Skip to main content
Erschienen in: Journal of Neurology 3/2017

04.01.2017 | Original Communication

Global and regional annual brain volume loss rates in physiological aging

verfasst von: Sven Schippling, Ann-Christin Ostwaldt, Per Suppa, Lothar Spies, Praveena Manogaran, Carola Gocke, Hans-Jürgen Huppertz, Roland Opfer

Erschienen in: Journal of Neurology | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Abstract

The objective is to estimate average global and regional percentage brain volume loss per year (BVL/year) of the physiologically ageing brain. Two independent, cross-sectional single scanner cohorts of healthy subjects were included. The first cohort (n = 248) was acquired at the Medical Prevention Center (MPCH) in Hamburg, Germany. The second cohort (n = 316) was taken from the Open Access Series of Imaging Studies (OASIS). Brain parenchyma (BP), grey matter (GM), white matter (WM), corpus callosum (CC), and thalamus volumes were calculated. A non-parametric technique was applied to fit the resulting age–volume data. For each age, the BVL/year was derived from the age–volume curves. The resulting BVL/year curves were compared between the two cohorts. For the MPCH cohort, the BVL/year curve of the BP was an increasing function starting from 0.20% at the age of 35 years increasing to 0.52% at 70 years (corresponding values for GM ranged from 0.32 to 0.55%, WM from 0.02 to 0.47%, CC from 0.07 to 0.48%, and thalamus from 0.25 to 0.54%). Mean absolute difference between BVL/year trajectories across the age range of 35–70 years was 0.02% for BP, 0.04% for GM, 0.04% for WM, 0.11% for CC, and 0.02% for the thalamus. Physiological BVL/year rates were remarkably consistent between the two cohorts and independent from the scanner applied. Average BVL/year was clearly age and compartment dependent. These results need to be taken into account when defining cut-off values for pathological annual brain volume loss in disease models, such as multiple sclerosis.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Barkhof F et al (2009) Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol 5(5):256–266CrossRefPubMed Barkhof F et al (2009) Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol 5(5):256–266CrossRefPubMed
2.
Zurück zum Zitat Steenwijk MD et al (2016) Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant. Brain 139(Pt 1):115–126CrossRefPubMed Steenwijk MD et al (2016) Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant. Brain 139(Pt 1):115–126CrossRefPubMed
3.
Zurück zum Zitat Fisher E et al (2008) Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol 64(3):255–265CrossRefPubMed Fisher E et al (2008) Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol 64(3):255–265CrossRefPubMed
4.
Zurück zum Zitat Sepulcre J et al (2006) Regional gray matter atrophy in early primary progressive multiple sclerosis: a voxel-based morphometry study. Arch Neurol 63(8):1175–1180CrossRefPubMed Sepulcre J et al (2006) Regional gray matter atrophy in early primary progressive multiple sclerosis: a voxel-based morphometry study. Arch Neurol 63(8):1175–1180CrossRefPubMed
5.
Zurück zum Zitat Audoin B et al (2006) Localization of grey matter atrophy in early RRMS: a longitudinal study. J Neurol 253(11):1495–1501CrossRefPubMed Audoin B et al (2006) Localization of grey matter atrophy in early RRMS: a longitudinal study. J Neurol 253(11):1495–1501CrossRefPubMed
6.
Zurück zum Zitat Datta S et al (2015) Regional gray matter atrophy in relapsing remitting multiple sclerosis: baseline analysis of multi-center data. Mult Scler Relat Disord 4(2):124–136CrossRefPubMedPubMedCentral Datta S et al (2015) Regional gray matter atrophy in relapsing remitting multiple sclerosis: baseline analysis of multi-center data. Mult Scler Relat Disord 4(2):124–136CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Zivadinov R et al (2013) Evolution of cortical and thalamus atrophy and disability progression in early relapsing-remitting MS during 5 years. AJNR Am J Neuroradiol 34(10):1931–1939CrossRefPubMed Zivadinov R et al (2013) Evolution of cortical and thalamus atrophy and disability progression in early relapsing-remitting MS during 5 years. AJNR Am J Neuroradiol 34(10):1931–1939CrossRefPubMed
8.
Zurück zum Zitat Rocca MA et al (2010) Thalamic damage and long-term progression of disability in multiple sclerosis. Radiology 257(2):463–469CrossRefPubMed Rocca MA et al (2010) Thalamic damage and long-term progression of disability in multiple sclerosis. Radiology 257(2):463–469CrossRefPubMed
9.
