Skip to main content
Erschienen in: Knee Surgery, Sports Traumatology, Arthroscopy 9/2020

Open Access 05.08.2019 | KNEE

High tibial osteotomy results in improved frontal plane knee moments, gait patterns and patient-reported outcomes

verfasst von: Gemma M. Whatling, Paul R. Biggs, David W. Elson, Andrew Metcalfe, Chris Wilson, Cathy Holt

Erschienen in: Knee Surgery, Sports Traumatology, Arthroscopy | Ausgabe 9/2020

Abstract

Purpose

The purpose of this study was to quantify changes in knee loading in the three clinical planes, compensatory gait adaptations and patient-reported outcome measures (PROMS) resulting from opening wedge high tibial osteotomy (HTO).

Methods

Gait analysis was performed on 18 participants (19 knees) with medial osteoarthritis (OA) and varus alignment pre- and post-HTO, along with 18 controls, to calculate temporal, kinematic and kinetic measures. Oxford Knee Score, Knee Outcome Survey and visual analogue pain scores were collected. Paired and independent sample tests identified changes following surgery and deviations from controls.

Results

HTO restored frontal and transverse plane knee joint loading to that of the control group, while reductions remained in the sagittal plane. Elevated frontal plane trunk sway (p = 0.031) and reduced gait speed (p = 0.042), adopted as compensatory gait changes pre-HTO, were corrected by the surgery. PROMs significantly improved (p ≤ 0.002). Centre of pressure (COP) was lateralised relative to the knee post-HTO (p < 0.001). Energy absorbed in the sagittal plane significantly increased post-HTO (p = 0.007), whilst work done in the transverse plane reduced (p ≤ 0.008). Pre-operative gait deviations from the control group that were retained post-HTO included smaller sagittal (p = 0.003) knee range of motion during gait, greater stance duration (p = 0.008) and altered COP location (anterior to the knee) in early stance (p = 0.025).

Conclusions

HTO surgery restored frontal and transverse plane knee loading to normal levels and improved PROMs. Gait adaptations known to reduce knee loading employed pre-HTO were not retained post-HTO. Some gait features were found to differ between post-HTO subjects and controls.

Level of evidence

II
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Medial knee osteoarthritis (OA) and associated varus alignment alters knee loading and gait patterns. It is of clinical importance to determine whether normal biomechanics are restored following corrective realignment surgery.
During the stance phase of gait, the ground reaction force (GRF) passes medially to the knee joint centre and the medial compartment bears the greatest proportion of load [2, 35]. This is exacerbated by varus knee deformity where patients are prone to develop more severe OA if the mechanics are not corrected [20, 34], evidenced by an increased risk of medial compartment joint space narrowing, osteophytes [36] and increased rate of medial tibial cartilage volume loss [37] in people with varus deformity.
High tibial osteotomy (HTO) surgery [22] corrects varus malalignment and this unloads the medial compartment by lateralising the weight bearing line.
Peak external knee adduction moment (EKAM) is a surrogate measure of medial knee loading [1, 32, 34, 39], as it correlates highly with internal medial contact forces in early stance [24, 40]. Opening wedge HTO reduces an initially elevated peak EKAM to a level lower than that observed in control subjects [6, 7, 14, 26, 27, 31, 33].
Angular impulses, the integrals of the external moment curves, also provide useful measures of loading, combining both magnitude and duration into one variable. Knee Adduction Angular Impulse (KAAI) correlates moderately with changes in medial-to-lateral load impulse ratio [5] and is associated with medial tibial cartilage volume loss [4] and OA grade [38].
Studies to date have mostly focused on changes in the peak EKAM and KAAI. However, this neglects important contributions to loading at the knee that can be measured within the other clinical planes, that can be further influenced by gait alterations adopted by the patient.
The primary aim of this study was to determine the key changes in knee kinetics, in three clinical planes, during the stance phase of gait in patients before and after HTO. It was hypothesised that pre-operatively, elevated frontal plane loading would be accompanied by altered loading in the sagittal and transverse planes relative to controls. Furthermore, it was hypothesised that HTO surgery would restore frontal plane loading to that of healthy controls whilst also affecting loading in the sagittal and transverse planes. The secondary aims were to identify gait adaptations employed prior to HTO that are known to affect loading at the knee, to report changes to these following HTO, along with changes in patient-reported outcomes. It was hypothesised that patient-reported function would improve, and that gait alterations observed pre-HTO would return to normal after surgery.

