Skip to main content
Erschienen in: Lasers in Medical Science 8/2020

01.10.2020 | Original Article

Gold nanorod–loaded (PLGA-PEG) nanocapsules as near-infrared controlled release model of anticancer therapeutics

verfasst von: Wael Mahmoud Ahmed Darwish, Noha A. Bayoumi

Erschienen in: Lasers in Medical Science | Ausgabe 8/2020

Einloggen, um Zugang zu erhalten

Abstract

Despite of high in vitro anticancer efficacy of many chemotherapeutics, their in vivo use is limited due to lack of biocompatibility and tumor targeting. Near-infrared (NIR) photothermally induced phase transition of PLGA-PEG regime was utilized for developing highly efficient photoresponsive drug delivery systems. Co-encapsulation of plasmonic gold nanorods (GNRs), as NIR-trigger, with the novel and highly efficient anticancer drug N′-(2-Methoxybenzylidene)-3-methyl-1-phenyl-H-Thieno[2,3-c]Pyrazole-5-Carbohyd-razide (MTPC) produced NIR-responsive biodegradable polymeric (PLGA-b-PEG) nanocapsules. This remotely controllable drug release significantly enhanced both biodistribution and pharmacokinetics of the hydrophobic drug. Intravenous (IV) injection of the prepared nanocapsules (MTPC/GNRs@PLGA-PEG) to tumor-bearing mice followed by extracorporeal exposure of the tumor to NIR light resulted in highly selective drug accumulation at the tumor sites. In vivo biodistribution and pharmacokinetics utilizing iodine-131 drug-radiolabelling technique revealed a maximum target to non-target ratio (T/NT) of 5.8, 4 h post-injection with maximum drug level in the tumor (6.3 ± 0.6% of the injected dose).
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Fayad W, Rickardson L, Haglund C et al (2011) Identification of agents that induce apoptosis of multicellular tumor spheroids: enrichment for mitotic inhibitors with hydrophobic properties. Chem Biol Drug Des 78:547–557CrossRef Fayad W, Rickardson L, Haglund C et al (2011) Identification of agents that induce apoptosis of multicellular tumor spheroids: enrichment for mitotic inhibitors with hydrophobic properties. Chem Biol Drug Des 78:547–557CrossRef
2.
Zurück zum Zitat Das M, Sarma A, Chakraborty T (2016) PLGA-derived anticancer nano therapeutics: promises and challenges for the future. J Chem Pharm Res 8:484–499 Das M, Sarma A, Chakraborty T (2016) PLGA-derived anticancer nano therapeutics: promises and challenges for the future. J Chem Pharm Res 8:484–499
3.
Zurück zum Zitat Lu J, Wang X, Marin-Muller C et al (2009) Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 9:325–341CrossRef Lu J, Wang X, Marin-Muller C et al (2009) Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 9:325–341CrossRef
4.
Zurück zum Zitat Acharya S, Sahoo S (2011) PLGA nanoparticles containing various anticancer agents and tumor delivery by EPR effect. Adv Drug Deliv Rev 63:170–183CrossRef Acharya S, Sahoo S (2011) PLGA nanoparticles containing various anticancer agents and tumor delivery by EPR effect. Adv Drug Deliv Rev 63:170–183CrossRef
5.
Zurück zum Zitat Bilati U, Allemann E, Doelker V (2005) Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 24:67–75CrossRef Bilati U, Allemann E, Doelker V (2005) Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 24:67–75CrossRef
6.
Zurück zum Zitat Takashima Y, Saito R, Nakajima A et al (2007) Spray-drying preparation of microparticles containing cationic PLGA nanospheres as gene carriers for avoiding aggregation of nanospheres. Int J Pharm 343:262–269CrossRef Takashima Y, Saito R, Nakajima A et al (2007) Spray-drying preparation of microparticles containing cationic PLGA nanospheres as gene carriers for avoiding aggregation of nanospheres. Int J Pharm 343:262–269CrossRef
7.