Zurück zum Zitat Schoonheim MM et al (2012) Subcortical atrophy and cognition: sex effects in multiple sclerosis. Neurology 79(17):1754–1761CrossRefPubMed Schoonheim MM et al (2012) Subcortical atrophy and cognition: sex effects in multiple sclerosis. Neurology 79(17):1754–1761CrossRefPubMed
10.
Zurück zum Zitat Pelletier J et al (2001) A longitudinal study of callosal atrophy and interhemispheric dysfunction in relapsing-remitting multiple sclerosis. Arch Neurol 58:105–111CrossRefPubMed Pelletier J et al (2001) A longitudinal study of callosal atrophy and interhemispheric dysfunction in relapsing-remitting multiple sclerosis. Arch Neurol 58:105–111CrossRefPubMed
11.
Zurück zum Zitat Uher T et al (2016) Combining clinical and magnetic resonance imaging markers enhances prediction of 12-year disability in multiple sclerosis. Mult Scler. doi:10.1177/1352458516642314 Uher T et al (2016) Combining clinical and magnetic resonance imaging markers enhances prediction of 12-year disability in multiple sclerosis. Mult Scler. doi:10.​1177/​1352458516642314​
12.
Zurück zum Zitat De Stefano N et al (2016) Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J Neurol Neurosurg Psychiatry 87(1):93–99PubMed De Stefano N et al (2016) Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J Neurol Neurosurg Psychiatry 87(1):93–99PubMed
13.
Zurück zum Zitat Ziegler G et al (2012) Brain structural trajectories over the adult lifespan. Hum Brain Mapp 33(10):2377–2389CrossRefPubMed Ziegler G et al (2012) Brain structural trajectories over the adult lifespan. Hum Brain Mapp 33(10):2377–2389CrossRefPubMed
14.
Zurück zum Zitat Marcus DS et al (2007) Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci 19(9):1498–1507CrossRefPubMed Marcus DS et al (2007) Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci 19(9):1498–1507CrossRefPubMed
15.
Zurück zum Zitat Ge Y et al (2002) Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. AJNR Am J Neuroradiol 23(8):1327–1333PubMed Ge Y et al (2002) Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. AJNR Am J Neuroradiol 23(8):1327–1333PubMed
16.
Zurück zum Zitat Fotenos AF et al (2005) Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology 64(6):1032–1039CrossRefPubMed Fotenos AF et al (2005) Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology 64(6):1032–1039CrossRefPubMed
17.
18.
Zurück zum Zitat Marcus DS et al (2010) Open access series of imaging studies: longitudinal MRI data in nondemented and demented older adults. J Cogn Neurosci 22(12):2677–2684CrossRefPubMedPubMedCentral Marcus DS et al (2010) Open access series of imaging studies: longitudinal MRI data in nondemented and demented older adults. J Cogn Neurosci 22(12):2677–2684CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Hedman AM et al (2012) Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies. Hum Brain Mapp 33(8):1987–2002CrossRefPubMed Hedman AM et al (2012) Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies. Hum Brain Mapp 33(8):1987–2002CrossRefPubMed
20.
Zurück zum Zitat Enzinger C et al (2005) Risk factors for progression of brain atrophy in aging: six-year follow-up of normal subjects. Neurology 64(10):1704–1711CrossRefPubMed Enzinger C et al (2005) Risk factors for progression of brain atrophy in aging: six-year follow-up of normal subjects. Neurology 64(10):1704–1711CrossRefPubMed
21.
Zurück zum Zitat Opfer R et al (2016) Atlas based brain volumetry: how to distinguish regional volume changes due to biological or physiological effects from inherent noise of the methodology. Magn Reson Imaging 34(4):455–461CrossRefPubMed Opfer R et al (2016) Atlas based brain volumetry: how to distinguish regional volume changes due to biological or physiological effects from inherent noise of the methodology. Magn Reson Imaging 34(4):455–461CrossRefPubMed
22.
Zurück zum Zitat Huppertz HJ et al (2010) Intra- and interscanner variability of automated voxel-based volumetry based on a 3D probabilistic atlas of human cerebral structures. Neuroimage 49(3):2216–2224CrossRefPubMed Huppertz HJ et al (2010) Intra- and interscanner variability of automated voxel-based volumetry based on a 3D probabilistic atlas of human cerebral structures. Neuroimage 49(3):2216–2224CrossRefPubMed
24.
Zurück zum Zitat Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38(1):95–113CrossRefPubMed Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38(1):95–113CrossRefPubMed
26.
