Skip to main content
Erschienen in: BMC Infectious Diseases 1/2018

Open Access 01.12.2018 | Research article

High prevalence and clonal dissemination of OXA-72-producing Acinetobacter baumannii in a Chinese hospital: a cross sectional study

verfasst von: Yong Chen, Yuying Yang, Lin Liu, Guangbin Qiu, Xuelin Han, Shuguang Tian, Jingya Zhao, Fangyan Chen, Hajo Grundmann, Haifeng Li, Jinke Sun, Li Han

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2018

Abstract

Background

Carbapenem resistance in Acinetobacter baumannii in China was mainly mediated by OXA-23-like carbapenemases, while OXA-24/40-like carbapenemases were rarely identified. OXA-72 is one variant of OXA-24/40-like carbapenemases. This study aimed to demonstrate the epidemiology and characterizations of OXA-72-producing A. baumannii in a Chinese hospital.

Methods

A total of 107 clinical A. calcoaceticus-A. baumannii (Acb) complex isolates were collected in a Chinese hospital during between 2014 and 2016. These isolates were identified using Vitek 2 system and gyrB multiplex PCR. Vitek 2 system was used for antibiotic susceptibility testing. Genes encoding for major classes of carbapenemases were investigated by PCR. Rep-PCR was used for genotyping of all the A. baumannii isolates. The risk factors for carriage of OXA-72-producing or OXA-23-producing A. baumannii were analyzed through univariate and multivariate logistic regression.

Results

Of the 107 Acb isolates collected, 101 isolates (94.4%) and 6 isolates (5.6%) were identified as A. baumannii and A. pittii, respectively. 78 A. baumannii isolates (77.2%) were carbapenem resistant and mainly cultured from intensive care unit (ICU). blaOXA-72 and blaOXA-23 genes were identified in 45(57.7%) and 33(42.3%) carbapenem-resistant A. baumannii (CRAB), respectively. Multivariate risk factor analyses showed that prior carbapenem usage and nasogastric intubation were significantly associated with carriage of OXA-72-producing A. baumannii or OXA-23-producing A. baumannii. Rep-PCR analysis showed that 9 and 22 Rep-PCR types were assigned to 78 CRAB isolates and 23 carbapenem-susceptible A. baumannii (CSAB) isolates, respectively. A higher diverstiy of Rep-PCR patterns was observed among OXA-72-producing A. baumannii isolates than OXA-23-producing A. baumannii isolates, but all of them belonged to the same clone complex. MLST analysis suggested that the OXA-72 isolates from this study correspond to CC92/CC2 clone complex.

Conclusions

This study demonstrates high prevalence and potential clonal spread of closely related genotypes of OXA-72-producing A. baumannii within a Chinese hospital. Continuous surveillance is necessary to monitor the dissemination of these strains in other healthcare settings to guide infection control policies in order to curb the spread of this bacterium.
Hinweise
Yong Chen, Yuying Yang and Lin Liu contributed equally to this work.
Abkürzungen
Acb
Acinetobacter calcoaceticus-A. baumannii
CC
Clone complex
CRAB
Carbapenem-resistant A. baumannii
CSAB
Carbapenem-susceptible A. baumannii
DI
Index of diversity
ICU
Intensive care unit
MDROs
Multidrug resistance organisms
MLST
Multilocus sequence typing
ST
Sequence type

Background

Acinetobacter is a gram-negative coccobacillus that has rapidly emerged as one of the most common nosocomial pathogens worldwide [1]. There are currently at least 31 described Acinetobacter genomic species [2], of which A. calcoaceticus, A. baumannii, A. pittii, and A. nosocomialis are very closely related, and difficult to distinguish from each other by phenotypic properties [3]. A. calcoaceticus-A. baumannii (Acb) complex has therefore been proposed to refer to these species [2]. Nevertheless, A. baumannii is the most clinically relevant and is notorious for its ability to accumulate diverse mechanisms of resistance [4, 5].
The carbapenem class of antibiotics is considered as the last-resort choice when treating Acinetobacter infections. However, an increasing prevalence of carbapenem resistance has been observed in clinical A. baumannii isolates from many parts of the world. Carbapenem-associated multiclass resistance among 55,330 U.S. A. baumannii isolates from The Surveillance Network database has increased from 20.6% in 2002 to 49.2% in 2008 [6]. In China, the resistance rate of clinical A. baumannii to carbapenem gradually increased from < 10% in 2000 to > 60% at present [7, 8]. The major mechanism of carbapenem resistance is production of OXA β-lactamases, which are clustered in three major groups, OXA-23-like, OXA-24/40-like, and OXA-58-like [911].
OXA-24/40 β-lactamase was first identified in A. baumannii from Spain in 1997 [12]. After that, A further 6 enzyme variants have since been discovered, including OXA-72 [11]. Unlike OXA-23-like, OXA-24/40 β-lactamases were less commonly identified in carbapenem resistant Acinetobacter spp. isolates [13]. A large surveillance of OXA-type β-lactamase gene clusters for a total of 2880 Acinetobacter spp. isolates collected from 23 Chinese provinces found that blaOXA-23-like and blaOXA-24/40-like genes were identified in 1316 isolates (45.7%) and 11 isolates (0.4%), respectively [14]. Therefore, OXA-24/40-like β-lactamases were only responsible for a small number of carbapenem-resistance isolates in China, their dissemination and epidemiology in healthcare settings deserves further surveillance and investigation.
This study aimed to demonstrate the occurrence, clinical manifestation and genotypic characterizations of OXA-72-producing A. baumannii in a Chinese hospital.

Methods

Study settings and isolates information

A total of 107 clinical Acb complex isolates from 107 patients were collected at a tertiary-care comprehensive hospital in northeastern China with 1800 beds, from Oct 2014 to Oct 2016. These isolates were recovered from various specimens including sputum, blood, urine, pleural fluid, secretions and throat swab sample. For each patient, only a single colony of the first isolate was selected for subsequent analysis. All the clinical isolates were stored at − 80 °C until use. Data for each isolate and each patient were obtained through review of microbiology lab results and medical records. Risk factor data, including ICU stay, presence of invasive procedures and antibiotic treatment, referred to those which were present before the isolation of the index Acinetobacter strains. All data were anonymously collected and interpreted.

Strain identification and in vitro antibiotic susceptibility testing

Identification of Acb complex isolates was initially performed using automated identification systems the VITEK 2 compact system (BioMérieux, Craponne, France). Further identification of the Acb complex to the species level was performed by gyrB multiplex PCR [15, 16].
In vitro susceptibilities to ampicillin-sulbactam, piperacillin-tazobactam, ceftazidime, cefepime, meropenem, imipenem, gentamicin, amikacin, ciprofloxacin, levofloxacin, colistin, minocyline were determined by the VITEK 2 compact system (BioMérieux, Craponne, France). Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 27853) were used as quality control strains. Results were interpreted according to the Clinical and Laboratory Standards Institute (CLSI, 2016) guidelines.

