Skip to main content
Erschienen in: Brain Topography 3/2015

01.05.2015 | Original Paper

Hierarchical Neural Encoding of Temporal Regularity in the Human Auditory Cortex

verfasst von: Sumru Keceli, Hidehiko Okamoto, Ryusuke Kakigi

Erschienen in: Brain Topography | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Abstract

Temporal regularity provides an important cue for the identification of natural sounds. Here, we measured auditory evoked cortical magnetic fields to investigate the neural processing of temporal regularity that cannot be tonotopically represented in the auditory periphery. Auditory steady state responses (ASSR) and sustained fields (SF) elicited by 40 Hz amplitude modulated periodic and non-periodic noises were analyzed. Periodic noises of 40-, 20-, and 5-Hz were prepared in the form of repeating frozen noises where the same noise segment appears at either each period (40 Hz), every second period (20 Hz), or every eighth period (5 Hz) of amplitude modulation. Compared to non-periodic white noises, periodic noises with repetition rates of 5-, 20-, and 40-Hz caused significantly increased SF amplitudes in both hemispheres. ASSR amplitudes were significantly enhanced for 20- and 40-Hz periodic noises in the right hemisphere while no enhancement was observed for periodic noises in the left hemisphere. The observed variation of the regularity effect between evoked response components and hemispheres may reflect the differences in the temporal integration window lengths adopted between ASSR and SF generators and also between the right and left auditory pathways.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Alho K, Connolly JF, Cheour M, Lehtokoski A, Huotilainen M, Virtanen J, Aulanko R, Ilmoniemi RJ (1998) Hemispheric lateralization in preattentive processing of speech sounds. Neurosci Lett 258(1):9–12CrossRefPubMed Alho K, Connolly JF, Cheour M, Lehtokoski A, Huotilainen M, Virtanen J, Aulanko R, Ilmoniemi RJ (1998) Hemispheric lateralization in preattentive processing of speech sounds. Neurosci Lett 258(1):9–12CrossRefPubMed
Zurück zum Zitat Belin P, Zilbovicius M, Crozier S, Thivard L, Fontaine A, Masure MC, Samson Y (1998) Lateralization of speech and auditory temporal processing. J Cogn Neurosci 10(4):536–540CrossRefPubMed Belin P, Zilbovicius M, Crozier S, Thivard L, Fontaine A, Masure MC, Samson Y (1998) Lateralization of speech and auditory temporal processing. J Cogn Neurosci 10(4):536–540CrossRefPubMed
Zurück zum Zitat Chi T, Gao Y, Guyton MC, Ru P, Shamma S (1999) Spectro-temporal modulation transfer functions and speech intelligibility. J Acoust Soc Am 106(5):2719–2732CrossRefPubMed Chi T, Gao Y, Guyton MC, Ru P, Shamma S (1999) Spectro-temporal modulation transfer functions and speech intelligibility. J Acoust Soc Am 106(5):2719–2732CrossRefPubMed
Zurück zum Zitat Chi T, Ru P, Shamma SA (2005) Multiresolution spectrotemporal analysis of complex sounds. J Acoust Soc Am 118(2):887–906CrossRefPubMed Chi T, Ru P, Shamma SA (2005) Multiresolution spectrotemporal analysis of complex sounds. J Acoust Soc Am 118(2):887–906CrossRefPubMed
Zurück zum Zitat Dau T, Puschel D, Kohlrausch A (1996) A quantitative model of the “effective” signal processing in the auditory system. I. Model structure. J Acoust Soc Am 99(6):3615–3622CrossRefPubMed Dau T, Puschel D, Kohlrausch A (1996) A quantitative model of the “effective” signal processing in the auditory system. I. Model structure. J Acoust Soc Am 99(6):3615–3622CrossRefPubMed
Zurück zum Zitat Dau T, Kollmeier B, Kohlrausch A (1997) Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration. J Acoust Soc Am 102(5 Pt 1):2906–2919CrossRefPubMed Dau T, Kollmeier B, Kohlrausch A (1997) Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration. J Acoust Soc Am 102(5 Pt 1):2906–2919CrossRefPubMed
Zurück zum Zitat De Boer E (1985) Auditory time constants: a paradox. Time resolution in auditory systems. Springer, Berlin, pp 141–158CrossRef De Boer E (1985) Auditory time constants: a paradox. Time resolution in auditory systems. Springer, Berlin, pp 141–158CrossRef
