulence genes identified in more than one single isolate. Figure S3. Detailed view of the ML tree concerning ST258/ST512 – carbapenemase-producing K. pneumoniae isolates from Germany, 2008-2014. The image shows a subtree of Fig. 3 containing 52 isolates of ST258 (light violett) and ST512 (grey). Colour codes of the inner ring designate the corresponding carbapenemase type, the outer designates the wzi allele (see legend). Figure S4. ML tree of NGS-based analysis of German K. pneumoniae isolates and isolates from an international collection - detailed view of the cluster ST258/ST512 isolates. The image shows a subtree of Fig. 4 containing 66 isolates of ST258 and ST512. Colour codes of the inner ring correspond to the origin of strains, the middle ring to the carbapenemase KPC-2 or KPC-3, and the outer ring demonstrates the wzi allele type. (PPTX 1367 kb)
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2018

Antimicrobial Resistance & Infection Control 1/2018 Zur Ausgabe