Detection of carbapenemases genes

One white loop (1 μl) of 24 h plate culture of Acinetobacter bacteria was resuspended in 200 μl of sterilized and DNA free water. The bacterial suspensions were then heated for 10 min at 96 °C and centrifuged 5 min at 13000 rpm. The supernatant was used as the genomic DNA for the following molecular experiments.
Genes encoding for major classes of A, B, and D carbapenemases for all the Acb isolates were investigated by PCR. The presence of blaOXA-23-like, blaOXA-24-like, blaOXA-51-like, and blaOXA-58-like genes were detected through multiplex PCR assay [17]. Metallo-β-lactamase encoding genes, blaNDM-like, blaIMP-like and blaVIP-like, were detected with PCR conditions and primers as previously described [18]. The blaOXA-24-like variant was further identified through PCR and DNA sequencing as described [19].

Molecular typing

Rep-PCR was used for genotyping of all the A. baumannii isolates, using the primer pair REP 1(5’-IIIGCGCCGICAGGC-3′) and REP 2(5’-ACGTCTTATCAGGCCTAC-3′) [20]. The conditions for PCR and the gel electrophoresis were the same as previously described [21]. Rep-PCR results of each isolate was compared to all of the other isolates in a pairwise manner, isolates with identical band patterns were considered to be of identical Rep-PCR types. A minimum spanning tree was created to show the differences between patterns through BioNumerics 6.6 software (Applied Maths, Kortrijk, Belgium). The spanning tree was limited to those patterns that differ by a single band, two Rep-PCR types that differ by two or more bands were connected. Nine blaOXA-24-like gene positive representative isolates from each different Rep-PCR type were randomly chosen for multilocus sequence typing (MLST) analysis according to ‘Pasteur’ scheme [22].

A review of literature

Currently, there were two MLST schemes available for Acinetobacter. In order to differentiate between the two schemes, STs and CCs were designated as STB/CCB for the Bartual scheme and STP/CCP for the Pasteur scheme. A search of previous published papers giving the MLST results of OXA-24/40-like producing Acinetobacter spp. was conducted to illustrate the population structure of OXA-24/40 strains from different countries. The MLST data from ‘Pasteur’ scheme and ‘Bartual’ scheme were separately analyzed by Bionumerics 6.6 and presented as a minimum spanning tree for categorical data with default settings.

Statistical analysis

Statistical analyses were performed using SPSS 19.0 (IBM, Armonk, NY, USA). The comparisons of patients’ characterics were conducted by chi-square test or Mann-Whitney U test. The risk factors for carriage of blaOXA-72-positive or blaOXA-23-like-positive A. baumannii were analyzed through univariate and multivariate logistic regression. In multivariate logistic regression, ICU stay and length of ICU stay were not included as they were highly associated with many other predisposing factors, including invasive procedures and antibiotic use. The index of diversity and the 95% confidence intervals (CIs) were calculated as described previously [23]. P values < 0.05 are considered statistically significant.