Zurück zum Zitat Gref R, Minamitake Y, Peracchia M et al (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603CrossRef Gref R, Minamitake Y, Peracchia M et al (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603CrossRef
8.
Zurück zum Zitat Chu C-H, Wang Y-C, Tai L-A et al (2010) Surface deformation of gold nanorod-loaded poly (DL-lactide-co-glycolide) nanoparticles after near infrared irradiation: an active and controllable drug release system. J Mater Chem 20:3260–3264CrossRef Chu C-H, Wang Y-C, Tai L-A et al (2010) Surface deformation of gold nanorod-loaded poly (DL-lactide-co-glycolide) nanoparticles after near infrared irradiation: an active and controllable drug release system. J Mater Chem 20:3260–3264CrossRef
9.
Zurück zum Zitat Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317CrossRef Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317CrossRef
10.
Zurück zum Zitat Chuang C-C, Cheng C-C, Chen P-Y et al (2019) Gold nanorod-encapsulated biodegradable polymeric matrix for combined photothermal and chemo-cancer therapy. Int J Nanomedicine 14:181–193CrossRef Chuang C-C, Cheng C-C, Chen P-Y et al (2019) Gold nanorod-encapsulated biodegradable polymeric matrix for combined photothermal and chemo-cancer therapy. Int J Nanomedicine 14:181–193CrossRef
11.
Zurück zum Zitat You J, Zhang G, Li C (2010) Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 4:1033–1041CrossRef You J, Zhang G, Li C (2010) Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 4:1033–1041CrossRef
12.
Zurück zum Zitat Perrin D, Armarego W (1989) Purification of laboratory chemicals, 2nd edn. Pergamon Press, Oxford Perrin D, Armarego W (1989) Purification of laboratory chemicals, 2nd edn. Pergamon Press, Oxford
13.
Zurück zum Zitat Dickerson E, Dreaden E, Huang X et al (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269:57–66CrossRef Dickerson E, Dreaden E, Huang X et al (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269:57–66CrossRef
14.
Zurück zum Zitat Sau T, Murphy C (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20:6414–6420CrossRef Sau T, Murphy C (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20:6414–6420CrossRef
15.
Zurück zum Zitat Zhang Y, Zhao Q, Shao H, et al. Adv. Mat. Sci. Eng. (2014) 107375 Zhang Y, Zhao Q, Shao H, et al. Adv. Mat. Sci. Eng. (2014) 107375
16.
Zurück zum Zitat Boddu S, Vaishya R, Jwala J et al (2012) Preparation and characterization of folate conjugated nanoparticles of doxorubicin using PLGA-PEG-FOL. Med Chem 2:68–75CrossRef Boddu S, Vaishya R, Jwala J et al (2012) Preparation and characterization of folate conjugated nanoparticles of doxorubicin using PLGA-PEG-FOL. Med Chem 2:68–75CrossRef
17.
Zurück zum Zitat Rijcken C, Hofman J, van Zeeland F et al (2007) Photosensitiser-loaded biodegradable polymeric micelles: preparation, characterization and in vitro PDT efficacy. J Control Release 124:144–153CrossRef Rijcken C, Hofman J, van Zeeland F et al (2007) Photosensitiser-loaded biodegradable polymeric micelles: preparation, characterization and in vitro PDT efficacy. J Control Release 124:144–153CrossRef
18.
Zurück zum Zitat Rafiei P, Haddadi A (2017) Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile. Int J Nanomedicine 12:935–947 and references thereinCrossRef Rafiei P, Haddadi A (2017) Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile. Int J Nanomedicine 12:935–947 and references thereinCrossRef
19.
Zurück zum Zitat Darwish W, Bayoumi N, El-Kolaly M (2018) Laser-responsive liposome for selective tumor targeting of nitazoxanide nanoparticles. Eur J Pharm Sci 111:526–499CrossRef Darwish W, Bayoumi N, El-Kolaly M (2018) Laser-responsive liposome for selective tumor targeting of nitazoxanide nanoparticles. Eur J Pharm Sci 111:526–499CrossRef
20.
