Skip to main content
Erschienen in: BMC Medical Genetics 1/2019

Open Access 01.12.2019 | Research article

Glutathione S-transferase pi 1 variant and squamous cell carcinoma susceptibility: a meta-analysis of 52 case-control studies

verfasst von: Shuang Wang, Jingqi Zhang, Fan Jun, Zhijie Bai

Erschienen in: BMC Medical Genetics | Ausgabe 1/2019

Abstract

Background

There are several meta-analyses on the genetic relationship between the rs1695 polymorphism within the GSTP1 (glutathione S-transferase pi 1) gene and the risk of different SCC (squamous cell carcinoma) diseases, such as ESCC (oesophageal SCC), HNSCC (head and neck SCC), LSCC (lung SCC), and SSCC (skin SCC). Nevertheless, no unified conclusions have been drawn.

Methods

Herein, an updated meta-analysis was performed to evaluate the probable impact of GSTP1 rs1695 on the susceptibility to different SCC diseases under six genetic models (allele, carrier, homozygote, heterozygote, dominant, and recessive). Three online databases, namely, PubMed, WOS (Web of Science), and Embase (Excerpta Medica Database), were searched.

Results

Initially, we obtained a total of 497 articles. Based on our selection criteria, we eventually included 52 case-control studies (9763 cases/15,028 controls) from 47 eligible articles. As shown in the pooling analysis, there was no difference in the risk of overall SCC disease between cases and controls [allele, Pa (P value of association test) = 0.601; carrier, Pa = 0.587; homozygote, Pa = 0.689; heterozygote, Pa = 0.167; dominant, Pa = 0.289; dominant, Pa = 0.548]. Similar results were obtained after stratification by race (Asian/Caucasian), genotyping, control source, and disease type (ESCC/HNSCC/LSCC/SSCC) (all Pa > 0.05).

Conclusion

The rs1695 polymorphism within the GSTP1 gene is not associated with the risk of overall SCC or a specific SCC type, including ESCC, HNSCC, LSCC, and SSCC.
Abkürzungen
AHR
Aryl hydrocarbon receptor
CADM1
Cell adhesion molecule 1
diASA-AMP
Di-allele-specific- amplification with artificially modified primers assay
Embase
Excerpta Medica Database
ESCC
Oesophageal squamous cell carcinoma
GST
Glutathione S-transferase
GSTA
Glutathione S-transferase alpha
GSTM1
Glutathione S-transferase mu 1
GSTP1
Glutathione S-transferase pi 1
GSTT1
Glutathione S-transferase theta 1
GWAS
Genome-wide association study
HB
Hospital-based
HNSCC
Head and neck squamous cell carcinoma
HWE
Hardy-Weinberg equilibrium
KLF5
Kruppel like factor 5
LSCC
Lung squamous cell carcinoma
MM
Malignant melanoma
OSCC
Oral squamous cell carcinoma
PB
Population-based
PCR
Polymerase chain reaction
PCR-RFLP
Polymerase chain reaction-restriction fragment length polymorphism
SBCC
Skin basal cell carcinoma
SCC
Squamous cell carcinoma
SEC16A
SEC16 homolog A, endoplasmic reticulum export factor
SSCC
Skin squamous cell carcinoma
SSCP
Single-stranded conformational polymorphism
UADTSCC
Upper aerodigestive tract squamous cell carcinoma
WOS
Web of Science

Background

SCC (squamous cell carcinoma), also termed “epidermal carcinoma,” is a malignant tumour that takes part in epidermis or adnexal cells and exhibits distinct degrees of keratosis [13]. SCC exists in the squamous epithelium of several places, e.g., skin, mouth, lung, lips, oesophagus, cervix, and vagina [46]. Based on GWAS (genome-wide association study) data, more and more reported genetic polymorphisms are believed to contribute to the aetiologies of different SCC types. For instance, a series of genes, including CADM1 (cell adhesion molecule 1), AHR (aryl hydrocarbon receptor), and SEC16A (SEC16 homolog A, endoplasmic reticulum export factor), may be related with the risk of SCC [7]. Two variants within the KLF5 (Kruppel-like factor 5) gene on chromosome 13q22.1, namely, rs1924966 and rs115797771, may be relevant to ESCC (oesophageal SCC) susceptibility [8]. Herein, we determined whether GSTP1 (glutathione S-transferase pi 1) gene polymorphism is associated with the susceptibility to different SCC patterns.
GSTP1, a member of the GST (glutathione S-transferase) family in humans, is associated with the biological detoxification or biotransformation process through catalysing the conjugation of many hydrophobic and electrophilic compounds with reduced glutathione [9, 10]. The GSTP1 gene, which is located on human chromosome 11q13, comprises seven exons and six introns [11]. Two common polymorphisms, namely, rs1695 A/G polymorphism in exon five (p.Ile105Val) and rs1138272 C/T polymorphism in exon six (p.Ala114Val), have been reported [12, 13].
Several SCC/GSTP1 rs1695-associated meta-analyses with conflicting conclusions have been reported. For instance, in 2009, Zendehdel et al. enrolled three case-control studies [1416], performed a meta-analysis to assess the association between GSTP1 rs1695 and ESCC risk in Caucasian populations, and found a borderline significant association [16]. In 2014, Song et al. enrolled 21 case-control studies to perform a meta-analysis concerning the role of the GSTP1 rs1695 polymorphism in the risk of oesophageal cancers, including EAC (oesophageal adenocarcinoma) and ESCC [17]. The subgroup meta-analysis of ESCC containing thirteen case-control studies showed a positive correlation, particularly in the Caucasian population [17]. However, in 2015, Tan et al. performed another meta-analysis with twenty case-control studies on overall oesophageal cancer and reported negative results in both ESCC and EAC subgroups [18]. Accordingly, we performed an updated meta-analysis with a relatively larger sample size to reevaluate the potential impact of the GSTP1 rs1695 A/G polymorphism on the susceptibility to SCC diseases, mainly including ESCC, SSCC, HNSCC (head and neck SCC), and LSCC (lung SCC).

Methods

Electronic database retrieval

We reviewed three on-line databases, including PubMed, WOS (Web of Science), and Embase (Excerpta Medica Database), through January 2018 using the following main search keywords: Carcinoma, Squamous Cell; Carcinomas, Squamous Cell; Squamous Cell Carcinomas; Squamous Cell Carcinoma; Carcinoma, Squamous; Carcinomas, Squamous; Squamous Carcinoma; Squamous Carcinomas; Carcinoma, Epidermoid; Carcinomas, Epidermoid; Epidermoid Carcinoma; Epidermoid Carcinomas; Carcinoma, Planocellular; Carcinomas, Planocellular; Planocellular Carcinoma; Planocellular Carcinomas; SCC; GSTP1; Glutathione S-Transferase pi; Glutathione S Transferase pi; GST Class-phi; Class-phi, GST; GST Class phi; Glutathione Transferase P1–1; Glutathione Transferase P1 1; Transferase P1–1, Glutathione; GSTP1 Glutathione D-Transferase; D-Transferase, GSTP1 Glutathione; GSTP1 Glutathione D Transferase; Glutathione D-Transferase, GSTP1; Polymorphism; Polymorphism, Genetic; Polymorphisms, Genetic; Genetic Polymorphisms; Genetic Polymorphism; Polymorphism (Genetics); Polymorphisms (Genetics); and Polymorphism; Polymorphisms.

Eligible article screening

We performed a literature search and screened the retrieved articles as per the PRISMA (preferred reporting items for systematic reviews and meta-analyses) guidelines [19]. Selection criteria included duplicated articles; data from animal or cell experiments; meeting abstract or meta-analysis; review, trials or case reports; data of GSTP1 expression; not SCC or GSTP1; lack confirmed histopathological data; combined GA + AA genotype frequency; without the control data; and P value of HWE (Hardy-Weinberg equilibrium) less than 0.05. Eligible case-control studies provided sufficient genotype frequency data of the GSTP1 gene rs1695 polymorphism in each case and control group.

Data extraction

Two investigators independently extracted the data and evaluated the methodological quality of each article by means of the NOS (Newcastle-Ottawa Scale) system. One table contains the following basic information: first author, publication year, region, race, genotyping assay, genotype frequency, disease type, control source, P values of HWE, study number, and sample size of the case/control.

Data synthesis

We utilized STATA software (StataCorp LP, College Station, TX, USA) for the following statistical analyses. The allele (allele G vs. A), carrier (carrier G vs. A), homozygote (GG vs. AA), heterozygote (AG vs. AA), dominant (AG + GG vs. AA), and recessive (GG vs. AA+AG) models were utilized to target the GSTP1 gene rs1695 G/A polymorphism. We calculated the OR (odds ratio), 95% CIs (confidence intervals) and Pa (P value of association test) values to estimate the association. When the Ph (P value of heterogeneity) was > 0.1 or I2 was < 50.0%, a fixed-effects model was adopted. Otherwise, a random-effects model was selected.
Considering the factors of race, genotyping assay, control source, and disease type, we performed the corresponding subgroup meta-analyses. We also carried out Egger’s/Begg’s tests to determine a potential publication bias. The presence of a publication bias was considered when PE (P value of Egger’s test) and PB (P value of Begg’s test) were below 0.05. Sensitivity analysis was applied to assess data stability and robustness.