Results

Of the 107 Acinetobacter isolates, 101 isolates (94.4%) and 6 isolates (5.6%) were identified as A. baumannii and A. pittii, respectively. Five A. pittii isolates were susceptible to all the antibiotics tested and one isolate exhibited an intermediate resistance phenotype to minocycline. Among the 101 A. baumannii isolates, 78 isolates (77.2%) were resistant to carbapenems (meropenem or imipenem). The rates of resistance to piperacilin/tazobactam, ampicillin/sulbactam, amikacin, gentamicin, ceftazidime, ciprofloxacin and levofloxacin in A. baumannii were all above 60%, as most of the carbapenem-resistance isolates exhibited a multidrug resistance phenotype. Four A. baumannii isolates were resistant to polymyxin.
The 107 Acinetobacter isolates were cultured from 71 male and 46 female patients. Fifty-one isolates were cultured from patients in ICU and all these isolates were carbapenem-resistant. The detection of carbapenemase genes showed that 33 (42.3%) of the 78 carbapenem-resistant A. baumannii (CRAB) were positive for the blaOXA-23-like gene, while the other 45 isolates (57.7%) were positive for the blaOXA-24/40-like gene. All these isolates harboured blaOXA-51-like gene. DNA sequencing showed that all the blaOXA-24/40-like amplicons belonged to blaOXA-72 (GenBank accession number MF781069). The blaOXA-58-like gene was detected in one carbapenem-susceptible A. baumannii (CSAB) isolate, the MICs for imipenem and meropenem were 0.5 μg/ml and 0.25 μg/ml, respectively. None of these Acinetobacter isolates were positive for blaIMP-like, blaVIM-like or blaNDM-like genes.
Eighty-four (83.2%) of 101 A. baumannii isolates were associated with an infection (primarily low respiratory tract infection) and antibiotic treatment, while the other 27 isolates were just colonized. The characterics of 101 patients colonized or infected with A. baumannii were shown in Table 1. There were no significant differences over age and gender distribution among patients colonized or infected with CRAB and CSAB strains. More than 60% of the CRAB patients stayed at ICU at the time of bacteria isolation, while only one CSAB patient stayed at ICU.
Table 1
Characteristics of 101 patients colonized or infected with Acinetobacter baumannii in a Chinese hospital
Characteristics
No. of patients colonized or infected with
A. baumannii
χ2
P values
Carbapenem-resistant
(n = 78)
Carbapenem-susceptible
(n = 23)
Age, median years(range)
77(21,94)
76(2,96)
0.463
Male Gender, n(%)
50(64.1)
19(82.6)
2.81
0.094
Length of hospital stay, median days (range)
11(1,3650)
8(1,1400)
0.786
ICU stay, n (%)
49(62.8)
1(4.3)
24.30
< 0.001
Associated with an infection, n(%)
67(85.9)
17(73.9)
1.07
0.302
All-cause mortality of patients 14 days after isolation of A. baumannii, n(%)
16(20.5)
4(17.4)
0.001
0.974
ICU intensive care unit
The results of univariate logistic analysis showed that there were many common risk factors for carriage of OXA-72-producing A. baumannii or OXA-23-producing A. baumannii, such as ICU stay, mechanical ventilation, nasogastric intubation and carbapenem treatment (Table 2). In multivarite analysis, prior carbapenem usage and nasogastric intubation were significantly associated with carriage of OXA-72-producing A. baumannii or OXA-23-producing A. baumannii. An additional risk factor, urinary catheter, was also significantly associated with carriage of blaOXA-23-like-positive A. baumannii (Table 3).
Table 2
Univariate logistic analysis of risk factors for carriage of OXA-72-producing Acinetobacter baumannii or OXA-23-producing A. baumannii
Characteristics
Control casesa
(n = 23)
OXA-72 cases
(n = 45)
OR(CI 95%)
P value
OXA-23 cases
(n = 33)
OR(CI 95%)
P value
Age, median(range)
76(2,96)
78(28,94)
1.02(1.00,1.05)
0.081
78(21,90)
1.00(0.99,1.03)
0.460
Male gender, n(%)
22(75.9)
27(60.0)
0.32(0.09,1.08)
0.067
23(69.7)
0.48(0.13,1.79)
0.484
ICU stay, n (%)
1(4.3)
27(60.0)
33.00(4.08,267.04)
0.001
22(66.7)
44.00(5.23,370.52)
< 0.001
Length of stay in the ICU (days), median(range)
0(0,2)
5(0,100)
2.29(1.20,4.37)
0.012
3(0,100)
2.29(1.03,5.08)
0.042
Predisposing factors
 Urinary catheter
9(39.1)
27(60.0)
2.33(0.84,6.52)
0.106
23(69.7)
3.58(1.17,10.96)
0.026
 Mechanical ventilation
2(8.7)
18(40.0)
7.00(1.46,33.59)
0.015
14(42.4)
7.74(1.55,38.56)
0.013
 Central venous catheter
5(21.7)
14(31.1)
1.63(0.50,5.26)
0.417
17(51.5)
3.83(1.15,12.74)
0.029
 Tracheostomy
1(4.3)
10(22.2)
6.29(0.75,52.56)
0.090
11(33.3)
11.00(1.31,92.63)
0.027
 Transfusion
1(4.3)
5(11.1)
2.75(0.30,25.05)
0.369
7(21.2)
5.92(0.68,51.92)
0.108
 Nasogastric intubation
4(17.4)
28(62.2)
7.82(2.27,26.91)
0.001
19(57.6)
6.45(1.79,23.19)
0.004
 Cephalosporin
12(52.2)
15(33.3)
0.46(0.16,1.27)
0.136
12(36.4)
0.53(0.17,1.55)
0.242
 β-lactam/β-lactamase inhibitor combinations
12(52.2)
24(53.3)
2.61(0.90,7.57)
0.077
12(36.4)
1.31(0.42,4.07)
0.645
 Quinolone
3(13.0)
19(42.2)
4.87(1.26,18.79)
0.022
10(30.3)
2.90(0.70,12.02)
0.143
 Carbapenem
4(17.4)
21(46.7)
4.16(1.22,14.18)
0.023
20(60.6)
7.31(2.02,26.40)
0.002
aControl cases: 23 patients colonized or infected with carbapenem-susceptible Acinetobacter baumannii
ICU intensive care unit
Table 3
Multivariate logistic analysis of risk factors for carriage of OXA-72-producing Acinetobacter baumannii or OXA-23-producing A. baumannii
Characteristics
OXA-72 cases
OXA-23 cases
OR(CI 95%)
P value
OR(CI 95%)
P value
Urinary catheter
4.94(1.61–21.07)
0.031
Nasogastric intubation
7.65(2.14,27.36)
0.002
7.95(1.79–35.34)
0.006
Carbapenem usage
4.02(1.07,15.06)
0.039
10.05(2.21–45.58)
0.003
The results of Rep-PCR patterns and corresponding strain information for the 101 A. baumannii were shown in Table 4. In total, 9 Rep-PCR types were assigned to 78 CRAB isolates, while 22 Rep-PCR types were assigned to 23 CSAB isolates. The index of diversity (DI) for CRAB was 0.750 (95% CI: 0.671–0.829), which was significantly lower than for CSAB (DI = 0.996, 95% CI: 0.986–1.006). Twenty-six and 7 OXA-23-producing A. baumannii isolates were identified as Rep-PCR type 1 and 2, respectively, while 45 OXA-72-producing A. baumannii isolates were distributed in the 9 Rep-PCR types. Minimum spanning tree analysis of Rep-PCR patterns showed that all the 78 CRAB isolates were clustered into one clone complex, while most of the CSAB isolates were not connected to each other (Fig. 1). MLST analysis showed that all the 9 representative OXA-72 isolates in this study belong to ST2 (Table 4).