Zurück zum Zitat Amin A, Soliman S, El-Aziz H (2010) Preparation and biodistribution of [125I] Melphalan: a potential radioligand for diagnostic and therapeutic applications. J Label Compd Radiopharm:531–535 Amin A, Soliman S, El-Aziz H (2010) Preparation and biodistribution of [125I] Melphalan: a potential radioligand for diagnostic and therapeutic applications. J Label Compd Radiopharm:531–535
21.
Zurück zum Zitat Bayoumi N, Amin A, Ismail N et al (2015) Radioiodination and biological evaluation of cladribine as potential agent for tumor imaging, Radiochim. Acta 103:777–787 Bayoumi N, Amin A, Ismail N et al (2015) Radioiodination and biological evaluation of cladribine as potential agent for tumor imaging, Radiochim. Acta 103:777–787
22.
Zurück zum Zitat Kamal K, Anant N, Emilio C et al (2010) In vitro and in vivo evaluation of docetaxel loaded biodegradable polymersomes. Macromol Biosci 10:503–512CrossRef Kamal K, Anant N, Emilio C et al (2010) In vitro and in vivo evaluation of docetaxel loaded biodegradable polymersomes. Macromol Biosci 10:503–512CrossRef
23.
Zurück zum Zitat Arulsudar N, Subramanian N, Mishra P et al (2004) Preparation, characterization, and biodistribution study of technetium-99m labeled leuprolide acetate-loaded liposomes in Ehrlich ascites tumor-bearing mice. AAPS Pharm Sci 6:45–51CrossRef Arulsudar N, Subramanian N, Mishra P et al (2004) Preparation, characterization, and biodistribution study of technetium-99m labeled leuprolide acetate-loaded liposomes in Ehrlich ascites tumor-bearing mice. AAPS Pharm Sci 6:45–51CrossRef
24.
Zurück zum Zitat Derakhshandeh K, Erfan M, Dadashzadeh S (2007) Eur J Pharm Biopharm 66:34–41CrossRef Derakhshandeh K, Erfan M, Dadashzadeh S (2007) Eur J Pharm Biopharm 66:34–41CrossRef
25.
Zurück zum Zitat Zhang H, Cui W, Bei J et al (2006) Preparation of poly (lactide-co-glycolide-co-caprolactone) nanoparticles and their degradation behavior in aqueous solution. Polym Degrad Stab 91:1929–1936CrossRef Zhang H, Cui W, Bei J et al (2006) Preparation of poly (lactide-co-glycolide-co-caprolactone) nanoparticles and their degradation behavior in aqueous solution. Polym Degrad Stab 91:1929–1936CrossRef
26.
Zurück zum Zitat El-Gogary R, Rubio N, Wang J et al (2014) Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo. ACS Nano 8:1384–1401CrossRef El-Gogary R, Rubio N, Wang J et al (2014) Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo. ACS Nano 8:1384–1401CrossRef
27.
Zurück zum Zitat Koopaei M, Khoshayand M, Mostafavi S et al (2014) Docetaxel loaded PEG-PLGA nanoparticles: optimized drug loading, in-vitro cytotoxicity and in-vivo antitumor effect. Iranian J Pharm Res 13:819–833 Koopaei M, Khoshayand M, Mostafavi S et al (2014) Docetaxel loaded PEG-PLGA nanoparticles: optimized drug loading, in-vitro cytotoxicity and in-vivo antitumor effect. Iranian J Pharm Res 13:819–833
28.
Zurück zum Zitat Nallamuthu I, Parthasarathi A, Khanum F (2013) Thymoquinone-loaded PLGA nanoparticles: antioxidant and anti-microbial properties. Int Curr Pharm J 2:202–207CrossRef Nallamuthu I, Parthasarathi A, Khanum F (2013) Thymoquinone-loaded PLGA nanoparticles: antioxidant and anti-microbial properties. Int Curr Pharm J 2:202–207CrossRef
29.
Zurück zum Zitat Song J, Yang X, Jacobson O et al (2015) Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy. Adv Mater 27:4910–4917CrossRef Song J, Yang X, Jacobson O et al (2015) Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy. Adv Mater 27:4910–4917CrossRef
30.
Zurück zum Zitat Ravindran J, Nair H, Sung B et al (2010) Thymoquinone poly (lactide-co-glycolide) nanoparticles exhibit enhanced anti-proliferative, anti-inflammatory, and chemo-sensitization potential. Biochem Pharmacol 79:1640–1647CrossRef Ravindran J, Nair H, Sung B et al (2010) Thymoquinone poly (lactide-co-glycolide) nanoparticles exhibit enhanced anti-proliferative, anti-inflammatory, and chemo-sensitization potential. Biochem Pharmacol 79:1640–1647CrossRef