Results

Article retrieval and screening

The article retrieval and selection processes during our meta-analysis were conducted as described in the flow chart shown in Fig. 1. After our literature search, a total of 497 articles were obtained. Then, 168 articles with duplicated data and 214 articles meeting the exclusion criteria were excluded. Next, we assessed the eligibility of the remaining 115 full-text articles. After the exclusion of 68 ineligible articles, a total of 47 articles containing 52 case-control studies [1416, 2063] were ultimately recruited for our meta-analysis. Table 1 summarizes the extracted basic information.
Table 1
Basic information of the eligible articles in the meta-analysis
First author
Year
Region
Race
Assay
Case
Disease type
Control
Control source
P HWE
AA
AG
GG
AA
AG
GG
Abbas
2004
France
Caucasian
PCR-RFLP
21
21
3
ESCC
59
56
9
PB
0.38
Cabelguenne
2001
France
Caucasian
PCR-RFLP
89
57
16
HNSCC
146
139
25
HB
0.31
Cai
2006
China
Asian
PCR-RFLP
143
58
3
ESCC
265
116
12
PB
0.87
Cho
2006
Korea
Asian
Gene sequencing
201
85
7
HNSCC
211
112
10
HB
0.29
Dura
2013
Netherlands
Caucasian
PCR
48
42
15
ESCC
246
261
84
PB
0.27
Dzian
2012
Netherlands
Caucasian
PCR-RFLP
56
45
11
LSCC
153
115
22
PB/HB
0.95
Evans
2004
USA
Caucasian
PCR-RFLP
123
132
27
HNSCC
97
85
24
PB
0.42
Fryer
2005
Australia
Caucasian
PCR-RFLP
59
51
18
SSCC
95
90
25
HB
0.60
Harth
2008
Germany
Caucasian
PCR-melting-curve
145
122
45
HNSCC
130
138
32
HB
0.62
Jain
2006
India
Asian
PCR-RFLP
46
23
7
ESCC
72
56
9
HB
0.67
Jourenkova
1999a
France
Caucasian
PCR-RFLP
49
53
15
HNSCC
86
64
22
HB
0.07
Jourenkova
1999b
France
Caucasian
PCR-RFLP
62
52
15
HNSCC
86
64
22
HB
0.07
Jourenkova
1998
France
Caucasian
PCR-RFLP
46
41
11
LSCC
86
64
22
HB
0.07
Kelders
2002
Netherlands
Caucasian
PCR-RFLP
36
38
13
HNSCC
26
18
7
HB
0.20
Kihara
1999
Japan
Asian
PCR-RFLP
84
32
9
LSCC
184
65
8
HB
0.45
Larsen
2006
Australia
Caucasian
PCR-RFLP
230
213
51
LSCC
161
169
49a
HB
0.66
  
Australia
Caucasian
PCR-RFLP
230
213
51
LSCC
112
100
35b
PB
0.11
Leichsenring
2006
Brazil
Mixed
PCR-RFLP
30
34
8
HNSCC
30
25
5
PB
0.95
Leite
2007
Brazil
Mixed
PCR-RFLP
14
13
2
SSCC
60
46
18
PB
0.07
Lewis
2002
UK
Caucasian
PCR-RFLP
14
17
1
LSCC
64
74
13
HB
0.19
Li
2010
South African
Black African
PCR-RFLP
56
59
26
ESCC
76
83
27
PB
0.58
   
Mixed
PCR-RFLP
34
52
11
ESCC
30
51
13
PB
0.24
Li
2007
USA
Caucasian
PCR-RFLP
336
356
111
HNSCC
333
385
121
PB
0.57
Liang
2005
China
Asian
diASA-AMP
58
32
4
LSCC
132
86
9
HB
0.27
Liu
2010
China
Asian
PCR-RFLP
66
29
0
ESCC
61
27
3
PB
1.00
Malik
2010
India
Asian
PCR-RFLP
53
36
14
ESCC
111
75
9
PB
0.41
Matejcic
2011
South African
Black African
TaqMan genotyping
79
155
91
ESCC
100
242
132
PB
0.57
  
South African
Mixed
TaqMan genotyping
69
112
48
ESCC
145
191
92
PB
0.05
McWilliams
2000
USA
Mixed
PCR-RFLP
60
73
13
HNSCC
58
51
15
HB
0.47
Miller
2006
USA
Caucasian
PCR-RFLP
190
173
49
LSCC
579
623
141
PB
0.16
Moaven
2010
Iran
Asian
PCR-RFLP
84
50
14
ESCC
74
54
8
PB
0.65
Nazar
2003
USA
Mixed
PCR-RFLP
35
29
9
LSCC
199
234
54
PB
0.23
Olshan
2000
USA
Mixed
PCR-RFLP
40
62
7
HNSCC
68
80
20
HBc
0.63
  
USA
Mixed
PCR-RFLP
18
38
7
HNSCC
7
13
5
HBd
0.82
Oude
2003
Netherlands
Caucasian
PCR-RFLP
116
90
29
HNSCC
125
121
39
PB
0.27
Peters
2006
USA
Mixed
PCR-RFLP
303
311
76
HNSCC
333
329
86
PB
0.73
Ramsay
2001
UK
Caucasian
SSCP
10
10
0
SSCC
53
71
17
HB
0.36
Risch
2001
Germany
Caucasian
PCR-RFLP
76
77
18
LSCC
167
151
35
HB
0.92
Rossini
2007
Brazil
Mixed
PCR-RFLP
42
65
18
ESCC
116
108
28
PB
0.71
Ruwali
2009
India
Caucasian
PCR-RFLP
224
112
14
HNSCC
199
138
13
PB
0.06
Ruwali
2011
India
Caucasian
PCR-RFLP
316
162
22
HNSCC
285
195
20
PB
0.06
Ryberg
1997
Norway
Caucasian
PCR-RFLP
20
34
13
LSCC
153
117
27
PB
0.50
Schneider
2004
Germany
Caucasian
PCR-melting-curve
81
75
27
LSCC
298
254
70
PB/HB
0.16
Soucek
2010
Czech/Polish
Caucasian
TaqMan drug metabolism genotyping
56
53
7
HNSCC
57
50
10
PB
0.52
Soya
2007
India
Asian
PCR-RFLP
219
162
27
UADTSCC
120
88
12
PB
0.42
Stücker
2002
France
Caucasian
PCR-RFLP
54
46
15
LSCC
124
120
20
HB
0.22
Tan
2000
China
Asian
PCR-RFLP
93
48
9
ESCC
91
53
6
PB
0.62
To
2002
Spain
Caucasian
PCR-RFLP
101
84
19
HNSCC
100
78
23
PB
0.20
To
1999
Spain
Caucasian
PCR-RFLP
29
20
3
LSCC
64
54
14
PBb
0.61
  
Spain
Caucasian
PCR-RFLP
29
20
3
LSCC
90
90
20
PBe
0.72
van
1999
Netherlands
Caucasian
PCR-RFLP
5
6
2
ESCC
146
89
12
PB
0.74
Zendehdel
2009
Sweden
Caucasian
Pyrosequencing
26
42
10
ESCC
208
207
38
PB
0.18
PCR polymerase chain reaction, PCR-RFLP polymerase chain reaction-restriction fragment length polymorphism, diASA-AMP di-allele-specific-amplification with artificially modified primers assay, SSCP Single-stranded conformational polymorphism, ESCC oesophageal squamous cell carcinoma, HNSCC head and neck squamous cell carcinoma, LSCC lung squamous cell carcinoma, SSCC skin squamous cell carcinoma, OSCC oral squamous cell carcinoma, UADTSCC upper aerodigestive tract squamous cell carcinoma, PB population-based, HB hospital-based, PHWE P value of hardy-weinberg equilibrium
aCOPD patients without LSCC, bhealthy smokers; ccontrol from Caucasian population; dcontrol from Black African population; econtrol from general population

Overall meta-analysis

First, we performed the overall meta-analysis, which included 52 case-control studies with 9763 cases and 15,028 controls (Table 2). The fixed-effects model was applied in all meta-analyses, because no substantial between-study heterogeneity was detected [Table 2, I2 value < 50.0%, Ph > 0.1]. As shown in Table 2, no altered susceptibility to SCC disease in cases was observed compared with controls [allele, Pa = 0.601; carrier, Pa = 0.587; homozygote, Pa = 0.689; heterozygote, Pa = 0.167; dominant, Pa = 0.289; dominant, Pa = 0.548]. These data suggest that the rs1695 polymorphism within the GSTP1 gene does not contribute to the risk of overall SCC.
Table 2
Meta-analysis of the GSTP1 rs1695 A/G polymorphism
Statistical analysis
Index
Allele
Carrier
Homozygote
Heterozygote
Dominant
Recessive
Association
OR
0.99
0.99
1.02
0.96
0.97
1.03
 
95% CIs
0.95~1.03
0.94~1.03
0.93~1.12
0.91~1.02
0.92~1.03
0.94~1.12
 
P a
0.601
0.587
0.689
0.167
0.289
0.548
Sample size
case
9763
9763
9763
9763
9763
9763
 
control
15,028
15,028
15,028
15,028
15,028
15,028
 
study
52
52
52
52
52
52
Heterogeneity
I2
15.5%
0.0%
9.7%
7.7%
11.8%
1.2%
 
P h
0.174
0.999
0.278
0.318
0.239
0.450
 
Model
Fixed
Fixed
Fixed
Fixed
Fixed
Fixed
Egger’s test
t
1.14
1.38
0.13
2.36
2.16
−0.31
 