Table 4
The Rep-PCR type, MLST type, presence of carbapenemase genes and antimicrobial resistance profile of 101 Acinetobacter baumannii isolates
Isolate ID
Rep-PCR type
MLST type
Carbapenemase genes
Antimicrobial resistance profile
IMP
MEM
CAZ
FEP
AMK
GEN
CIP
LVX
TZP
SAM
MH
COL
N1312
1
NA
bla OXA-23
R
R
R
R
R
R
R
R
R
R
S
S
N1314
1
NA
bla OXA-23
R
R
R
I
R
R
R
R
R
R
S
S
N1316
1
NA
bla OXA-23
R
R
R
R
R
R
R
R
R
R
S
S
N1318
1
NA
bla OXA-23
R
R
R
I
S
R
R
R
R
I
S
S
N1352
1
NA
bla OXA-23
R
R
R
R
R
R
R
I
R
R
S
S
N1359
1
NA
bla OXA-23
R
R
R
R
R
R
R
I
R
R
S
S
N1362
1
NA
bla OXA-23
R
R
R
R
R
R
R
R
R
R
S
S
N1369
1
NA
bla OXA-23
R
R
R
R
R
I
R
I
R
R
S
S
N1371
1
NA
bla OXA-23
R
R
R
R
R
R
R
I
R
R
S
S
N1383
1
NA
bla OXA-23
R
R
R
R
R
R
R
R
R
R
S
S
N1384
1
NA
bla OXA-23
R
R
R
R
R
R
R
R
R
R
S
S
N1386
1
NA
bla OXA-23
R
R
R
R
R
R
R
I
R
R
S
R
N1395
1
NA
bla OXA-23
R
R
R
R
R
R
R
R
R
R
S
S
N1396
1
NA
bla OXA-23
R
R
R
R
R
R
R
R
R
R
S
S
N1398
1
NA
bla OXA-23
I
R
R
R
R
R
R
R
R
I
S
S
N1401
1
NA
bla OXA-23
R
R
R
R
R
R
R
R
R
I
S
S
N1407
1
NA
bla OXA-23
R
R
R
R
R
R
R
R
R
R
S
S
N741
1
NA
bla OXA-23
R
R
R
R
R
R
R
R
R
R
S
S
N747
1
NA
bla OXA-23
R
R
R
I
R
R
R
R
R
S
I
S
N748
1
NA
bla OXA-23
R
R
R
R
R
R
R
R
S
R
I
S
N749
1
NA
bla OXA-23
R
R
R
R
R
R
R
R
R
R
S
S
N751
1
NA
bla OXA-23
R
R
R
R
R
R
R
R
R
R
S
S
N752
1
NA
bla OXA-23
R
R
R
R
R
R
R
R
R
R
I
S
N756
1
NA
bla OXA-23
R
R
R
I
R
R
R
R
R
S
S
S
N762
1
NA
bla OXA-23
R
R
R
R
R
R
R
R
R
R
I
S
N764
1
NA
bla OXA-23
R
R
R
R
R
R
R
R
R
R
I
S
N1304
1
NA
bla OXA-72
R
R
R
S
R
R
R
I
R
I
S
S
N1307
1
2
bla OXA-72
R
R
R
I
R
R
R
R
R
I
S
S
N1309
1
NA
bla OXA-72
R
R
R
R
R
R
R
I
R
R
S
S
N1311
1
NA
bla OXA-72
R
R
R
I
R
R
R
I
R
I
S
S
N1315
1
NA
bla OXA-72
R
R
R
R
R
R
R
R
R
R
S
S
N743
1
NA
bla OXA-72
R
R
R
R
R
R
R
R
R
R
R
S
N745
1
NA
bla OXA-72
R
R
R
I
R
R
R
R
R
I
I
S
N750
1
NA
bla OXA-72
R
R
R
I
R
R
R
R
R
R
I
S
N754
1
NA
bla OXA-72
R
R
R
I
R
R
R
R
R
I
S
S
N1412
2
NA
bla OXA-23
I
R
R
R
R
R
R
R
R
R
S
S
N1419
2
NA
bla OXA-23
I
R
R
R
R
R
R
R
R
R
S
S
N1420
2
NA
bla OXA-23
R
R
R
R
R
R
R
R
R
S
S
S
N1424
2
NA
bla OXA-23
I
R
R
R
R
R
R
R
R
R
S
S
N1428
2
NA
bla OXA-23
R
R
R
R
R
R
R
R
R
I
S
S
N1447
2
NA
bla OXA-23
R
R
R
R
R
R
R
I
R
R
S
S
N1449
2
NA
bla OXA-23
R
R
R
R
R
R
R
I
R
R
S
S
N1372
2
NA
bla OXA-72
R
R
R
I
R
R
R
R
R
R
I
S
N1411
2
NA
bla OXA-72
R
R
R
I
R
R
R
R
R
R
S
S
N1425
2
2
bla OXA-72
R
R
R
S
R
R
R
R
R
I
S
S
N1446
2
NA
bla OXA-72
R
R
R
I
R
R
R
R
R
R
S
S
N1451
2
NA
bla OXA-72
R
R
R
R
R
R
R
R
R
R
I
S
N1348
3
NA
bla OXA-72
R
R
R
I
R
R
R
R
R
R
S
S
N1349
3
NA
bla OXA-72
R
R
R
I
R
R
R
R
R
R
S
S
N1368
3
NA
bla OXA-72
R
R
R
I
R
R
R
R
R
R
S
S
N1376
3
NA
bla OXA-72
R
R
R
S
R
R
R
R
R
R
S
S
N1378
3
NA
bla OXA-72
R
R
R
I
R
R
R
R
R
R
S
S
N1421
3
2
bla OXA-72
R
R
R
I
R
R
R
R
R
I
S
S
N1427
3
NA
bla OXA-72
R
R
R
I
R
R
R
R
R
R
S
S
N1429
3
NA
bla OXA-72
R
R
R
I
S
S
R
I
R
R
S
S
N1432
3
NA
bla OXA-72
R
R
R
I
R
R
R
R
R
S
S
S
N1436
3
NA
bla OXA-72
R
R
R
R
R
R
R
R
R
R
S
S
N1437
3
NA
bla OXA-72
R
R
R
I
R
R
R
R
R
R
S
S
N1365
4
NA
bla OXA-72
R
R
R
I
R
R
R
R
R
R
S
S
N1366
4
NA
bla OXA-72
R
R
R
R
R
R
R
R
R
R
S
S
N1422
4
2
bla OXA-72
R
R
R
S
R
R
R
I
R
I
S
S
N1434
4
NA
bla OXA-72
R
R
R
I
R
R
R
R
R
R
S
S
N1361
5
NA
bla OXA-72
R
R
R
I
R
R
R
R
R
R
S
S
N1375
5
NA
bla OXA-72
R
R
R
R
R
I
R
R
R
R
S
S
N1380
5
NA
bla OXA-72
R
R
R
S
R
R
R
R
R
R
S
S
N1381
5
NA
bla OXA-72
R
R
R
S
R
R
R
R
R
R
S
S
N1397
5
2
bla OXA-72
R
R
R
I
R
R
R
R
R
R
S
S
N1400
5
NA
bla OXA-72
R
R
R
I
R
R
R
R
R
R
S
S
N1350
6
NA
bla OXA-72
R
R
R
I
R
R
R
R
R
R
S
S
N1353
6
2
bla OXA-72
R
R
R
R
R
R
R
R
R
R
S
S
N1370
6
NA
bla OXA-72
R
R
R
I
R
R
R
R
R
R
I
S
N1391
7
2
bla OXA-72
R
R
R
R
R
R
R
R
R
R
S
S
N1357
8
2
bla OXA-72
R
R
S
S
S
R
R
R
I
S
S
S
N1374
8
NA
bla OXA-72
R
R
R
I
R
R
R
R
R
R
S
S
N1379
8
NA
bla OXA-72
R
R
R
I
R
R
R
R
R
R
S
S
N1392
8
NA
bla OXA-72
R
R
R
S
R
R
R
R
R
R
S
S
N1409
8
NA
bla OXA-72
R
R
R
S
R
R
R
I
R
I
S
S
N1382
9
2
bla OXA-72
R
R
R
S
R
R
R
R
R
R
S
S
N1415
10
NA
None
S
S
S
S
S
S
S
S
S
S
S
S
N1441
11
NA
None
S
S
S
S
S
R
S
S
S
R
S
S
N1443
12
NA
None
S
S
S
S
S
S
S
S
S
S
S
S
N1408
13
NA
None
S
S
S
S
S
S
S
S
S
S
S
S
N1306
14
NA
None
S
S
S
S
S
S
S
S
S
S
S
S
N1414
15
NA
None
S
S
S
S
S
S
S
S
S
S
S
S
N1363
16
NA
None
S
S
S
S
S
S
S
S
S
S
S
S
N1389
17
NA
None
S
S
S
S
S
S
S
S
S
S
S
S
N1405
18
NA
None
S
S
S
S
S
S
S
S
S
S
S
S
N1406
18
NA
None
S
S
S
S
S
S
S
S
S
S
S
R
N1377
19
NA
None
S
S
R
R
R
R
R
R
R
R
S
S
N1390
20
NA
bla OXA-58
S
S
S
S
S
R
S
S
S
S
S
S
N1448
21
NA
None
S
S
S
S
S
R
R
R
S
S
S
R
N1354
22
NA
None
S
S
S
S
S
S
S
S
S
S
S
S
N746
23
NA
None
S
S
S
S
S
S
S
S
S
I
S
S
N1364
24
NA
None
S
S
S
S
S
S
S
S
S
S
S
S
N1393
25
NA
None
S
S
S
S
S
S
S
S
S
S
S
S
N1351
26
NA
None
S
S
S
S
S
S
S
S
S
S
S
S
N1399
27
NA
None
S
S
S
S
S
S
S
S
S
S
S
S
N1305
28
NA
None
S
S
S
S
S
S
S
S
S
S
S
S
N1387
29
NA
None
S
S
S
S
S
S
S
S
S
S
S
S
N744
30
NA
None
S
S
S
S
S
S
S
S
S
S
S
R
N1423
31
NA
None
S
S
S
S
S
S
S
S
S
S
S
S
NA not available, IMP imipenem, MEM meropenem, CAZ ceftazidime, FEP cefepime, AMK amikacin, GEN gentamicin, CIP ciprofloxacin, LVX levofloxacin, TZP piperacillin-tazobactam, SAM ampicillin-sulbactam, MH minocyline, COL colistin, R resistant, I intermediate, S susceptible
A literature review of previous published MLST data showed that there were at least 19 ST types (Bartual scheme) for 29 OXA-24/40-like producing Acinetobacter spp. isolates from 11 countries and 21 ST types (Pasteur scheme) for 52 OXA-24/40-like producing Acinetobacter spp. isolates from 15 countries. Minimum spanning tree analysis of these isolates based on two different MLST schemes was shown in Fig. 2, which suggested that CC92B/CC2P represented the predominant clone for the OXA-24/40-like producing Acinetobacter spp. isolates from around the world.