Methods

Eighteen participants (19 knees) with medial compartment OA and varus alignment were recruited from the out-patient clinic of the senior surgeon on this paper (CW). Patients were included if they were between the ages of 18 and 80 and listed for medial opening wedge HTO. Patient did not pass initial screening if they were unable to provide informed consent, had neurological or visual conditions affecting movement or a previous injury to the joint under investigation that the treating clinician deemed unsuitable. The extent of OA was determined using the Kellgren–Lawrence (KL) [23] radiographic score and varus alignment calculated as the mechanical tibiofemoral angle (mTFA) from long leg weight bearing radiographs. Medial opening wedge HTO surgery was used to correct varus deformity using standard surgical approaches and planning [8]. In KL4 cases where bone-on-bone arthritis was identified, the intended correction was selected at 62.5% [15]. For lesser degrees of arthritis, the intended correction was neutral at 50%. The osteotomies were fixed with either Tomofix (n = 16) or Puddu (n = 1) plates, shown to have similar biomechanical properties [16], or an iBalance device (n = 2). Eighteen subjects with no lower limb pathology were also recruited from University staff, students and community using advertisements, forming a non-pathological (NP) control cohort. One leg was selected at random from NP participants to ensure 9 left and 9 right legs were used in the analyses. Approval for this work was granted by the Wales Research Ethics Committee 3 (10/MRE09/28) and Cardiff and Vale University Health Board. Written informed consent was obtained from each participant prior to data collection.

Gait analysis

Three-dimensional gait analysis was performed on patients before (average 1.7 ± 1.8 months) and after HTO surgery (average 13.8 ± 4.5 months) and at one time point for the control group. Patient-reported outcome measures (PROMs) including Oxford Knee Score (OKS) [21], Knee Outcome Survey (KOS) [13] and a visual analogue pain score were collected at each gait assessment (Table 2). Gait analysis was performed using an 8 Oqus camera system (Qualisys, Sweden) capturing at 120 Hz, synchronised with either two or four (due to laboratory upgrades) force platforms (Bertec Corp., USA) capturing at 1080 Hz. A modified Cleveland marker placement was applied, shown in Fig. 1, and subjects walked at their self-selected speed for a minimum of 6 successful trials. Where data issues or outliers were identified, a minimum of 3 trials were used in the analysis. Figure 2 shows the data collection setup.