P E
0.259
0.175
0.899
0.022
0.036
0.760
Begg’s test
z
0.53
0.84
0.77
1.96
1.82
1.29
 
P B
0.597
0.398
0.444
0.049
0.068
0.198
OR odds ratio, CIs confidence intervals, Pa, P value of association test, Ph, P value of heterogeneity test, PE, P value of Egger’s test, PB, P value of Begg’s test

Subgroup analysis

Next, we performed additional subgroup meta-analyses according to the factors of race (Asian/Caucasian), genotyping assay (PCR-RFLP), control source (PB/HB), and disease type (ESCC/HNSCC/LSCC/SSCC). As shown in Tables 3 and 4, there were no significant associations in any subgroup analysis for all genetic models tested (all Pa > 0.05). The forest plot of the subgroup analysis by disease type under the allele model is shown in Fig. 2.
Table 3
Subgroup analysis of the GSTP1 rs1695 A/G polymorphism by race, genotyping assay and control source
Factor
Subgroup
Index
Allele
Carrier
Homozygote
Heterozygote
Dominant
Recessive
Race
Asian
OR (95% CIs)
1.00 (0.89~1.12)
0.98 (0.86~1.11)
1.29 (0.94~1.76)
0.90 (0.78~1.04)
0.94 (0.82~1.08)
1.35 (0.99~1.83)
  
P a
0.948
0.716
0.114
0.139
0.361
0.058
  
Case/control
1696/2139
1696/2139
1696/2139
1696/2139
1696/2139
1696/2139
  
Study number
10
10
10
10
10
10
Race
Caucasian
OR (95% CIs)
0.98 (0.93~1.03)
0.98 (0.82~1.04)
1.00 (0.89~1.12)
0.94 (0.87~1.01)
0.95 (0.89~1.02)
1.02 (0.91~1.14)
  
P a
0.358
0.447
0.984
0.099
0.153
0.716
  
Case/control
5968/9719
5968/9719
5968/9719
5968/9719
5968/9719
5968/9719
  
Study number
30
30
30
30
30
30
genotyping assay
PCR-RFLP
OR (95% CIs)
0.99 (0.94~1.03)
0.99 (0.93~1.04)
1.01 (0.91~1.12)
0.96 (0.90~1.03)
0.97 (0.91~1.03)
1.01 (0.91~1.12)
  
P a
0.542
0.579
0.874
0.260
0.351
0.824
  
Case/control
8008/11,342
8008/11,342
8008/11,342
8008/11,342
8008/11,342
8008/11,342
  
Study number
42
42
42
42
42
42
control source
PB
OR (95% CIs)
0.98 (0.94~1.03)
0.98 (0.93~1.04)
1.00 (0.90~1.12)
0.96 (0.89~1.03)
0.96 (0.90~1.03)
1.02 (0.92~1.13)
  
P a
0.519
0.572
0.943
0.214
0.287
0.751
  
Case/control
6697/10,170
6697/10,170
6697/10,170
6697/10,170
6697/10,170
6697/10,170
  
Study number
31
31
31
31
31
31
control source
HB
OR (95% CIs)
0.98 (0.91~1.06)
0.98 (0.90~1.07)
1.00 (0.84~1.20)
0.95 (0.86~1.06)
0.96 (0.87~1.07)
1.01 (0.85~1.19)
  
P a
0.586
0.638
0.977
0.377
0.461
0.944
  
Case/control
2771/3946
2771/3946
2771/3946
2771/3946
2771/3946
2771/3946
  
Study number
19
19
19
19
19
19
Pa, P value of association test
PCR-RFLP polymerase chain reaction-restriction fragment length polymorphism, PB population-based, HB hospital-based, OR odds ratio, CIs confidence intervals
Table 4
Subgroup analysis of the GSTP1 rs1695 A/G polymorphism by SCC type
Subgroup
Index
Allele
Carrier
Homozygote
Heterozygote
Dominant
Recessive
ESCC
OR (95% CIs)
1.05 (0.96~1.15)
1.03 (0.93~1.14)
1.15 (0.95~1.39)
1.00 (0.88~1.14)
1.03 (0.92~1.17)
1.13 (0.95~1.34)
 
P a
0.263
0.568
0.155
0.970
0.575
0.160
 
Case/control
1934/3951
1934/3951
1934/3951
1934/3951
1934/3951
1934/3951
 
Study number
15
15
15
15
15
15
HNSCC
OR (95% CIs)
0.95 (0.89~1.01)
0.96 (0.89~1.03)
0.94 (0.82~1.09)
0.94 (0.87~1.02)
0.93 (0.86~1.01)
0.95 (0.83~1.09)
 
P a
0.112
0.247
0.408
0.131
0.102
0.459
 
Case/control
4671/4961
4671/4961
4671/4961
4671/4961
4671/4961
4671/4961
 
Study number
18
18
18
18
18
18
LSCC
OR (95% CIs)
1.00 (0.93~1.08)
1.00 (0.92~1.09)
1.04 (0.88~1.24)
0.97 (0.87~1.07)
0.98 (0.89~1.09)
1.06 (0.90~1.25)
 
P a
0.940
0.973
0.616
0.526
0.741
0.485
 
Case/control
2574/5421
2574/5421
2574/5421
2574/5421
2574/5421
2574/5421
 
Study number
15
15
15
15
15
15
SSCC
OR (95% CIs)
0.91 (0.70~1.19)
0.94 (0.69~1.28)
0.83 (0.46~1.49)
0.94 (0.64~1.36)
0.91 (0.64~1.30)
0.86 (0.49~1.51)
 
P a
0.493
0.688
0.532
0.728
0.605
0.597
 
Case/control
177/475
177/475
177/475
177/475
177/475
177/475
 
Study number
3
3
3
3
3
3
ESCC oesophageal squamous cell carcinoma, HNSCC head and neck squamous cell carcinoma, LSCC lung squamous cell carcinoma, SSCC skin squamous cell carcinoma, OR odds ratio, CIs confidence intervals, Pa, P value of association test
Furthermore, we included all case-controls studies regarding the specific SCC type and conducted a series of subgroup analyses by race and control source. However, similar results were obtained (data not shown). As a result, the GSTP1 gene rs1695 polymorphism is not likely related to the genetic susceptibility of a specific SCC type, including ESCC, HNSCC, LSCC, and SSCC.

Publication bias and sensitivity analysis

The publication bias analysis data obtained from Egger’s and Begg’s tests are shown in Table 2. There was no remarkable publication bias in most genetic models (PE > 0.05, PB > 0.05), except for the heterozygote (PE = 0.022, PB = 0.049) and dominant (PE = 0.036) models. The funnel plot (allele model) is displayed in Fig. 3a-b. Moreover, our sensitivity analysis led us to consider the stability of the data. Figure 4 shows a representative example of the sensitivity analysis (allele model).

Discussion

In the current meta-analysis, we first focused on the genetic relationship between the GSTP1 rs1695 A/G polymorphism and the risk of overall SCC and then conducted subgroup analyses by the specific histological status. After rigorous screening, four main types of SCC, namely, ESCC, HNSCC, ESCC, and SSCC, were targeted.
ESCC, a type of squamous epithelium differentiation of a malignant tumour within the oesophagus, accounts for the vast majority of oesophageal cancers [64, 65]. ESCC often presents in physiological or pathological stenosis of the oesophagus, and genetic factors, carcinogens, and/or chronic irritants may contribute to the pathogenesis of ESCC [64, 65]. The GSTP1 rs1695 A/G polymorphism is significantly related to the risk of ESCC in the Kashmiri population [42]. Similarly, GSTP1 rs1695 may be an independent risk factor for ESCC in Western populations [53]. Nevertheless, different associations were detected in other reports. For instance, no difference between unrelated controls and ESCC cases was observed in a French population [14] or a Chinese population [61]. Therefore, a meta-analysis was required to comprehensively evaluate the role of the GSTP1 rs1695 A/G polymorphism in ESCC risk. Herein, we recruited 15 case-control studies involving 1934 cases and 3951 controls and performed a new meta-analysis to examine the association between the GSTP1 rs1695 A/G polymorphism and ESCC susceptibility. The carrier (carrier G vs. A) model, as well as the allele, homozygote, heterozygote, dominant and recessive genetic models, was used. Our results in the stratified analysis of specific ESCCs are consistent with the data of Tan et al. [18].
Similarly, inconsistent results regarding an association between the GSTP1 rs1695 A/G polymorphism and LSCC risk have been reported in different races and geographical locations [24, 31, 33, 34, 37, 40, 45, 47, 52, 56, 57, 60, 63]. Here, we failed to detect a positive correlation between GSTP1 rs1695 and LSCC susceptibility, consistent with the prior meta-analysis of Feng in 2013 [66] and Xu in 2014 [67].
Head and neck cancer comprises cancers of the mouth, nose, sinuses, salivary glands, throat, and lymph nodes in the neck, and HNSCC is the major pathologic type [68]. In 2012, Lang et al. enrolled 28 case-control studies to perform a meta-analysis regarding the genetic effect of the GSTP1 rs1695 A/G polymorphism on overall head and neck cancer [69]. The authors were unable to identify a positive association between the GSTP1 rs1695 A/G polymorphism and the risk of overall head and neck cancer. Nevertheless, the potential role of GSTP1 rs1695 in the susceptibility to HNSCC was not assessed. Therefore, we performed a subgroup meta-analysis of HNSCC involving 18 case-control studies, but did not identify an association between GSTP1 rs1695 and HNSCC risk.
SSCC, SBCC (skin basal cell carcinoma) and (MM malignant melanoma) are the three main types of cutaneous cancer [4]. Herein, we did not identify an association between the GSTP1 rs1695 A/G polymorphism and SSCC risk, consistent with the prior meta-analyses regarding the correlation between GSTP1 rs1695 and the susceptibility to cutaneous cancer in 2015 [70, 71].
Human GST family genes, mainly including GSTA (glutathione S-transferase alpha), GSTM1 (glutathione S-transferase mu 1), GSTT1 (glutathione S-transferase theta 1) and GSTP1, encode phase II enzymes and are thus important for the body defence, metabolic detoxification of mutagens or chemical drugs, or cellular elimination of carcinogens [9, 10]. The rs1695 A/G polymorphism within the GSTP1 gene can result in the substitution of Ile (isoleucine) for Val (valine) at amino acid position 105, which may lower the cytosolic enzyme activity of GSTP1 protein [72, 73]. Although significant associations were not obtained in our overall meta-analysis or subgroup analyses by pathological type, we cannot rule out the potential genetic effect of the GSTP1 rs1695 A/G polymorphism.
There are still some limitations to our meta-analysis that should be clarified. Even though our findings were considered reliable by our sensitivity analysis and publication bias assessment, more eligible investigations are still warranted to further enhance the statistical power. We note that population-based controls were not utilized in each case-control study. The currently available data of genotypic and allelic frequency from the on-line databases led us to only target the rs1695 polymorphism of the GSTP1 gene. Other possible functional polymorphisms of the GSTP1 gene, such as rs1138272, or relative haplotypes will be important to examine in the future. We should also pay attention to the genetic relationship between GSTP1/GSTM1/GSTT1 polymorphisms and the risk of SCC.