31.
Zurück zum Zitat Arulsudar N, Subramanian N, Mishra P et al (2003) Preparation, characterization and biodistribution of 99mTc labeled liposome encapsulated cyclosporine. J Drug Target 11:187–196PubMed Arulsudar N, Subramanian N, Mishra P et al (2003) Preparation, characterization and biodistribution of 99mTc labeled liposome encapsulated cyclosporine. J Drug Target 11:187–196PubMed
32.
Zurück zum Zitat Wang L, Li D, Hao Y et al (2017) Gold nanorod–based poly (lactic-co-glycolic acid) with manganese dioxide core–shell structured multifunctional nanoplatform for cancer theranostic applications. Int J Nanomedicine 12:3059–3075CrossRef Wang L, Li D, Hao Y et al (2017) Gold nanorod–based poly (lactic-co-glycolic acid) with manganese dioxide core–shell structured multifunctional nanoplatform for cancer theranostic applications. Int J Nanomedicine 12:3059–3075CrossRef
33.
Zurück zum Zitat Zhang Y, Poon W, Tavares A et al (2016) Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J Control Release 240:332–348CrossRef Zhang Y, Poon W, Tavares A et al (2016) Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J Control Release 240:332–348CrossRef
34.
Zurück zum Zitat Yoo J, Chambers E, Mitragotri S (2010) Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Curr Pharm Des 16:2298–2307CrossRef Yoo J, Chambers E, Mitragotri S (2010) Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Curr Pharm Des 16:2298–2307CrossRef
35.
Zurück zum Zitat Ernsting M, Murakami M, Roy A (2013) Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release 172:782–794CrossRef Ernsting M, Murakami M, Roy A (2013) Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release 172:782–794CrossRef
36.
Zurück zum Zitat Hoyt R, Hawkins J, Kennett J (2007) Chapter 2, mouse physiology A2. In: Fox J, Davisson M, Quimby F, Barthold S, Newcomer C, Smith A (eds) The mouse in biomedical research, vol 23-XVI, 2nd edn. Academic Press, Burlington Hoyt R, Hawkins J, Kennett J (2007) Chapter 2, mouse physiology A2. In: Fox J, Davisson M, Quimby F, Barthold S, Newcomer C, Smith A (eds) The mouse in biomedical research, vol 23-XVI, 2nd edn. Academic Press, Burlington
37.
Zurück zum Zitat Jin C, Bai L, Wu H et al (2009) Cytotoxicity of paclitaxel incorporated in PLGA nanoparticles on hypoxic human tumor cells. Pharm Res 26:1776–1784CrossRef Jin C, Bai L, Wu H et al (2009) Cytotoxicity of paclitaxel incorporated in PLGA nanoparticles on hypoxic human tumor cells. Pharm Res 26:1776–1784CrossRef
38.
Zurück zum Zitat Esmaeili F, Dinarvand R, Ghahremani M et al (2010) Cellular cytotoxicity and in-vivo biodistribution of docetaxel poly (lactide-co-glycolide) nanoparticles. Anti-Cancer Drugs 21:43–52CrossRef Esmaeili F, Dinarvand R, Ghahremani M et al (2010) Cellular cytotoxicity and in-vivo biodistribution of docetaxel poly (lactide-co-glycolide) nanoparticles. Anti-Cancer Drugs 21:43–52CrossRef
39.
Zurück zum Zitat Panagi Z, Beletsi A, Evangelatos G et al (2001) Effect of dose on the biodistribution and pharmacokinetics of PLGA and PLGA–mPEG nanoparticles. Int J Pharm 221:143–152CrossRef Panagi Z, Beletsi A, Evangelatos G et al (2001) Effect of dose on the biodistribution and pharmacokinetics of PLGA and PLGA–mPEG nanoparticles. Int J Pharm 221:143–152CrossRef
Metadaten
Titel
Gold nanorod–loaded (PLGA-PEG) nanocapsules as near-infrared controlled release model of anticancer therapeutics
verfasst von
Wael Mahmoud Ahmed Darwish
Noha A. Bayoumi
Publikationsdatum
01.10.2020
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 8/2020
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-020-02964-w

Weitere Artikel der Ausgabe 8/2020

Lasers in Medical Science 8/2020 Zur Ausgabe