Biomechanical analysis

Joint kinematics, kinetics and temporal parameters were calculated within Visual 3D (C-Motion, USA) using a custom model of the lower limbs and thorax. A Butterworth fourth order filter was used on raw marker coordinate data with a cut-off frequency of 7 Hz (defined through a power spectral analysis of the marker data from all subjects and trials used in this analysis to ensure 99% accumulative power). Anatomical joint axes and their positional relationship to tracking markers used to define segment motion, were calculated from a measurement of static standing. Knee and ankle centres were defined as the midpoint of the epicondyles and malleoli, respectively. Hip joint centres were defined relative to the markers on the pelvis using the Bell regression model [3]. The thorax axis origin was defined between virtual iliac crest markers created from the position of the anterior superior iliac spine and trochanter markers. Local coordinate systems were defined to coincide with anatomic axes and segments defined as rigid bodies with inertial properties estimated according to [19].
Joint angles were calculated using the Cardan/Euler x, y, z sequence [11], equivalent to the Grood and Suntay definitions [18]. Angles are defined as the orientation of the distal segment with respect to the reference proximal segment, with the exception of the thorax and feet where they are calculated with respect to a virtual laboratory axes aligned with the direction of gait. Inverse dynamics was used to calculate net external knee joint moments represented in the tibial reference frame since loading at the knee joint is of primary interest [30]. All moments were normalised by the participant’s body weight times height to reduce differences due to gender [29].
The two peaks of the external knee adduction moment were calculated for the first and second half of stance phase (EKAM P1, EKAM P2), along with the EKAM trough defined at 50% stance. Since not all EKAM moments were bi-phasic, EKAM P1 and EKAM P2 were defined as peaks within (17% and 31%) and (34% and 67%) of stance phase, respectively (Fig. 3). These ranges were defined as the mean percentage in stance ± 2SD where the peaks occurred in 21 knees with bi-phasic patterns. Knee angular impulses were calculated as the integral of the positive and negative regions of the moment profiles separately, in three clinical planes, to provide information on average loading over the stance phase. In the frontal plane, KAAI was also calculated during the first and second half of stance and for four additional portions of the stance phase [38] to identify when the largest effect on loading occurs following HTO surgery (Fig. 4). Joint knee powers were calculated in three clinical planes with positive and negative integrals determining positive and negative work done, respectively. Foot progression angle was calculated as the angle between the long axis of the foot and the line of forward progression. Varus angle ROM and frontal plane knee joint velocity during the loading phase from heel strike (HS) to 16% stance were computed to give an indication of frontal plane knee thrust [14]. Centre of pressure (COP) was calculated two ways at the average time of the EKAM peaks, defined from the subset of participants with bi-phasic EKAM patterns. COP calculated relative to the foot axis was normalised as a percentage of foot length (defined between the ankle and metatarsals) and foot width (defined between the 1st and 5th metatarsal). COP was also calculated as the distance in mm between the COP and knee centre measured in the laboratory reference frame aligned with the direction of gait.

Statistical analysis

Paired samples t test was performed using SPSS version 23 (SPSS Inc., USA) to identify significant differences associated with HTO surgery. Where parametric assumptions were not met, a Wilcoxon signed-rank test was used. Independent t tests were used to determine significant differences in the pre- and post-HTO measurements compared to the control group. Where parametric assumptions were not met, a Mann–Whitney U test was performed. Significance was determined when p < 0.05 for all statistical tests. As EKAM and KAAI are considered the main parameters of interest, with others considered as part of exploratory analyses, a post hoc multiple testing correction was not performed. Sufficient power was confirmed using KAAI and EKAM data from [25].

Results

Table 1 shows participant demographics and clinical measures. In Table 2, PROMs improved significantly as a result of HTO (p ≤ 0.002), however, they remained significantly different to the control subjects (p < 0.001).
Table 1
Demographic and clinical characteristics for patients at baseline and controls
Demographics
Controls
Mean (SD)
Pre-HTO
Mean (SD)
Pre-HTO vs controls
p value
Number of knees
18
19
 
Gender (M/F)
10/8
16/2
 
Mean age, years (SD)
34.6 (11.2)
51.2 (7.0)
< 0.001**
Height, m (SD)
1.7 (0.1)
1.7 (0.1)
ns
Mass, kg (SD)
70.2 (12.9)
90.1 (22.5)
0.002**
BMI, kg/m2 (SD)
24.5 (4.1)
29.5 (5.8)
0.003††
KL Grade
 
2 KL2,
12 KL3,
5 KL4
 
mTFA (°)
 