Conclusion

In general, based on the currently published data, the GSTP1 gene rs1695 polymorphism is not associated with the susceptibility to overall SCC diseases, including ESCC, HNSCC, LSCC, and skin SCC. The confirmation or refutation of this conclusion merits further evidence.

Acknowledgements

Not applicable.

Funding

This study was supported in part by a grant of Science Foundation from Tianjin Municipal Commission of Health and Family Planning (2015KY11).

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Que SKT, Zwald FO, Schmults CD. Cutaneous squamous cell carcinoma: management of advanced and high-stage tumors. J Am Acad Dermatol. 2018;78(2):249–61.PubMedCrossRef Que SKT, Zwald FO, Schmults CD. Cutaneous squamous cell carcinoma: management of advanced and high-stage tumors. J Am Acad Dermatol. 2018;78(2):249–61.PubMedCrossRef
2.
Zurück zum Zitat Wang C, Wang J, Chen Z, Gao Y, He J. Immunohistochemical prognostic markers of esophageal squamous cell carcinoma: a systematic review. Chin J Cancer. 2017;36(1):65.PubMedPubMedCentralCrossRef Wang C, Wang J, Chen Z, Gao Y, He J. Immunohistochemical prognostic markers of esophageal squamous cell carcinoma: a systematic review. Chin J Cancer. 2017;36(1):65.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Bann DV, Deschler DG, Goyal N. Novel Immunotherapeutic Approaches for Head and Neck Squamous Cell Carcinoma. Cancers (Basel). 2016;8(10). Bann DV, Deschler DG, Goyal N. Novel Immunotherapeutic Approaches for Head and Neck Squamous Cell Carcinoma. Cancers (Basel). 2016;8(10).
4.
Zurück zum Zitat Liu N, Liu GJ, Liu J. Genetic association between TNF-alpha promoter polymorphism and susceptibility to squamous cell carcinoma, basal cell carcinoma, and melanoma: a meta-analysis. Oncotarget. 2017;8(32):53873–85.PubMedPubMedCentral Liu N, Liu GJ, Liu J. Genetic association between TNF-alpha promoter polymorphism and susceptibility to squamous cell carcinoma, basal cell carcinoma, and melanoma: a meta-analysis. Oncotarget. 2017;8(32):53873–85.PubMedPubMedCentral
5.
Zurück zum Zitat Zhang X, He R, Ren F, Tang R, Chen G. Association of miR-146a rs2910164 polymorphism with squamous cell carcinoma risk: a meta-analysis. J buon. 2015;20(3):829–41.PubMed Zhang X, He R, Ren F, Tang R, Chen G. Association of miR-146a rs2910164 polymorphism with squamous cell carcinoma risk: a meta-analysis. J buon. 2015;20(3):829–41.PubMed
6.
Zurück zum Zitat Yu H, Li H, Zhang J, Liu G. Influence of MDM2 polymorphisms on squamous cell carcinoma susceptibility: a meta-analysis. Onco Targets Ther. 2016;9:6211–24.PubMedPubMedCentralCrossRef Yu H, Li H, Zhang J, Liu G. Influence of MDM2 polymorphisms on squamous cell carcinoma susceptibility: a meta-analysis. Onco Targets Ther. 2016;9:6211–24.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Chahal HS, Lin Y, Ransohoff KJ, Hinds DA, Wu W, Dai HJ, Qureshi AA, Li WQ, Kraft P, Tang JY, et al. Genome-wide association study identifies novel susceptibility loci for cutaneous squamous cell carcinoma. Nat Commun. 2016;7:12048.PubMedPubMedCentralCrossRef Chahal HS, Lin Y, Ransohoff KJ, Hinds DA, Wu W, Dai HJ, Qureshi AA, Li WQ, Kraft P, Tang JY, et al. Genome-wide association study identifies novel susceptibility loci for cutaneous squamous cell carcinoma. Nat Commun. 2016;7:12048.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Chang J, Wei L, Miao X, Yu D, Tan W, Zhang X, Wu C, Lin D. Two novel variants on 13q22.1 are associated with risk of esophageal squamous cell carcinoma. Cancer Epidemiol Biomark Prev. 2015;24(11):1774–80.CrossRef Chang J, Wei L, Miao X, Yu D, Tan W, Zhang X, Wu C, Lin D. Two novel variants on 13q22.1 are associated with risk of esophageal squamous cell carcinoma. Cancer Epidemiol Biomark Prev. 2015;24(11):1774–80.CrossRef
9.
Zurück zum Zitat Schnekenburger M, Karius T, Diederich M. Regulation of epigenetic traits of the glutathione S-transferase P1 gene: from detoxification toward cancer prevention and diagnosis. Front Pharmacol. 2014;5:170.PubMedPubMedCentralCrossRef Schnekenburger M, Karius T, Diederich M. Regulation of epigenetic traits of the glutathione S-transferase P1 gene: from detoxification toward cancer prevention and diagnosis. Front Pharmacol. 2014;5:170.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Marchewka Z, Piwowar A, Ruzik S, Dlugosz A. Glutathione S - transferases class pi and mi and their significance in oncology. Postepy Hig Med Dosw (Online). 2017;71(0):541–50. Marchewka Z, Piwowar A, Ruzik S, Dlugosz A. Glutathione S - transferases class pi and mi and their significance in oncology. Postepy Hig Med Dosw (Online). 2017;71(0):541–50.
11.
Zurück zum Zitat Yuan Y, Qian ZR, Sano T, Asa SL, Yamada S, Kagawa N, Kudo E. Reduction of GSTP1 expression by DNA methylation correlates with clinicopathological features in pituitary adenomas. Mod Pathol. 2008;21(7):856–65.PubMedCrossRef Yuan Y, Qian ZR, Sano T, Asa SL, Yamada S, Kagawa N, Kudo E. Reduction of GSTP1 expression by DNA methylation correlates with clinicopathological features in pituitary adenomas. Mod Pathol. 2008;21(7):856–65.PubMedCrossRef
12.
Zurück zum Zitat Hollman AL, Tchounwou PB, Huang HC. The association between Gene-environment interactions and diseases involving the human GST superfamily with SNP variants. Int J Environ Res Public Health. 2016;13(4):379.PubMedPubMedCentralCrossRef Hollman AL, Tchounwou PB, Huang HC. The association between Gene-environment interactions and diseases involving the human GST superfamily with SNP variants. Int J Environ Res Public Health. 2016;13(4):379.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Karaca S, Karaca M, Cesuroglu T, Erge S, Polimanti R. GSTM1, GSTP1, and GSTT1 genetic variability in Turkish and worldwide populations. Am J Hum Biol. 2015;27(3):310–6.PubMedCrossRef Karaca S, Karaca M, Cesuroglu T, Erge S, Polimanti R. GSTM1, GSTP1, and GSTT1 genetic variability in Turkish and worldwide populations. Am J Hum Biol. 2015;27(3):310–6.PubMedCrossRef
14.
Zurück zum Zitat Abbas A, Delvinquiere K, Lechevrel M, Lebailly P, Gauduchon P, Launoy G, Sichel F. GSTM1, GSTT1, GSTP1 and CYP1A1 genetic polymorphisms and susceptibility to esophageal cancer in a French population: different pattern of squamous cell carcinoma and adenocarcinoma. World J Gastroenterol. 2004;10(23):3389–93.PubMedPubMedCentralCrossRef Abbas A, Delvinquiere K, Lechevrel M, Lebailly P, Gauduchon P, Launoy G, Sichel F. GSTM1, GSTT1, GSTP1 and CYP1A1 genetic polymorphisms and susceptibility to esophageal cancer in a French population: different pattern of squamous cell carcinoma and adenocarcinoma. World J Gastroenterol. 2004;10(23):3389–93.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat van Lieshout EM, Roelofs HM, Dekker S, Mulder CJ, Wobbes T, Jansen JB, Peters WH. Polymorphic expression of the glutathione S-transferase P1 gene and its susceptibility to Barrett's esophagus and esophageal carcinoma. Cancer Res. 1999;59(3):586–9.PubMed van Lieshout EM, Roelofs HM, Dekker S, Mulder CJ, Wobbes T, Jansen JB, Peters WH. Polymorphic expression of the glutathione S-transferase P1 gene and its susceptibility to Barrett's esophagus and esophageal carcinoma. Cancer Res. 1999;59(3):586–9.PubMed