Zurück zum Zitat Drullman R, Festen JM, Plomp R (1994a) Effect of reducing slow temporal modulations on speech reception. J Acoust Soc Am 95(5 Pt 1):2670–2680CrossRefPubMed Drullman R, Festen JM, Plomp R (1994a) Effect of reducing slow temporal modulations on speech reception. J Acoust Soc Am 95(5 Pt 1):2670–2680CrossRefPubMed
Zurück zum Zitat Drullman R, Festen JM, Plomp R (1994b) Effect of temporal envelope smearing on speech reception. J Acoust Soc Am 95(2):1053–1064CrossRefPubMed Drullman R, Festen JM, Plomp R (1994b) Effect of temporal envelope smearing on speech reception. J Acoust Soc Am 95(2):1053–1064CrossRefPubMed
Zurück zum Zitat Engelien A, Schulz M, Ross B, Arolt V, Pantev C (2000) A combined functional in vivo measure for primary and secondary auditory cortices. Hear Res 148(1–2):153–160CrossRefPubMed Engelien A, Schulz M, Ross B, Arolt V, Pantev C (2000) A combined functional in vivo measure for primary and secondary auditory cortices. Hear Res 148(1–2):153–160CrossRefPubMed
Zurück zum Zitat Eulitz C, Diesch E, Pantev C, Hampson S, Elbert T (1995) Magnetic and electric brain activity evoked by the processing of tone and vowel stimuli. J Neurosci 15(4):2748–2755PubMed Eulitz C, Diesch E, Pantev C, Hampson S, Elbert T (1995) Magnetic and electric brain activity evoked by the processing of tone and vowel stimuli. J Neurosci 15(4):2748–2755PubMed
Zurück zum Zitat Griffiths TD, Uppenkamp S, Johnsrude I, Josephs O, Patterson RD (2001) Encoding of the temporal regularity of sound in the human brainstem. Nat Neurosci 4(6):633–637. doi:10.1038/88459 CrossRefPubMed Griffiths TD, Uppenkamp S, Johnsrude I, Josephs O, Patterson RD (2001) Encoding of the temporal regularity of sound in the human brainstem. Nat Neurosci 4(6):633–637. doi:10.​1038/​88459 CrossRefPubMed
Zurück zum Zitat Gunji A, Koyama S, Ishii R, Levy D, Okamoto H, Kakigi R, Pantev C (2003) Magnetoencephalographic study of the cortical activity elicited by human voice. Neurosci Lett 348(1):13–16CrossRefPubMed Gunji A, Koyama S, Ishii R, Levy D, Okamoto H, Kakigi R, Pantev C (2003) Magnetoencephalographic study of the cortical activity elicited by human voice. Neurosci Lett 348(1):13–16CrossRefPubMed
Zurück zum Zitat Gutschalk A, Patterson RD, Rupp A, Uppenkamp S, Scherg M (2002) Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. Neuroimage 15(1):207–216. doi:10.1006/nimg.2001.0949 CrossRefPubMed Gutschalk A, Patterson RD, Rupp A, Uppenkamp S, Scherg M (2002) Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. Neuroimage 15(1):207–216. doi:10.​1006/​nimg.​2001.​0949 CrossRefPubMed
Zurück zum Zitat Hari R, Hamalainen M, Joutsiniemi SL (1989a) Neuromagnetic steady-state responses to auditory stimuli. J Acoust Soc Am 86(3):1033–1039CrossRefPubMed Hari R, Hamalainen M, Joutsiniemi SL (1989a) Neuromagnetic steady-state responses to auditory stimuli. J Acoust Soc Am 86(3):1033–1039CrossRefPubMed
Zurück zum Zitat Hari R, Hamalainen M, Kaukoranta E, Makela J, Joutsiniemi SL, Tiihonen J (1989b) Selective listening modifies activity of the human auditory cortex. Exp Brain Res 74(3):463–470CrossRefPubMed Hari R, Hamalainen M, Kaukoranta E, Makela J, Joutsiniemi SL, Tiihonen J (1989b) Selective listening modifies activity of the human auditory cortex. Exp Brain Res 74(3):463–470CrossRefPubMed
Zurück zum Zitat Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70 Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70
Zurück zum Zitat John MS, Dimitrijevic A, van Roon P, Picton TW (2001) Multiple auditory steady-state responses to AM and FM stimuli. Audiol Neurootol 6(1):12–27CrossRefPubMed John MS, Dimitrijevic A, van Roon P, Picton TW (2001) Multiple auditory steady-state responses to AM and FM stimuli. Audiol Neurootol 6(1):12–27CrossRefPubMed
Zurück zum Zitat Makela JP, Hari R (1987) Evidence for cortical origin of the 40 Hz auditory evoked response in man. Electroencephalogr Clin Neurophysiol 66(6):539–546CrossRefPubMed Makela JP, Hari R (1987) Evidence for cortical origin of the 40 Hz auditory evoked response in man. Electroencephalogr Clin Neurophysiol 66(6):539–546CrossRefPubMed