Discussions

Carbapenem-resistant Acinetobacter spp. (mainly CRAB) are increasingly recognized as major nosocomial pathogens and considered to be serious threat for human health by US Centers for Disease Control and Prevention and World Health Organization [24, 25]. OXA-23-like carbapenemases were the main reason for the high prevalence and wide dissemination of CRAB from many parts of the world, including China [14, 26, 27]. OXA-24/40-like carbapenemases, which have been reported to be associated with outbreak of nosocomial infection in United States, Spain, Turkey and Ecuador [2831], accounted for only a small part of CRAB in China [14, 32]. OXA-72, which was first identified in 2004 in an A. baumannii isolate from Thailand, belonged to one of the most important variant of OXA-24/40-like carbapenemases [29]. This study reported firstly a high prevalence and clonal dissemination of OXA-72-producing A. baumannii in a hospital from northeastern China.
Carbapenem resistance in A. baumannii was not significantly associated with 14-day mortality in this study (Table 1), which is in accordance with previous studies [33, 34]. However, carbapenem resistance limits the available therapeutic agents, makes the infection difficult to treat, and might be associated with an additional cost of hospitalization [34]. In this study, there was no significant difference over length of hospital stay for carbapenem resistance and susceptible A. baumannii, which might be related with the limited sample size.
In vitro antimicrobial susceptibility testing showed that OXA-72-producing A. baumannii and OXA-23-producing A. baumannii exhibited similar multidrug resistance profile, suggesting that they could not be differentiated through detection of antimicrobial phenotype. The risk factor analyses implicated that admitted into ICU and length of ICU stay were the most important risk factors for carriage of OXA-72-producing A. baumannii and OXA-23-producing A. baumannii, as ICU patients are always critical ill and subjected to a lot of risk factors for the acquisition of multidrug resistance organisms (MDROs) [35]. When ICU stay was removed for multivariable analyses, nasogastric intubation and carbapenem use were significantly associated with acquisition of both classes of CRAB, which is in accordance with previous studies [3638]. The reason for why urinary catheter was significantly associated with carriage of OXA-23-producing A. baumannii, but not OXA-72-producing A. baumannii deserves further investigation. One possible explanation was that the complex conditions and combined therapy of ICU patients compromised the accuracy of multiple logistics analysis, urinary catheter might be just an indicator for critical ill patients who have a high probability of acquiring certain MDROs through contaminated environment or nursing behavior.
CC92B/CC2P was by far the largest and most widely distributed A. baumannii clone in the world, especially among OXA-23-producing A. baumannii [27, 39, 40]. Although not so widely disseminated, CC92B/CC2P was still the most important clone in OXA-24/40-producing A. baumannii (Fig. 2). The Rep-PCR and MLST analysis of A. baumannii in this study suggested that OXA-72-producing and OXA-23-producing A. baumannii isolates were genetically related and belonged to the same clone, CC92B/CC2P. It seems that OXA-72-producing A. baumannii has already become endemic in the ICU since 2014, as most of these isolates were continuously cultured without obvious clustering of isolation time. Enhanced infection control measures, such as hand hygiene education programs, environmental cleaning, antimicrobial stewardship, contact precautions [41], have to be implemented in ICU of this hospital in order to reduce the wide spread of high risk clone, CC92B/CC2P, which represents the most prevalent clone of CRAB in Chinese hospitals.
There are some limitations for this study. The first is the inclusion criteria of Acb complex strains, it has been demonstrated that a single patient may have more than one genetic type of Acinetobacter [42, 43]. To avoid the problem of duplicate data, this study adopted a simple inclusion method of allowing only a single isolate per patient. it might limit the ability to monitor the dynamic changes and complex conditions in patients who may be at particular risk of acquiring antibiotic resistant strains through cross-infection or the development of resistance during antibiotic treatment [44]. Another limitation comes from the design of this study, as this is just an one-center study, the epidemiological characterizations of OXA-72 strains in this study might not be generalized to other healthcare settings in China.

Conclusions

This study described firstly a high prevalence of OXA-72-producing A. baumannii in ICU of a Chinese hospital, which have circulated in this ICU through clonal dissemination for at least two years. Strict infection control measures must be implemented to contain the ongoing dissemination of OXA carbapenemases-producing A. baumannii in Chinese ICUs.

Funding

The study was supported by a grant from the National Key Program for Infectious Diseases of China (2018ZX10733402), Beijing Natural Science Foundation (7172157) and the Beijing Nova Program (Z181100006218107).