16.
Zurück zum Zitat Zendehdel K, Bahmanyar S, McCarthy S, Nyren O, Andersson B, Ye W. Genetic polymorphisms of glutathione S-transferase genes GSTP1, GSTM1, and GSTT1 and risk of esophageal and gastric cardia cancers. Cancer Causes Control. 2009;20(10):2031–8.PubMedCrossRef Zendehdel K, Bahmanyar S, McCarthy S, Nyren O, Andersson B, Ye W. Genetic polymorphisms of glutathione S-transferase genes GSTP1, GSTM1, and GSTT1 and risk of esophageal and gastric cardia cancers. Cancer Causes Control. 2009;20(10):2031–8.PubMedCrossRef
17.
Zurück zum Zitat Song Y, Du Y, Zhou Q, Ma J, Yu J, Tao X, Zhang F. Association of GSTP1 Ile105Val polymorphism with risk of esophageal cancer: a meta-analysis of 21 case-control studies. Int J Clin Exp Med. 2014;7(10):3215–24.PubMedPubMedCentral Song Y, Du Y, Zhou Q, Ma J, Yu J, Tao X, Zhang F. Association of GSTP1 Ile105Val polymorphism with risk of esophageal cancer: a meta-analysis of 21 case-control studies. Int J Clin Exp Med. 2014;7(10):3215–24.PubMedPubMedCentral
18.
Zurück zum Zitat Tan X, Chen M. Association between glutathione S-transferases P1 Ile105Val polymorphism and susceptibility to esophageal cancer: evidence from 20 case-control studies. Mol Biol Rep. 2015;42(2):399–408.PubMedCrossRef Tan X, Chen M. Association between glutathione S-transferases P1 Ile105Val polymorphism and susceptibility to esophageal cancer: evidence from 20 case-control studies. Mol Biol Rep. 2015;42(2):399–408.PubMedCrossRef
19.
Zurück zum Zitat Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.PubMedPubMedCentralCrossRef Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Cabelguenne A, Loriot MA, Stucker I, Blons H, Koum-Besson E, Brasnu D, Beaune P, Laccourreye O, Laurent-Puig P, De Waziers I. Glutathione-associated enzymes in head and neck squamous cell carcinoma and response to cisplatin-based neoadjuvant chemotherapy. Int J Cancer. 2001;93(5):725–30.PubMedCrossRef Cabelguenne A, Loriot MA, Stucker I, Blons H, Koum-Besson E, Brasnu D, Beaune P, Laccourreye O, Laurent-Puig P, De Waziers I. Glutathione-associated enzymes in head and neck squamous cell carcinoma and response to cisplatin-based neoadjuvant chemotherapy. Int J Cancer. 2001;93(5):725–30.PubMedCrossRef
21.
Zurück zum Zitat Cai L, Mu LN, Lu H, Lu QY, You NC, Yu SZ, Le AD, Zhao J, Zhou XF, Marshall J, et al. Dietary selenium intake and genetic polymorphisms of the GSTP1 and p53 genes on the risk of esophageal squamous cell carcinoma. Cancer Epidemiol Biomark Prev. 2006;15(2):294–300.CrossRef Cai L, Mu LN, Lu H, Lu QY, You NC, Yu SZ, Le AD, Zhao J, Zhou XF, Marshall J, et al. Dietary selenium intake and genetic polymorphisms of the GSTP1 and p53 genes on the risk of esophageal squamous cell carcinoma. Cancer Epidemiol Biomark Prev. 2006;15(2):294–300.CrossRef
22.
Zurück zum Zitat Cho CG, Lee SK, Nam SY, Lee MS, Lee SW, Choi EK, Park HJ, Kim SY. Association of the GSTP1 and NQO1 polymorphisms and head and neck squamous cell carcinoma risk. J Korean Med Sci. 2006;21(6):1075–9.PubMedPubMedCentralCrossRef Cho CG, Lee SK, Nam SY, Lee MS, Lee SW, Choi EK, Park HJ, Kim SY. Association of the GSTP1 and NQO1 polymorphisms and head and neck squamous cell carcinoma risk. J Korean Med Sci. 2006;21(6):1075–9.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Dura P, Salomon J, Te Morsche RH, Roelofs HM, Kristinsson JO, Wobbes T, Witteman BJ, Tan AC, Drenth JP, Peters WH. No role for glutathione S-transferase genotypes in Caucasian esophageal squamous cell or adenocarcinoma etiology: an European case-control study. BMC Gastroenterol. 2013;13:97.PubMedPubMedCentralCrossRef Dura P, Salomon J, Te Morsche RH, Roelofs HM, Kristinsson JO, Wobbes T, Witteman BJ, Tan AC, Drenth JP, Peters WH. No role for glutathione S-transferase genotypes in Caucasian esophageal squamous cell or adenocarcinoma etiology: an European case-control study. BMC Gastroenterol. 2013;13:97.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Dzian A, Halasova E, Matakova T, Kavcova E, Smolar M, Dobrota D, Hamzik J, Mistuna D. Lung adenocarcinoma and squamous cell carcinoma in association with genetic polymorphisms of GSTs in Slovak population. Neoplasma. 2012;59(2):160–7.PubMedCrossRef Dzian A, Halasova E, Matakova T, Kavcova E, Smolar M, Dobrota D, Hamzik J, Mistuna D. Lung adenocarcinoma and squamous cell carcinoma in association with genetic polymorphisms of GSTs in Slovak population. Neoplasma. 2012;59(2):160–7.PubMedCrossRef
25.
Zurück zum Zitat Evans AJ, Henner WD, Eilers KM, Montalto MA, Wersinger EM, Andersen PE, Cohen JI, Everts EC, McWilliams JE, Beer TM. Polymorphisms of GSTT1 and related genes in head and neck cancer risk. Head Neck. 2004;26(1):63–70.PubMedCrossRef Evans AJ, Henner WD, Eilers KM, Montalto MA, Wersinger EM, Andersen PE, Cohen JI, Everts EC, McWilliams JE, Beer TM. Polymorphisms of GSTT1 and related genes in head and neck cancer risk. Head Neck. 2004;26(1):63–70.PubMedCrossRef
26.
Zurück zum Zitat Fryer AA, Ramsay HM, Lovatt TJ, Jones PW, Hawley CM, Nicol DL, Strange RC, Harden PN. Polymorphisms in glutathione S-transferases and non-melanoma skin cancer risk in Australian renal transplant recipients. Carcinogenesis. 2005;26(1):185–91.PubMedCrossRef Fryer AA, Ramsay HM, Lovatt TJ, Jones PW, Hawley CM, Nicol DL, Strange RC, Harden PN. Polymorphisms in glutathione S-transferases and non-melanoma skin cancer risk in Australian renal transplant recipients. Carcinogenesis. 2005;26(1):185–91.PubMedCrossRef
27.
Zurück zum Zitat Harth V, Schafer M, Abel J, Maintz L, Neuhaus T, Besuden M, Primke R, Wilkesmann A, Thier R, Vetter H, et al. Head and neck squamous-cell cancer and its association with polymorphic enzymes of xenobiotic metabolism and repair. J Toxicol Environ Health A. 2008;71(13–14):887–97.PubMedCrossRef Harth V, Schafer M, Abel J, Maintz L, Neuhaus T, Besuden M, Primke R, Wilkesmann A, Thier R, Vetter H, et al. Head and neck squamous-cell cancer and its association with polymorphic enzymes of xenobiotic metabolism and repair. J Toxicol Environ Health A. 2008;71(13–14):887–97.PubMedCrossRef
28.
Zurück zum Zitat Jain M, Kumar S, Rastogi N, Lal P, Ghoshal UC, Tiwari A, Pant MC, Baiq MQ, Mittal B. GSTT1, GSTM1 and GSTP1 genetic polymorphisms and interaction with tobacco, alcohol and occupational exposure in esophageal cancer patients from North India. Cancer Lett. 2006;242(1):60–7.PubMedCrossRef Jain M, Kumar S, Rastogi N, Lal P, Ghoshal UC, Tiwari A, Pant MC, Baiq MQ, Mittal B. GSTT1, GSTM1 and GSTP1 genetic polymorphisms and interaction with tobacco, alcohol and occupational exposure in esophageal cancer patients from North India. Cancer Lett. 2006;242(1):60–7.PubMedCrossRef
29.
Zurück zum Zitat Jourenkova-Mironova N, Voho A, Bouchardy C, Wikman H, Dayer P, Benhamou S, Hirvonen A. Glutathione S-transferase GSTM1, GSTM3, GSTP1 and GSTT1 genotypes and the risk of smoking-related oral and pharyngeal cancers. Int J Cancer. 1999a;81(1):44–8.PubMedCrossRef Jourenkova-Mironova N, Voho A, Bouchardy C, Wikman H, Dayer P, Benhamou S, Hirvonen A. Glutathione S-transferase GSTM1, GSTM3, GSTP1 and GSTT1 genotypes and the risk of smoking-related oral and pharyngeal cancers. Int J Cancer. 1999a;81(1):44–8.PubMedCrossRef
30.