Zurück zum Zitat Moore BCJ (2003) An introduction to the psychology of hearing, 5th edn. Academic Press, Boston Moore BCJ (2003) An introduction to the psychology of hearing, 5th edn. Academic Press, Boston
Zurück zum Zitat Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMed Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMed
Zurück zum Zitat Pantev C, Eulitz C, Elbert T, Hoke M (1994) The auditory evoked sustained field: origin and frequency dependence. Electroencephalogr Clin Neurophysiol 90(1):82–90CrossRefPubMed Pantev C, Eulitz C, Elbert T, Hoke M (1994) The auditory evoked sustained field: origin and frequency dependence. Electroencephalogr Clin Neurophysiol 90(1):82–90CrossRefPubMed
Zurück zum Zitat Pantev C, Roberts LE, Elbert T, Ross B, Wienbruch C (1996) Tonotopic organization of the sources of human auditory steady-state responses. Hear Res 101(1–2):62–74CrossRefPubMed Pantev C, Roberts LE, Elbert T, Ross B, Wienbruch C (1996) Tonotopic organization of the sources of human auditory steady-state responses. Hear Res 101(1–2):62–74CrossRefPubMed
Zurück zum Zitat Patterson R (2000) Auditory images: how complex sounds are represented in the auditory system. Acoust Sci Technol 21(4):183–190 Patterson R (2000) Auditory images: how complex sounds are represented in the auditory system. Acoust Sci Technol 21(4):183–190
Zurück zum Zitat Patterson RD, Allerhand MH, Giguere C (1995) Time-domain modeling of peripheral auditory processing: a modular architecture and a software platform. J Acoust Soc Am 98(4):1890–1894CrossRefPubMed Patterson RD, Allerhand MH, Giguere C (1995) Time-domain modeling of peripheral auditory processing: a modular architecture and a software platform. J Acoust Soc Am 98(4):1890–1894CrossRefPubMed
Zurück zum Zitat Picton TW, Woods DL, Proulx GB (1978) Human auditory sustained potentials. II. Stimulus relationships. Electroencephalogr Clin Neurophysiol 45(2):198–210CrossRefPubMed Picton TW, Woods DL, Proulx GB (1978) Human auditory sustained potentials. II. Stimulus relationships. Electroencephalogr Clin Neurophysiol 45(2):198–210CrossRefPubMed
Zurück zum Zitat Picton TW, Skinner CR, Champagne SC, Kellett AJ, Maiste AC (1987) Potentials evoked by the sinusoidal modulation of the amplitude or frequency of a tone. J Acoust Soc Am 82(1):165–178CrossRefPubMed Picton TW, Skinner CR, Champagne SC, Kellett AJ, Maiste AC (1987) Potentials evoked by the sinusoidal modulation of the amplitude or frequency of a tone. J Acoust Soc Am 82(1):165–178CrossRefPubMed
Zurück zum Zitat Poeppel D (2003) The analysis of speech in different temporal integration windows: cerebral lateralization as ‘asymmetric sampling in time’. Speech Commun 41(1):245–255CrossRef Poeppel D (2003) The analysis of speech in different temporal integration windows: cerebral lateralization as ‘asymmetric sampling in time’. Speech Commun 41(1):245–255CrossRef
Zurück zum Zitat Ross B, Pantev C (2004) Auditory steady-state responses reveal amplitude modulation gap detection thresholds. J Acoust Soc Am 115(5 Pt 1):2193–2206CrossRefPubMed Ross B, Pantev C (2004) Auditory steady-state responses reveal amplitude modulation gap detection thresholds. J Acoust Soc Am 115(5 Pt 1):2193–2206CrossRefPubMed
Zurück zum Zitat Ross B, Borgmann C, Draganova R, Roberts LE, Pantev C (2000) A high-precision magnetoencephalographic study of human auditory steady-state responses to amplitude-modulated tones. J Acoust Soc Am 108(2):679–691CrossRefPubMed Ross B, Borgmann C, Draganova R, Roberts LE, Pantev C (2000) A high-precision magnetoencephalographic study of human auditory steady-state responses to amplitude-modulated tones. J Acoust Soc Am 108(2):679–691CrossRefPubMed
Zurück zum Zitat Ross B, Picton TW, Pantev C (2002) Temporal integration in the human auditory cortex as represented by the development of the steady-state magnetic field. Hear Res 165(1–2):68–84CrossRefPubMed Ross B, Picton TW, Pantev C (2002) Temporal integration in the human auditory cortex as represented by the development of the steady-state magnetic field. Hear Res 165(1–2):68–84CrossRefPubMed