Availability of data and materials

The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.
The study was approved by the institutional ethics committees of the Academy of Military Medical Sciences of the Chinese People’s Liberation Army, Beijing, China. Because the study was epidemiological without any interventions and all the data were collected and analyzed anonymously, the requirement for informed consent was waived.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Lima AL, Oliveira PR, Paula AP. Acinetobacter infection. N Engl J Med. 2008;358(12):1271–81.CrossRef Lima AL, Oliveira PR, Paula AP. Acinetobacter infection. N Engl J Med. 2008;358(12):1271–81.CrossRef
2.
Zurück zum Zitat Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008;21(3):538–82.CrossRef Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008;21(3):538–82.CrossRef
3.
Zurück zum Zitat Nemec A, Krizova L, Maixnerova M, van der Reijden TJ, Deschaght P, Passet V, et al. Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). Res Microbiol. 2011;162(4):393–404.CrossRef Nemec A, Krizova L, Maixnerova M, van der Reijden TJ, Deschaght P, Passet V, et al. Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). Res Microbiol. 2011;162(4):393–404.CrossRef
4.
Zurück zum Zitat Antunes LC, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen. Pathog and Dis. 2014;71(3):292–301.CrossRef Antunes LC, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen. Pathog and Dis. 2014;71(3):292–301.CrossRef
5.
Zurück zum Zitat Doi Y, Murray GL, Peleg AY. Acinetobacter baumannii: evolution of antimicrobial resistance-treatment options. Semin Respir Rrit Care Med. 2015;36(1):85–98.CrossRef Doi Y, Murray GL, Peleg AY. Acinetobacter baumannii: evolution of antimicrobial resistance-treatment options. Semin Respir Rrit Care Med. 2015;36(1):85–98.CrossRef
6.
Zurück zum Zitat Mera RM, Miller LA, Amrine-Madsen H, Sahm DF. Acinetobacter baumannii 2002-2008: increase of carbapenem-associated multiclass resistance in the United States. Microb Drug Resist. 2010;16(3):209–15.CrossRef Mera RM, Miller LA, Amrine-Madsen H, Sahm DF. Acinetobacter baumannii 2002-2008: increase of carbapenem-associated multiclass resistance in the United States. Microb Drug Resist. 2010;16(3):209–15.CrossRef
7.
Zurück zum Zitat Xiao YH, Giske CG, Wei ZQ, Shen P, Heddini A, Li LJ. Epidemiology and characteristics of antimicrobial resistance in China. Drug Resist Updat. 2011;14(4–5):236–50.CrossRef Xiao YH, Giske CG, Wei ZQ, Shen P, Heddini A, Li LJ. Epidemiology and characteristics of antimicrobial resistance in China. Drug Resist Updat. 2011;14(4–5):236–50.CrossRef
8.
Zurück zum Zitat Hu FP, Guo Y, Zhu DM, Wang F, Jiang XF, Xu YC, et al. Resistance trends among clinical isolates in China reported from CHINET surveillance of bacterial resistance, 2005-2014. Clin Microbiol Infect. 2016;22(Suppl 1):S9–14.CrossRef Hu FP, Guo Y, Zhu DM, Wang F, Jiang XF, Xu YC, et al. Resistance trends among clinical isolates in China reported from CHINET surveillance of bacterial resistance, 2005-2014. Clin Microbiol Infect. 2016;22(Suppl 1):S9–14.CrossRef
9.
Zurück zum Zitat Docquier JD, Mangani S. Structure-function relationships of class D Carbapenemases. Curr Drug Targets. 2016;17(9):1061–71.CrossRef Docquier JD, Mangani S. Structure-function relationships of class D Carbapenemases. Curr Drug Targets. 2016;17(9):1061–71.CrossRef
10.
Zurück zum Zitat Antunes NT, Lamoureaux TL, Toth M, Stewart NK, Frase H, Vakulenko SB. Class D -lactamases: are they all Carbapenemases? Antimicrob Agents Chemother. 2014;58(4):2119–25.CrossRef Antunes NT, Lamoureaux TL, Toth M, Stewart NK, Frase H, Vakulenko SB. Class D -lactamases: are they all Carbapenemases? Antimicrob Agents Chemother. 2014;58(4):2119–25.CrossRef
11.
Zurück zum Zitat Evans BA, Amyes SG. OXA beta-lactamases. Clin Microbiol Rev. 2014;27(2):241–63.CrossRef Evans BA, Amyes SG. OXA beta-lactamases. Clin Microbiol Rev. 2014;27(2):241–63.CrossRef
12.
Zurück zum Zitat Bou G, Oliver A, Martinez-Beltran J. OXA-24, a novel class D beta-lactamase with carbapenemase activity in an Acinetobacter baumannii clinical strain. Antimicrob Agents Chemother. 2000;44(6):1556–61.CrossRef Bou G, Oliver A, Martinez-Beltran J. OXA-24, a novel class D beta-lactamase with carbapenemase activity in an Acinetobacter baumannii clinical strain. Antimicrob Agents Chemother. 2000;44(6):1556–61.CrossRef
13.
Zurück zum Zitat Mendes RE, Bell JM, Turnidge JD, Castanheira M, Jones RN. Emergence and widespread dissemination of OXA-23, −24/40 and −58 carbapenemases among Acinetobacter spp. in Asia-Pacific nations: report from the SENTRY Surveillance Program. J Agents Chemother. 2009;63(1):55–9.CrossRef Mendes RE, Bell JM, Turnidge JD, Castanheira M, Jones RN. Emergence and widespread dissemination of OXA-23, −24/40 and −58 carbapenemases among Acinetobacter spp. in Asia-Pacific nations: report from the SENTRY Surveillance Program. J Agents Chemother. 2009;63(1):55–9.CrossRef
14.
Zurück zum Zitat Ji S, Chen Y, Ruan Z, Fu Y, Ji J, Fu Y, et al. Prevalence of carbapenem-hydrolyzing class D beta-lactamase genes in Acinetobacter spp. isolates in China. Eur J Clin Microbiol Infect Dis. 2014;33(6):989–97.CrossRef Ji S, Chen Y, Ruan Z, Fu Y, Ji J, Fu Y, et al. Prevalence of carbapenem-hydrolyzing class D beta-lactamase genes in Acinetobacter spp. isolates in China. Eur J Clin Microbiol Infect Dis. 2014;33(6):989–97.CrossRef
15.
Zurück zum Zitat Higgins PG, Lehmann M, Wisplinghoff H, Seifert H. gyrB multiplex PCR to differentiate between Acinetobacter calcoaceticus and Acinetobacter genomic species 3. J Clin Microbiol. 2010;48(12):4592–4.CrossRef Higgins PG, Lehmann M, Wisplinghoff H, Seifert H. gyrB multiplex PCR to differentiate between Acinetobacter calcoaceticus and Acinetobacter genomic species 3. J Clin Microbiol. 2010;48(12):4592–4.CrossRef
16.
Zurück zum Zitat Higgins PG, Wisplinghoff H, Krut O, Seifert H. A PCR-based method to differentiate between Acinetobacter baumannii and Acinetobacter genomic species 13TU. Clin Microbiol Infect. 2007;13(12):1199–201.CrossRef Higgins PG, Wisplinghoff H, Krut O, Seifert H. A PCR-based method to differentiate between Acinetobacter baumannii and Acinetobacter genomic species 13TU. Clin Microbiol Infect. 2007;13(12):1199–201.CrossRef
17.