Zurück zum Zitat Jourenkova-Mironova N, Voho A, Bouchardy C, Wikman H, Dayer P, Benhamou S, Hirvonen A. Glutathione S-transferase GSTM3 and GSTP1 genotypes and larynx cancer risk. Cancer Epidemiol Biomark Prev. 1999b;8(2):185–8. Jourenkova-Mironova N, Voho A, Bouchardy C, Wikman H, Dayer P, Benhamou S, Hirvonen A. Glutathione S-transferase GSTM3 and GSTP1 genotypes and larynx cancer risk. Cancer Epidemiol Biomark Prev. 1999b;8(2):185–8.
31.
Zurück zum Zitat Jourenkova-Mironova N, Wikman H, Bouchardy C, Voho A, Dayer P, Benhamou S, Hirvonen A. Role of glutathione S-transferase GSTM1, GSTM3, GSTP1 and GSTT1 genotypes in modulating susceptibility to smoking-related lung cancer. Pharmacogenetics. 1998;8(6):495–502.PubMedCrossRef Jourenkova-Mironova N, Wikman H, Bouchardy C, Voho A, Dayer P, Benhamou S, Hirvonen A. Role of glutathione S-transferase GSTM1, GSTM3, GSTP1 and GSTT1 genotypes in modulating susceptibility to smoking-related lung cancer. Pharmacogenetics. 1998;8(6):495–502.PubMedCrossRef
32.
Zurück zum Zitat Kelders WP, Oude Ophuis MB, Roelofs HM, Peters WH, Manni JJ. The association between glutathione S-transferase P1 genotype and plasma level in head and neck cancer. Laryngoscope. 2002;112(3):462–6.PubMedCrossRef Kelders WP, Oude Ophuis MB, Roelofs HM, Peters WH, Manni JJ. The association between glutathione S-transferase P1 genotype and plasma level in head and neck cancer. Laryngoscope. 2002;112(3):462–6.PubMedCrossRef
33.
Zurück zum Zitat Kihara M, Kihara M, Noda K. Lung cancer risk of the GSTM1 null genotype is enhanced in the presence of the GSTP1 mutated genotype in male Japanese smokers. Cancer Lett. 1999;137(1):53–60.PubMedCrossRef Kihara M, Kihara M, Noda K. Lung cancer risk of the GSTM1 null genotype is enhanced in the presence of the GSTP1 mutated genotype in male Japanese smokers. Cancer Lett. 1999;137(1):53–60.PubMedCrossRef
34.
Zurück zum Zitat Larsen JE, Colosimo ML, Yang IA, Bowman R, Zimmerman PV, Fong KM. CYP1A1 Ile462Val and MPO G-463A interact to increase risk of adenocarcinoma but not squamous cell carcinoma of the lung. Carcinogenesis. 2006;27(3):525–32.PubMedCrossRef Larsen JE, Colosimo ML, Yang IA, Bowman R, Zimmerman PV, Fong KM. CYP1A1 Ile462Val and MPO G-463A interact to increase risk of adenocarcinoma but not squamous cell carcinoma of the lung. Carcinogenesis. 2006;27(3):525–32.PubMedCrossRef
35.
Zurück zum Zitat Leichsenring A, Losi-Guembarovski R, Maciel ME, Losi-Guembarovski A, Oliveira BW, Ramos G, Cavalcanti TC, Bicalho MG, Cavalli IJ, Colus IM, et al. CYP1A1 and GSTP1 polymorphisms in an oral cancer case-control study. Braz J Med Biol Res. 2006;39(12):1569–74.PubMedCrossRef Leichsenring A, Losi-Guembarovski R, Maciel ME, Losi-Guembarovski A, Oliveira BW, Ramos G, Cavalcanti TC, Bicalho MG, Cavalli IJ, Colus IM, et al. CYP1A1 and GSTP1 polymorphisms in an oral cancer case-control study. Braz J Med Biol Res. 2006;39(12):1569–74.PubMedCrossRef
36.
Zurück zum Zitat Leite JL, Morari EC, Granja F, Campos GM, Guilhen AC, Ward LS. Influence of the glutathione s-transferase gene polymorphisms on the susceptibility to basal cell skin carcinoma. Rev Med Chil. 2007;135(3):301–6.PubMedCrossRef Leite JL, Morari EC, Granja F, Campos GM, Guilhen AC, Ward LS. Influence of the glutathione s-transferase gene polymorphisms on the susceptibility to basal cell skin carcinoma. Rev Med Chil. 2007;135(3):301–6.PubMedCrossRef
37.
Zurück zum Zitat Lewis SJ, Cherry NM, Niven RM, Barber PV, Povey AC. GSTM1, GSTT1 and GSTP1 polymorphisms and lung cancer risk. Cancer Lett. 2002;180(2):165–71.PubMedCrossRef Lewis SJ, Cherry NM, Niven RM, Barber PV, Povey AC. GSTM1, GSTT1 and GSTP1 polymorphisms and lung cancer risk. Cancer Lett. 2002;180(2):165–71.PubMedCrossRef
38.
Zurück zum Zitat Li D, Dandara C, Parker MI. The 341C/T polymorphism in the GSTP1 gene is associated with increased risk of oesophageal cancer. BMC Genet. 2010;11:47.PubMedPubMedCentralCrossRef Li D, Dandara C, Parker MI. The 341C/T polymorphism in the GSTP1 gene is associated with increased risk of oesophageal cancer. BMC Genet. 2010;11:47.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Li DH, Wang LE, Chang P, El-Naggar AK, Sturgis EM, Wei QY. In vitro benzo a pyrene diol epoxide-induced DNA adducts and risk of squamous cell carcinoma of head and neck. Cancer Res. 2007;67(12):5628–34.PubMedCrossRef Li DH, Wang LE, Chang P, El-Naggar AK, Sturgis EM, Wei QY. In vitro benzo a pyrene diol epoxide-induced DNA adducts and risk of squamous cell carcinoma of head and neck. Cancer Res. 2007;67(12):5628–34.PubMedCrossRef
40.
Zurück zum Zitat Liang G, Pu Y, Yin L. Rapid detection of single nucleotide polymorphisms related with lung cancer susceptibility of Chinese population. Cancer Lett. 2005;223(2):265–74.PubMedCrossRef Liang G, Pu Y, Yin L. Rapid detection of single nucleotide polymorphisms related with lung cancer susceptibility of Chinese population. Cancer Lett. 2005;223(2):265–74.PubMedCrossRef
41.
Zurück zum Zitat Liu R, Yin L, Pu Y, Li Y, Liang G, Zhang J, Li X. Functional alterations in the glutathione S-transferase family associated with enhanced occurrence of esophageal carcinoma in China. J Toxicol Environ Health A. 2010;73(7):471–82.PubMedCrossRef Liu R, Yin L, Pu Y, Li Y, Liang G, Zhang J, Li X. Functional alterations in the glutathione S-transferase family associated with enhanced occurrence of esophageal carcinoma in China. J Toxicol Environ Health A. 2010;73(7):471–82.PubMedCrossRef
42.
Zurück zum Zitat Malik MA, Upadhyay R, Mittal RD, Zargar SA, Mittal B. Association of xenobiotic metabolizing enzymes genetic polymorphisms with esophageal cancer in Kashmir Valley and influence of environmental factors. Nutr Cancer. 2010;62(6):734–42.PubMedCrossRef Malik MA, Upadhyay R, Mittal RD, Zargar SA, Mittal B. Association of xenobiotic metabolizing enzymes genetic polymorphisms with esophageal cancer in Kashmir Valley and influence of environmental factors. Nutr Cancer. 2010;62(6):734–42.PubMedCrossRef
43.
Zurück zum Zitat Matejcic M, Li D, Prescott NJ, Lewis CM, Mathew CG, Parker MI. Association of a deletion of GSTT2B with an altered risk of oesophageal squamous cell carcinoma in a south African population: a case-control study. PLoS One. 2011;6(12):e29366.PubMedPubMedCentralCrossRef Matejcic M, Li D, Prescott NJ, Lewis CM, Mathew CG, Parker MI. Association of a deletion of GSTT2B with an altered risk of oesophageal squamous cell carcinoma in a south African population: a case-control study. PLoS One. 2011;6(12):e29366.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat McWilliams JE, Evans AJ, Beer TM, Andersen PE, Cohen JI, Everts EC, Henner WD. Genetic polymorphisms in head and neck cancer risk. Head Neck. 2000;22(6):609–17.PubMedCrossRef McWilliams JE, Evans AJ, Beer TM, Andersen PE, Cohen JI, Everts EC, Henner WD. Genetic polymorphisms in head and neck cancer risk. Head Neck. 2000;22(6):609–17.PubMedCrossRef
45.
Zurück zum Zitat Miller DP, Asomaning K, Liu G, Wain JC, Lynch TJ, Neuberg D, Su L, Christiani DC. An association between glutathione S-transferase P1 gene polymorphism and younger age at onset of lung carcinoma. Cancer. 2006;107(7):1570–7.PubMedCrossRef Miller DP, Asomaning K, Liu G, Wain JC, Lynch TJ, Neuberg D, Su L, Christiani DC. An association between glutathione S-transferase P1 gene polymorphism and younger age at onset of lung carcinoma. Cancer. 2006;107(7):1570–7.PubMedCrossRef