Zurück zum Zitat Malone IB et al (2015) Accurate automatic estimation of total intracranial volume: a nuisance variable with less nuisance. Neuroimage 104:366–372CrossRefPubMedPubMedCentral Malone IB et al (2015) Accurate automatic estimation of total intracranial volume: a nuisance variable with less nuisance. Neuroimage 104:366–372CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Keihaninejad S et al (2010) A robust method to estimate the intracranial volume across MRI field strengths (1.5T and 3T). Neuroimage 50(4):1427–1437CrossRefPubMedPubMedCentral Keihaninejad S et al (2010) A robust method to estimate the intracranial volume across MRI field strengths (1.5T and 3T). Neuroimage 50(4):1427–1437CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Pell GS et al (2008) Selection of the control group for VBM analysis: influence of covariates, matching and sample size. Neuroimage 41(4):1324–1335CrossRefPubMed Pell GS et al (2008) Selection of the control group for VBM analysis: influence of covariates, matching and sample size. Neuroimage 41(4):1324–1335CrossRefPubMed
29.
Zurück zum Zitat Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning (chapter 6), vol 1. Springer Series in Statistics, Springer, Berlin Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning (chapter 6), vol 1. Springer Series in Statistics, Springer, Berlin
30.
Zurück zum Zitat Bowman AW, Azzalini A (1997) Applied smoothing techniques for data analysis: the kernel approach with S-Plus illustrations: the kernel approach with S-Plus illustrations. OUP, Oxford Bowman AW, Azzalini A (1997) Applied smoothing techniques for data analysis: the kernel approach with S-Plus illustrations: the kernel approach with S-Plus illustrations. OUP, Oxford
32.
Zurück zum Zitat De Stefano N et al (2010) Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes. Neurology 74(23):1868–1876CrossRefPubMed De Stefano N et al (2010) Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes. Neurology 74(23):1868–1876CrossRefPubMed
33.
Zurück zum Zitat Filippi M et al (2014) Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. J Neurol Neurosurg Psychiatry 85(8):851–858CrossRefPubMed Filippi M et al (2014) Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. J Neurol Neurosurg Psychiatry 85(8):851–858CrossRefPubMed
34.
Zurück zum Zitat Pfefferbaum A et al (2013) Variation in longitudinal trajectories of regional brain volumes of healthy men and women (ages 10 to 85 years) measured with atlas-based parcellation of MRI. Neuroimage 65:176–193CrossRefPubMed Pfefferbaum A et al (2013) Variation in longitudinal trajectories of regional brain volumes of healthy men and women (ages 10 to 85 years) measured with atlas-based parcellation of MRI. Neuroimage 65:176–193CrossRefPubMed
35.
Zurück zum Zitat Pfefferbaum A, Sullivan EV (2015) Cross-sectional versus longitudinal estimates of age-related changes in the adult brain: overlaps and discrepancies. Neurobiol Aging 36(9):2563–2567CrossRefPubMedPubMedCentral Pfefferbaum A, Sullivan EV (2015) Cross-sectional versus longitudinal estimates of age-related changes in the adult brain: overlaps and discrepancies. Neurobiol Aging 36(9):2563–2567CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Lindenberger U et al (2011) Cross-sectional age variance extraction: what’s change got to do with it? Psychol Aging 26(1):34–47CrossRefPubMed Lindenberger U et al (2011) Cross-sectional age variance extraction: what’s change got to do with it? Psychol Aging 26(1):34–47CrossRefPubMed
37.
Zurück zum Zitat Gordon BA et al (2008) Neuroanatomical correlates of aging, cardiopulmonary fitness level, and education. Psychophysiology 45(5):825–838PubMedPubMedCentral Gordon BA et al (2008) Neuroanatomical correlates of aging, cardiopulmonary fitness level, and education. Psychophysiology 45(5):825–838PubMedPubMedCentral
39.
Zurück zum Zitat Foubert-Samier A et al (2012) Education, occupation, leisure activities, and brain reserve: a population-based study. Neurobiol Aging 33(2):423.e15–25CrossRefPubMed Foubert-Samier A et al (2012) Education, occupation, leisure activities, and brain reserve: a population-based study. Neurobiol Aging 33(2):423.e15–25CrossRefPubMed
40.
Zurück zum Zitat Fjell AM et al (2010) When does brain aging accelerate? Dangers of quadratic fits in cross-sectional studies. Neuroimage 50(4):1376–1383CrossRefPubMed Fjell AM et al (2010) When does brain aging accelerate? Dangers of quadratic fits in cross-sectional studies. Neuroimage 50(4):1376–1383CrossRefPubMed
Metadaten
Titel
Global and regional annual brain volume loss rates in physiological aging
verfasst von
Sven Schippling
Ann-Christin Ostwaldt
Per Suppa
Lothar Spies
Praveena Manogaran
Carola Gocke
Hans-Jürgen Huppertz
Roland Opfer
Publikationsdatum
04.01.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Neurology / Ausgabe 3/2017
Print ISSN: 0340-5354
Elektronische ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-016-8374-y

Weitere Artikel der Ausgabe 3/2017

Journal of Neurology 3/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.