Zurück zum Zitat Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents. 2006;27(4):351–3.CrossRef Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents. 2006;27(4):351–3.CrossRef
18.
Zurück zum Zitat Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70(1):119–23.CrossRef Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70(1):119–23.CrossRef
19.
Zurück zum Zitat Afzal-Shah M, Woodford N, Livermore DM. Characterization of OXA-25, OXA-26, and OXA-27, molecular class D beta-lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother. 2001;45(2):583–8.CrossRef Afzal-Shah M, Woodford N, Livermore DM. Characterization of OXA-25, OXA-26, and OXA-27, molecular class D beta-lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother. 2001;45(2):583–8.CrossRef
20.
Zurück zum Zitat Vila J, Marcos MA, Jimenez de Anta MT. A comparative study of different PCR-based DNA fingerprinting techniques for typing of the Acinetobacter calcoaceticus-A. baumannii complex. J Med Microbiol. 1996;44(6):482–9.CrossRef Vila J, Marcos MA, Jimenez de Anta MT. A comparative study of different PCR-based DNA fingerprinting techniques for typing of the Acinetobacter calcoaceticus-A. baumannii complex. J Med Microbiol. 1996;44(6):482–9.CrossRef
21.
Zurück zum Zitat Bou G, Cervero G, Dominguez MA, Quereda C, Martinez-Beltran J. PCR-based DNA fingerprinting (rep-PCR, AP-PCR) and pulsed-field gel electrophoresis characterization of a nosocomial outbreak caused by imipenem- and meropenem-resistant Acinetobacter baumannii. Clin Microbiol Infect. 2000;6(12):635–43.CrossRef Bou G, Cervero G, Dominguez MA, Quereda C, Martinez-Beltran J. PCR-based DNA fingerprinting (rep-PCR, AP-PCR) and pulsed-field gel electrophoresis characterization of a nosocomial outbreak caused by imipenem- and meropenem-resistant Acinetobacter baumannii. Clin Microbiol Infect. 2000;6(12):635–43.CrossRef
22.
Zurück zum Zitat Diancourt L, Passet V, Nemec A, Dijkshoorn L, Brisse S. The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS One. 2010;5(4):e10034.CrossRef Diancourt L, Passet V, Nemec A, Dijkshoorn L, Brisse S. The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS One. 2010;5(4):e10034.CrossRef
23.
Zurück zum Zitat Grundmann H, Hori S, Tanner G. Determining confidence intervals when measuring genetic diversity and the discriminatory abilities of typing methods for microorganisms. J Clin Microbiol. 2001;39(11):4190–2.CrossRef Grundmann H, Hori S, Tanner G. Determining confidence intervals when measuring genetic diversity and the discriminatory abilities of typing methods for microorganisms. J Clin Microbiol. 2001;39(11):4190–2.CrossRef
24.
Zurück zum Zitat Kim UJ, Kim HK, An JH, Cho SK, Park KH, Jang HC. Update on the epidemiology, treatment, and outcomes of Carbapenem-resistant Acinetobacter infections. Chonnam Med J. 2014;50(2):37–44.CrossRef Kim UJ, Kim HK, An JH, Cho SK, Park KH, Jang HC. Update on the epidemiology, treatment, and outcomes of Carbapenem-resistant Acinetobacter infections. Chonnam Med J. 2014;50(2):37–44.CrossRef
25.
Zurück zum Zitat Wernli D, Jorgensen PS, Harbarth S, Carroll SP, Laxminarayan R, Levrat N, et al. Antimicrobial resistance: the complex challenge of measurement to inform policy and the public. PLoS Med. 2017;14(8):e1002378.CrossRef Wernli D, Jorgensen PS, Harbarth S, Carroll SP, Laxminarayan R, Levrat N, et al. Antimicrobial resistance: the complex challenge of measurement to inform policy and the public. PLoS Med. 2017;14(8):e1002378.CrossRef
26.
Zurück zum Zitat Mugnier PD, Poirel L, Naas T, Nordmann P. Worldwide dissemination of the bla OXA-23 carbapenemase gene of Acinetobacter baumannii. Emerg Infect Dis. 2010;16(1):35–40.CrossRef Mugnier PD, Poirel L, Naas T, Nordmann P. Worldwide dissemination of the bla OXA-23 carbapenemase gene of Acinetobacter baumannii. Emerg Infect Dis. 2010;16(1):35–40.CrossRef
27.
Zurück zum Zitat Wu W, He Y, Lu J, Lu Y, Wu J, Liu Y. Transition of bla OXA-58-like to bla OXA-23-like in Acinetobacter baumannii clinical isolates in southern China: an 8-year study. PLoS One. 2015;10(9):e0137174.CrossRef Wu W, He Y, Lu J, Lu Y, Wu J, Liu Y. Transition of bla OXA-58-like to bla OXA-23-like in Acinetobacter baumannii clinical isolates in southern China: an 8-year study. PLoS One. 2015;10(9):e0137174.CrossRef
28.
Zurück zum Zitat Lolans K, Rice TW, Munoz-Price LS, Quinn JP. Multicity outbreak of carbapenem-resistant Acinetobacter baumannii isolates producing the carbapenemase OXA-40. Antimicrob Agents Chemother. 2006;50(9):2941–5.CrossRef Lolans K, Rice TW, Munoz-Price LS, Quinn JP. Multicity outbreak of carbapenem-resistant Acinetobacter baumannii isolates producing the carbapenemase OXA-40. Antimicrob Agents Chemother. 2006;50(9):2941–5.CrossRef
29.
Zurück zum Zitat Nunez Quezada T, Rodriguez CH, Castro Canarte G, Nastro M, Balderrama Yarhui N, et al. Outbreak of bla OXA-72-producing Acinetobacter baumannii in South America. J Chemother. 2017;29(5):321–4.CrossRef Nunez Quezada T, Rodriguez CH, Castro Canarte G, Nastro M, Balderrama Yarhui N, et al. Outbreak of bla OXA-72-producing Acinetobacter baumannii in South America. J Chemother. 2017;29(5):321–4.CrossRef
30.
Zurück zum Zitat Sari AN, Bicmen M, Gulay Z. The first report on the outbreak of OXA-24/40-like Carbapenemase-producing Acinetobacter baumannii in Turkey. Jpn J Infect Dis. 2013;66(5):439–42.CrossRef Sari AN, Bicmen M, Gulay Z. The first report on the outbreak of OXA-24/40-like Carbapenemase-producing Acinetobacter baumannii in Turkey. Jpn J Infect Dis. 2013;66(5):439–42.CrossRef
31.
Zurück zum Zitat Merino M, Acosta J, Poza M, Sanz F, Beceiro A, Chaves F, et al. OXA-24 carbapenemase gene flanked by XerC/XerD-like recombination sites in different plasmids from different Acinetobacter species isolated during a nosocomial outbreak. Antimicrob Agents Chemother. 2010;54(6):2724–7.CrossRef Merino M, Acosta J, Poza M, Sanz F, Beceiro A, Chaves F, et al. OXA-24 carbapenemase gene flanked by XerC/XerD-like recombination sites in different plasmids from different Acinetobacter species isolated during a nosocomial outbreak. Antimicrob Agents Chemother. 2010;54(6):2724–7.CrossRef
32.
Zurück zum Zitat Wang H, Guo P, Sun H, Wang H, Yang Q, Chen M, et al. Molecular epidemiology of clinical isolates of carbapenem-resistant Acinetobacter spp. from Chinese hospitals. Antimicrob Agents Chemother. 2007;51(11):4022–8.CrossRef Wang H, Guo P, Sun H, Wang H, Yang Q, Chen M, et al. Molecular epidemiology of clinical isolates of carbapenem-resistant Acinetobacter spp. from Chinese hospitals. Antimicrob Agents Chemother. 2007;51(11):4022–8.CrossRef