46.
Zurück zum Zitat Moaven O, Raziee HR, Sima HR, Ganji A, Malekzadeh R, A'Rabi A, Abdollahi A, Memar B, Sotoudeh M, Naseh H, et al. Interactions between glutathione-S-transferase M1, T1 and P1 polymorphisms and smoking, and increased susceptibility to esophageal squamous cell carcinoma. Cancer Epidemiol. 2010;34(3):285–90.PubMedCrossRef Moaven O, Raziee HR, Sima HR, Ganji A, Malekzadeh R, A'Rabi A, Abdollahi A, Memar B, Sotoudeh M, Naseh H, et al. Interactions between glutathione-S-transferase M1, T1 and P1 polymorphisms and smoking, and increased susceptibility to esophageal squamous cell carcinoma. Cancer Epidemiol. 2010;34(3):285–90.PubMedCrossRef
47.
Zurück zum Zitat Nazar-Stewart V, Vaughan TL, Stapleton P, Van Loo J, Nicol-Blades B, Eaton DL. A population-based study of glutathione S-transferase M1, T1 and P1 genotypes and risk for lung cancer. Lung Cancer. 2003;40(3):247–58.PubMedCrossRef Nazar-Stewart V, Vaughan TL, Stapleton P, Van Loo J, Nicol-Blades B, Eaton DL. A population-based study of glutathione S-transferase M1, T1 and P1 genotypes and risk for lung cancer. Lung Cancer. 2003;40(3):247–58.PubMedCrossRef
48.
Zurück zum Zitat Olshan AF, Weissler MC, Watson MA, Bell DA. GSTM1, GSTT1, GSTP1, CYP1A1, and NAT1 polymorphisms, tobacco use, and the risk of head and neck cancer. Cancer Epidemiol Biomark Prev. 2000;9(2):185–91. Olshan AF, Weissler MC, Watson MA, Bell DA. GSTM1, GSTT1, GSTP1, CYP1A1, and NAT1 polymorphisms, tobacco use, and the risk of head and neck cancer. Cancer Epidemiol Biomark Prev. 2000;9(2):185–91.
49.
Zurück zum Zitat Oude Ophuis MB, Roelofs HM, van den Brandt PA, Peters WH, Manni JJ. Polymorphisms of the glutathione S-transferase P1 gene and head and neck cancer susceptibility. Head Neck. 2003;25(1):37–43.PubMedCrossRef Oude Ophuis MB, Roelofs HM, van den Brandt PA, Peters WH, Manni JJ. Polymorphisms of the glutathione S-transferase P1 gene and head and neck cancer susceptibility. Head Neck. 2003;25(1):37–43.PubMedCrossRef
50.
Zurück zum Zitat Peters ES, McClean MD, Marsit CJ, Luckett B, Kelsey KT. Glutathione S-transferase polymorphisms and the synergy of alcohol and tobacco in oral, pharyngeal, and laryngeal carcinoma. Cancer Epidemiol Biomark Prev. 2006;15(11):2196–202.CrossRef Peters ES, McClean MD, Marsit CJ, Luckett B, Kelsey KT. Glutathione S-transferase polymorphisms and the synergy of alcohol and tobacco in oral, pharyngeal, and laryngeal carcinoma. Cancer Epidemiol Biomark Prev. 2006;15(11):2196–202.CrossRef
51.
Zurück zum Zitat Ramsay HM, Harden PN, Reece S, Smith AG, Jones PW, Strange RC, Fryer AA. Polymorphisms in glutathione S-transferases are associated with altered risk of nonmelanoma skin cancer in renal transplant recipients: a preliminary analysis. J Invest Dermatol. 2001;117(2):251–5.PubMedCrossRef Ramsay HM, Harden PN, Reece S, Smith AG, Jones PW, Strange RC, Fryer AA. Polymorphisms in glutathione S-transferases are associated with altered risk of nonmelanoma skin cancer in renal transplant recipients: a preliminary analysis. J Invest Dermatol. 2001;117(2):251–5.PubMedCrossRef
52.
Zurück zum Zitat Risch A, Wikman H, Thiel S, Schmezer P, Edler L, Drings P, Dienemann H, Kayser K, Schulz V, Spiegelhalder B, et al. Glutathione-S-transferase M1, M3, T1 and P1 polymorphisms and susceptibility to non-small-cell lung cancer subtypes and hamartomas. Pharmacogenetics. 2001;11(9):757–64.PubMedCrossRef Risch A, Wikman H, Thiel S, Schmezer P, Edler L, Drings P, Dienemann H, Kayser K, Schulz V, Spiegelhalder B, et al. Glutathione-S-transferase M1, M3, T1 and P1 polymorphisms and susceptibility to non-small-cell lung cancer subtypes and hamartomas. Pharmacogenetics. 2001;11(9):757–64.PubMedCrossRef
53.
Zurück zum Zitat Rossini A, Rapozo DCM, Soares Lima SC, Guimarães DP, Ferreira MA, Teixeira R, Kruel CDP, Barros SGS, Andreollo NA, Acatauassú R, et al. Polymorphisms of GSTP1 and GSTT1, but not of CYP2A6, CYP2E1 or GSTM1, modify the risk for esophageal cancer in a western population. Carcinogenesis. 2007;28(12):2537–42.PubMedCrossRef Rossini A, Rapozo DCM, Soares Lima SC, Guimarães DP, Ferreira MA, Teixeira R, Kruel CDP, Barros SGS, Andreollo NA, Acatauassú R, et al. Polymorphisms of GSTP1 and GSTT1, but not of CYP2A6, CYP2E1 or GSTM1, modify the risk for esophageal cancer in a western population. Carcinogenesis. 2007;28(12):2537–42.PubMedCrossRef
54.
Zurück zum Zitat Ruwali M, Pant MC, Shah PP, Mishra BN, Parmar D. Polymorphism in cytochrome P450 2A6 and glutathione S-transferase P1 modifies head and neck cancer risk and treatment outcome. Mutat Res. 2009;669(1–2):36–41.PubMedCrossRef Ruwali M, Pant MC, Shah PP, Mishra BN, Parmar D. Polymorphism in cytochrome P450 2A6 and glutathione S-transferase P1 modifies head and neck cancer risk and treatment outcome. Mutat Res. 2009;669(1–2):36–41.PubMedCrossRef
55.
Zurück zum Zitat Ruwali M, Singh M, Pant MC, Parmar D. Polymorphism in glutathione S-transferases: susceptibility and treatment outcome for head and neck cancer. Xenobiotica. 2011;41(12):1122–30.PubMedCrossRef Ruwali M, Singh M, Pant MC, Parmar D. Polymorphism in glutathione S-transferases: susceptibility and treatment outcome for head and neck cancer. Xenobiotica. 2011;41(12):1122–30.PubMedCrossRef
56.
Zurück zum Zitat Ryberg D, Skaug V, Hewer A, Phillips DH, Harries LW, Wolf CR, Ogreid D, Ulvik A, Vu P, Haugen A. Genotypes of glutathione transferase M1 and P1 and their significance for lung DNA adduct levels and cancer risk. Carcinogenesis. 1997;18(7):1285–9.PubMedCrossRef Ryberg D, Skaug V, Hewer A, Phillips DH, Harries LW, Wolf CR, Ogreid D, Ulvik A, Vu P, Haugen A. Genotypes of glutathione transferase M1 and P1 and their significance for lung DNA adduct levels and cancer risk. Carcinogenesis. 1997;18(7):1285–9.PubMedCrossRef
57.
Zurück zum Zitat Schneider J, Bernges U, Philipp M, Woitowitz HJ. GSTM1, GSTT1, and GSTP1 polymorphism and lung cancer risk in relation to tobacco smoking. Cancer Lett. 2004;208(1):65–74.PubMedCrossRef Schneider J, Bernges U, Philipp M, Woitowitz HJ. GSTM1, GSTT1, and GSTP1 polymorphism and lung cancer risk in relation to tobacco smoking. Cancer Lett. 2004;208(1):65–74.PubMedCrossRef
58.
Zurück zum Zitat Soucek P, Susova S, Mohelnikova-Duchonova B, Gromadzinska J, Moraviec-Sztandera A, Vodicka P, Vodickova L. Polymorphisms in metabolizing enzymes and the risk of head and neck squamous cell carcinoma in the Slavic population of the Central Europe. Neoplasma. 2010;57(5):415–21.PubMedCrossRef Soucek P, Susova S, Mohelnikova-Duchonova B, Gromadzinska J, Moraviec-Sztandera A, Vodicka P, Vodickova L. Polymorphisms in metabolizing enzymes and the risk of head and neck squamous cell carcinoma in the Slavic population of the Central Europe. Neoplasma. 2010;57(5):415–21.PubMedCrossRef
59.