Zurück zum Zitat Supin A, Popov VV, Milekhina ON, Tarakanov MB (1999) Ripple depth and density resolution of rippled noise. J Acoust Soc Am 106(5):2800–2804CrossRefPubMed Supin A, Popov VV, Milekhina ON, Tarakanov MB (1999) Ripple depth and density resolution of rippled noise. J Acoust Soc Am 106(5):2800–2804CrossRefPubMed
Zurück zum Zitat Szymanski MD, Perry DW, Gage NM, Rowley HA, Walker J, Berger MS, Roberts TP (2001) Magnetic source imaging of late evoked field responses to vowels: toward an assessment of hemispheric dominance for language. J Neurosurg 94(3):445–453. doi:10.3171/jns.2001.94.3.0445 CrossRefPubMed Szymanski MD, Perry DW, Gage NM, Rowley HA, Walker J, Berger MS, Roberts TP (2001) Magnetic source imaging of late evoked field responses to vowels: toward an assessment of hemispheric dominance for language. J Neurosurg 94(3):445–453. doi:10.​3171/​jns.​2001.​94.​3.​0445 CrossRefPubMed
Zurück zum Zitat Tallal P, Miller S, Fitch RH (1993) Neurobiological basis of speech: a case for the preeminence of temporal processing. Ann N Y Acad Sci 682:27–47CrossRefPubMed Tallal P, Miller S, Fitch RH (1993) Neurobiological basis of speech: a case for the preeminence of temporal processing. Ann N Y Acad Sci 682:27–47CrossRefPubMed
Zurück zum Zitat Tesche CD, Uusitalo MA, Ilmoniemi RJ, Huotilainen M, Kajola M, Salonen O (1995) Signal-space projections of MEG data characterize both distributed and well-localized neuronal sources. Electroencephalogr Clin Neurophysiol 95(3):189–200CrossRefPubMed Tesche CD, Uusitalo MA, Ilmoniemi RJ, Huotilainen M, Kajola M, Salonen O (1995) Signal-space projections of MEG data characterize both distributed and well-localized neuronal sources. Electroencephalogr Clin Neurophysiol 95(3):189–200CrossRefPubMed
Zurück zum Zitat Viemeister NF, Wakefield GH (1991) Temporal integration and multiple looks. J Acoust Soc Am 90(2 Pt 1):858–865CrossRefPubMed Viemeister NF, Wakefield GH (1991) Temporal integration and multiple looks. J Acoust Soc Am 90(2 Pt 1):858–865CrossRefPubMed
Zurück zum Zitat Wang KS, Shamma S (1994) Self-normalization and noise-robustness in early auditory representations. IEEE Trans Speech Audio Process 2(3):421–435CrossRef Wang KS, Shamma S (1994) Self-normalization and noise-robustness in early auditory representations. IEEE Trans Speech Audio Process 2(3):421–435CrossRef
Zurück zum Zitat Warren RM (2008) Auditory perception: an analysis and synthesis, 3rd edn. Cambridge University Press, CambridgeCrossRef Warren RM (2008) Auditory perception: an analysis and synthesis, 3rd edn. Cambridge University Press, CambridgeCrossRef
Zurück zum Zitat Zatorre RJ, Belin P (2001) Spectral and temporal processing in human auditory cortex. Cereb Cortex 11(10):946–953CrossRefPubMed Zatorre RJ, Belin P (2001) Spectral and temporal processing in human auditory cortex. Cereb Cortex 11(10):946–953CrossRefPubMed
Zurück zum Zitat Zatorre RJ, Evans AC, Meyer E (1994) Neural mechanisms underlying melodic perception and memory for pitch. J Neurosci 14(4):1908–1919PubMed Zatorre RJ, Evans AC, Meyer E (1994) Neural mechanisms underlying melodic perception and memory for pitch. J Neurosci 14(4):1908–1919PubMed
Zurück zum Zitat Zatorre RJ, Belin P, Penhune VB (2002) Structure and function of auditory cortex: music and speech. Trends Cogn Sci 6(1):37–46CrossRefPubMed Zatorre RJ, Belin P, Penhune VB (2002) Structure and function of auditory cortex: music and speech. Trends Cogn Sci 6(1):37–46CrossRefPubMed
Metadaten
Titel
Hierarchical Neural Encoding of Temporal Regularity in the Human Auditory Cortex
verfasst von
Sumru Keceli
Hidehiko Okamoto
Ryusuke Kakigi
Publikationsdatum
01.05.2015
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 3/2015
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-013-0300-3

Weitere Artikel der Ausgabe 3/2015

Brain Topography 3/2015 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.