33.
Zurück zum Zitat Lemos EV, de la Hoz FP, Alvis N, Einarson TR, Quevedo E, Castaneda C, et al. Impact of carbapenem resistance on clinical and economic outcomes among patients with Acinetobacter baumannii infection in Colombia. Clin Microbiol Infect. 2014;20(2):174–80.CrossRef Lemos EV, de la Hoz FP, Alvis N, Einarson TR, Quevedo E, Castaneda C, et al. Impact of carbapenem resistance on clinical and economic outcomes among patients with Acinetobacter baumannii infection in Colombia. Clin Microbiol Infect. 2014;20(2):174–80.CrossRef
34.
Zurück zum Zitat Huang ST, Chiang MC, Kuo SC, Lee YT, Chiang TH, Yang SP, et al. Risk factors and clinical outcomes of patients with carbapenem-resistant Acinetobacter baumannii bacteremia. J Microbiol Immunol Infect. 2012;45(5):356–62.CrossRef Huang ST, Chiang MC, Kuo SC, Lee YT, Chiang TH, Yang SP, et al. Risk factors and clinical outcomes of patients with carbapenem-resistant Acinetobacter baumannii bacteremia. J Microbiol Immunol Infect. 2012;45(5):356–62.CrossRef
35.
Zurück zum Zitat Carlet J, Ben Ali A, Chalfine A. Epidemiology and control of antibiotic resistance in the intensive care unit. Curr Opin Infect Dis. 2004;17(4):309–16.CrossRef Carlet J, Ben Ali A, Chalfine A. Epidemiology and control of antibiotic resistance in the intensive care unit. Curr Opin Infect Dis. 2004;17(4):309–16.CrossRef
36.
Zurück zum Zitat Chusri S, Silpapojakul K, McNeil E, Singkhamanan K, Chongsuvivatwong V. Impact of antibiotic exposure on occurrence of nosocomial carbapenem-resistant Acinetobacter baumannii infection: a case control study. J Infect Chemother. 2015;21(2):90–5.CrossRef Chusri S, Silpapojakul K, McNeil E, Singkhamanan K, Chongsuvivatwong V. Impact of antibiotic exposure on occurrence of nosocomial carbapenem-resistant Acinetobacter baumannii infection: a case control study. J Infect Chemother. 2015;21(2):90–5.CrossRef
37.
Zurück zum Zitat Surasarang K, Narksawat K, Danchaivijitr S, Siripanichgon K, Sujirarat D, Rongrungrueng Y, et al. Risk factors for multi-drug resistant Acinetobacter baumannii nosocomial infection. J Med Assoc Thail. 2007;90(8):1633–9. Surasarang K, Narksawat K, Danchaivijitr S, Siripanichgon K, Sujirarat D, Rongrungrueng Y, et al. Risk factors for multi-drug resistant Acinetobacter baumannii nosocomial infection. J Med Assoc Thail. 2007;90(8):1633–9.
38.
Zurück zum Zitat Kim T, Chong YP, Park SY, Jeon MH, Choo EJ, Chung JW, et al. Risk factors for hospital-acquired pneumonia caused by carbapenem-resistant gram-negative bacteria in critically ill patients: a multicenter study in Korea. Diagn Microbiol Infect Dis. 2014;78(4):457–61.CrossRef Kim T, Chong YP, Park SY, Jeon MH, Choo EJ, Chung JW, et al. Risk factors for hospital-acquired pneumonia caused by carbapenem-resistant gram-negative bacteria in critically ill patients: a multicenter study in Korea. Diagn Microbiol Infect Dis. 2014;78(4):457–61.CrossRef
39.
Zurück zum Zitat Karah N, Sundsfjord A, Towner K, Samuelsen O. Insights into the global molecular epidemiology of carbapenem non-susceptible clones of Acinetobacter baumannii. Drug Resist Updat. 2012;15(4):237–47.CrossRef Karah N, Sundsfjord A, Towner K, Samuelsen O. Insights into the global molecular epidemiology of carbapenem non-susceptible clones of Acinetobacter baumannii. Drug Resist Updat. 2012;15(4):237–47.CrossRef
40.
Zurück zum Zitat Ruan Z, Chen Y, Jiang Y, Zhou H, Zhou ZH, Fu Y, et al. Wide distribution of CC92 carbapenem-resistant and OXA-23-producing Acinetobacter baumannii in multiple provinces of China. Int J Antimicrob Agents. 2013;42(4):322–8.CrossRef Ruan Z, Chen Y, Jiang Y, Zhou H, Zhou ZH, Fu Y, et al. Wide distribution of CC92 carbapenem-resistant and OXA-23-producing Acinetobacter baumannii in multiple provinces of China. Int J Antimicrob Agents. 2013;42(4):322–8.CrossRef
41.
Zurück zum Zitat Tacconelli E, Cataldo MA, Dancer SJ, De Angelis G, Falcone M, Frank U, et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant gram-negative bacteria in hospitalized patients. Clin Microbiol Infect. 2014;20(Suppl 1):1–55.CrossRef Tacconelli E, Cataldo MA, Dancer SJ, De Angelis G, Falcone M, Frank U, et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant gram-negative bacteria in hospitalized patients. Clin Microbiol Infect. 2014;20(Suppl 1):1–55.CrossRef
42.
Zurück zum Zitat Johnson JK, Robinson GL, Zhao L, Harris AD, Stine OC, Thom KA. Comparison of molecular typing methods for the analyses of Acinetobacter baumannii from ICU patients. Diagn Microbiol Infect Dis. 2016;86(4):345–50.CrossRef Johnson JK, Robinson GL, Zhao L, Harris AD, Stine OC, Thom KA. Comparison of molecular typing methods for the analyses of Acinetobacter baumannii from ICU patients. Diagn Microbiol Infect Dis. 2016;86(4):345–50.CrossRef
43.
Zurück zum Zitat Thom KA, Hsiao WW, Harris AD, Stine OC, Rasko DA, Johnson JK. Patients with Acinetobacter baumannii bloodstream infections are colonized in the gastrointestinal tract with identical strains. Am J Infect Control. 2010;38(9):751–3.CrossRef Thom KA, Hsiao WW, Harris AD, Stine OC, Rasko DA, Johnson JK. Patients with Acinetobacter baumannii bloodstream infections are colonized in the gastrointestinal tract with identical strains. Am J Infect Control. 2010;38(9):751–3.CrossRef
44.
Zurück zum Zitat Morris AK, Masterton RG. Antibiotic resistance surveillance: action for international studies. J Antimicrob Chemother. 2002;49(1):7–10.CrossRef Morris AK, Masterton RG. Antibiotic resistance surveillance: action for international studies. J Antimicrob Chemother. 2002;49(1):7–10.CrossRef
Metadaten
Titel
High prevalence and clonal dissemination of OXA-72-producing Acinetobacter baumannii in a Chinese hospital: a cross sectional study
verfasst von
Yong Chen
Yuying Yang
Lin Liu
Guangbin Qiu
Xuelin Han
Shuguang Tian
Jingya Zhao
Fangyan Chen
Hajo Grundmann
Haifeng Li
Jinke Sun
Li Han
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2018
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-018-3359-3

Weitere Artikel der Ausgabe 1/2018

BMC Infectious Diseases 1/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.