Zurück zum Zitat Soya SS, Vinod T, Reddy KS, Gopalakrishnan S, Adithan C. Genetic polymorphisms of glutathione-S-transferase genes (GSTM1, GSTT1 and GSTP1) and upper aerodigestive tract cancer risk among smokers, tobacco chewers and alcoholics in an Indian population. Eur J Cancer. 2007;43(18):2698–706.PubMedCrossRef Soya SS, Vinod T, Reddy KS, Gopalakrishnan S, Adithan C. Genetic polymorphisms of glutathione-S-transferase genes (GSTM1, GSTT1 and GSTP1) and upper aerodigestive tract cancer risk among smokers, tobacco chewers and alcoholics in an Indian population. Eur J Cancer. 2007;43(18):2698–706.PubMedCrossRef
60.
Zurück zum Zitat Stücker I, Hirvonen A, De Waziers I, Cabelguenne A, Mitrunen K, Cénée S, Koum-Besson E, Hémon D, Beaune P, Loriot MA. Genetic polymorphisms of glutathione S-transferases as modulators of lung cancer susceptibility. Carcinogenesis. 2002;23(9):1475–81.PubMedCrossRef Stücker I, Hirvonen A, De Waziers I, Cabelguenne A, Mitrunen K, Cénée S, Koum-Besson E, Hémon D, Beaune P, Loriot MA. Genetic polymorphisms of glutathione S-transferases as modulators of lung cancer susceptibility. Carcinogenesis. 2002;23(9):1475–81.PubMedCrossRef
61.
Zurück zum Zitat Tan W, Song N, Wang GQ, Liu Q, Tang HJ, Kadlubar FF, Lin DX. Impact of genetic polymorphisms in cytochrome P450 2E1 and glutathione S-transferases M1, T1, and P1 on susceptibility to esophageal cancer among high-risk individuals in China. Cancer Epidemiol Biomark Prev. 2000;9(6):551–6. Tan W, Song N, Wang GQ, Liu Q, Tang HJ, Kadlubar FF, Lin DX. Impact of genetic polymorphisms in cytochrome P450 2E1 and glutathione S-transferases M1, T1, and P1 on susceptibility to esophageal cancer among high-risk individuals in China. Cancer Epidemiol Biomark Prev. 2000;9(6):551–6.
62.
Zurück zum Zitat To-Figueras J, Gene M, Gomez-Catalan J, Pique E, Borrego N, Caballero M, Cruellas F, Raya A, Dicenta M, Corbella J. Microsomal epoxide hydrolase and glutathione S-transferase polymorphisms in relation to laryngeal carcinoma risk. Cancer Lett. 2002;187(1–2):95–101.PubMedCrossRef To-Figueras J, Gene M, Gomez-Catalan J, Pique E, Borrego N, Caballero M, Cruellas F, Raya A, Dicenta M, Corbella J. Microsomal epoxide hydrolase and glutathione S-transferase polymorphisms in relation to laryngeal carcinoma risk. Cancer Lett. 2002;187(1–2):95–101.PubMedCrossRef
63.
Zurück zum Zitat To-Figueras J, Gene M, Gomez-Catalan J, Pique E, Borrego N, Carrasco JL, Ramon J, Corbella J. Genetic polymorphism of glutathione S-transferase P1 gene and lung cancer risk. Cancer Causes Control. 1999;10(1):65–70.PubMedCrossRef To-Figueras J, Gene M, Gomez-Catalan J, Pique E, Borrego N, Carrasco JL, Ramon J, Corbella J. Genetic polymorphism of glutathione S-transferase P1 gene and lung cancer risk. Cancer Causes Control. 1999;10(1):65–70.PubMedCrossRef
64.
Zurück zum Zitat Song Q, Jiang D, Wang H, Huang J, Liu Y, Xu C, Hou Y. Chromosomal and genomic variations in esophageal squamous cell carcinoma: a review of technologies, applications, and prospections. J Cancer. 2017;8(13):2492–500.PubMedPubMedCentralCrossRef Song Q, Jiang D, Wang H, Huang J, Liu Y, Xu C, Hou Y. Chromosomal and genomic variations in esophageal squamous cell carcinoma: a review of technologies, applications, and prospections. J Cancer. 2017;8(13):2492–500.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Luo LN, He LJ, Gao XY, Huang XX, Shan HB, Luo GY, Li Y, Lin SY, Wang GB, Zhang R, et al. Evaluation of preoperative staging for esophageal squamous cell carcinoma. World J Gastroenterol. 2016;22(29):6683–9.PubMedPubMedCentralCrossRef Luo LN, He LJ, Gao XY, Huang XX, Shan HB, Luo GY, Li Y, Lin SY, Wang GB, Zhang R, et al. Evaluation of preoperative staging for esophageal squamous cell carcinoma. World J Gastroenterol. 2016;22(29):6683–9.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Feng X, Zhou HF, Zheng BS, Shi JJ, Luo C, Qin JJ. Association of glutathione S-transferase P1 gene polymorphism with the histological types of lung cancer: a meta-analysis. Mol Biol Rep. 2013;40(3):2439–47.PubMedCrossRef Feng X, Zhou HF, Zheng BS, Shi JJ, Luo C, Qin JJ. Association of glutathione S-transferase P1 gene polymorphism with the histological types of lung cancer: a meta-analysis. Mol Biol Rep. 2013;40(3):2439–47.PubMedCrossRef
67.
Zurück zum Zitat Xu CH, Wang Q, Zhan P, Qian Q, Yu LK. GSTP1 Ile105Val polymorphism is associated with lung cancer risk among Asian population and smokers: an updated meta-analysis. Mol Biol Rep. 2014;41(7):4199–212.PubMedCrossRef Xu CH, Wang Q, Zhan P, Qian Q, Yu LK. GSTP1 Ile105Val polymorphism is associated with lung cancer risk among Asian population and smokers: an updated meta-analysis. Mol Biol Rep. 2014;41(7):4199–212.PubMedCrossRef
68.
Zurück zum Zitat Szyszko TA, Cook GJR. PET/CT and PET/MRI in head and neck malignancy. Clin Radiol. 2018;73(1):60–9.PubMedCrossRef Szyszko TA, Cook GJR. PET/CT and PET/MRI in head and neck malignancy. Clin Radiol. 2018;73(1):60–9.PubMedCrossRef
69.
Zurück zum Zitat Lang J, Song X, Cheng J, Zhao S, Fan J. Association of GSTP1 Ile105Val Polymorphism and Risk of Head and Neck Cancers: A Meta-Analysis of 28 Case-Control Studies. PLoS One. 2012;7(11):e48132. Lang J, Song X, Cheng J, Zhao S, Fan J. Association of GSTP1 Ile105Val Polymorphism and Risk of Head and Neck Cancers: A Meta-Analysis of 28 Case-Control Studies. PLoS One. 2012;7(11):e48132.
70.
Zurück zum Zitat Lei Z, Liu T, Li X, Xu X, Fan D. Contribution of glutathione S-transferase gene polymorphisms to development of skin cancer. Int J Clin Exp Med. 2015;8(1):377–86.PubMedPubMedCentral Lei Z, Liu T, Li X, Xu X, Fan D. Contribution of glutathione S-transferase gene polymorphisms to development of skin cancer. Int J Clin Exp Med. 2015;8(1):377–86.PubMedPubMedCentral
71.
Zurück zum Zitat Zhou CF, Ma T, Zhou DC, Shen T, Zhu QX. Association of glutathione S-transferase pi (GSTP1) Ile105Val polymorphism with the risk of skin cancer: a meta-analysis. Arch Dermatol Res. 2015;307(6):505–13.PubMedCrossRef Zhou CF, Ma T, Zhou DC, Shen T, Zhu QX. Association of glutathione S-transferase pi (GSTP1) Ile105Val polymorphism with the risk of skin cancer: a meta-analysis. Arch Dermatol Res. 2015;307(6):505–13.PubMedCrossRef
72.
Zurück zum Zitat Watson MA, Stewart RK, Smith GB, Massey TE, Bell DA. Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis. 1998;19(2):275–80.PubMedCrossRef Watson MA, Stewart RK, Smith GB, Massey TE, Bell DA. Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis. 1998;19(2):275–80.PubMedCrossRef
73.
Zurück zum Zitat Zhong SL, Zhou SF, Chen X, Chan SY, Chan E, Ng KY, Duan W, Huang M. Relationship between genotype and enzyme activity of glutathione S-transferases M1 and P1 in Chinese. Eur J Pharm Sci. 2006;28(1–2):77–85.PubMedCrossRef Zhong SL, Zhou SF, Chen X, Chan SY, Chan E, Ng KY, Duan W, Huang M. Relationship between genotype and enzyme activity of glutathione S-transferases M1 and P1 in Chinese. Eur J Pharm Sci. 2006;28(1–2):77–85.PubMedCrossRef
Metadaten
Titel
Glutathione S-transferase pi 1 variant and squamous cell carcinoma susceptibility: a meta-analysis of 52 case-control studies
verfasst von
Shuang Wang
Jingqi Zhang
Fan Jun
Zhijie Bai
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Medical Genetics / Ausgabe 1/2019
Elektronische ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-019-0750-x

Weitere Artikel der Ausgabe 1/2019

BMC Medical Genetics 1/2019 Zur Ausgabe