8.0 (3.6)
post-HTO: 0.7 (2.9) for n = 16
 
Significant difference (p < 0.01) indicated by ** where parametric or †† where non-parametric tests used
ns no significance
Table 2
Patient-reported outcome measures
Scores
Controls
Mean (SD)
Pre-HTO
Mean (SD)
Post-HTO
Mean (SD)
Controls vs
pre-HTO
p value
Controls vs post-HTO
p value
Pre- vs
post-HTO
p value
Oxford Knee Score
47.7 (1.0) (n = 17)
26.6 (7.9) (n = 18)
36.8 (6.0) (n = 18)
< 0.001††
< 0.001††
< 0.001**
Knee Outcome Survey
79 .4 (1.2) (n = 16)
47.2 (11.8) (n = 18)
60.3 (9.9) (n = 18)
< 0.001††
< 0.001††
0.002**
Pain Score
0.4 (1.1) (n = 15)
49.4 (26.3) (n = 16)
15.4 (10.9) (n = 16)
< 0.001††
< 0.001††
< 0.001**
Significant difference (p < 0.01) indicated by ** where parametric or †† where non-parametric tests used
Before surgery, compared to the control group, patients walked with significantly slower gait speed (p = 0.042). Differences in gait speed were nonsignificant after HTO (Table 3). Patients spent longer in the stance phase compared to the controls both pre- (p = 0.001) and post-HTO (p = 0.008).
Table 3
Temporal and kinematic parameters
Metrics
Control
Mean (SD)
Pre-HTO
Mean (SD)
Post-HTO
Mean (SD)
Control vs pre-HTO
p value
Control vs post-HTO
p value
Pre- vs post-HTO
p value
Gait speed (m/s)
1.2 (0.1)
1.0 (0.2)
1.1 (0.2)
0.042
ns
0.014*
Stance percentage (%)
60.1 (1.5)
62.5 (2.5)
61.9 (2.3)
0.001**
0.008**
ns
Foot progression angle ( + ) = toe out (°)
13.1 (4.0)
14.6 (6.8)
15.3 (7.3)
ns
ns
ns
Stance width (m)
0.15 (0.03)
0.16 (0.03)a
0.17 (0.03)
ns
ns
ns
Trunk sway ROM (°)
3.3 (1.2)
5.0 (2.8)
4.1 (2.3)
0.031
ns
0.007**
COP related to foot, 1st half stance
      
Medial ( + ) lateral (−) (% foot width)
 8.2 (3.3)
 7.6 (4.3)
 9.3 (3.5)
ns
ns
ns
Anterior ( + ) posterior (−) (% foot length)
22.4 (11.0)
27.2 (10.7)
24.6 (11.5)
ns
ns
ns
COP related to foot, 2nd half stance
      
Medial ( + ) lateral (−) (% foot width)
1.7 (4.2)
− 1.0 (4.1)
− 1.1 (3.3)
ns
0.034*
ns
Anterior ( + ) posterior (−) (% foot length)
119.5 (8.6)
114.3 (7.7)
112.3 (8.2)
ns
0.014*
ns
COP related to the knee origin, 1st half stance, mm
      
Medial ( + ) lateral (−)
− 0.7 (12.8)
18.7 (22.1)
− 1.1 (17.6)
0.003**
ns
< 0.001**
Anterior ( + ) posterior (−)
− 0.4 (21.7)
16.7 (23.5)
15.5 (19.6)
0.027*
0.025*
ns
COP related to the knee origin, 2nd half stance (mm)
      
Medial ( + ) lateral (−)
− 8.0 (15.2)
8.1 (22.8)
− 12.7 (21.3)
0.017*
ns
< 0.001**
Anterior ( + ) posterior (−)
− 31.6 (12.9)
− 27.3 (22.5)
− 37.8 (19.3)
ns
ns
0.012*
Knee frontal plane ROM (°)
10.2 (2.8)
11.6 (3.8)
13.0 (3.5)
ns
0.013*
ns
Knee sagittal plane ROM (°)
64.6 (4.1)
57.9 (6.3)
59.5 (5.6)
< 0.001††
0.003**
0.021*
Knee transverse plane ROM (°)
16 .0 (4.2)
16.3 (4.0)
17.2 (3.9)
ns
ns
ns
Frontal plane dynamic knee alignment ROM, HS-16% (°)
2.4 (1.0)
3.2 (1.7)
3.2 (2.1)
ns
ns
ns
Peak knee adduction (+) velocity, HS-16% (°/s)
43.6 (29.1)
57.1 (35.3)
43.4 (19.3)
ns
ns
ns
Peak knee abduction (−) velocity, HS-16% (°/s)
− 32.5 (27.6)
− 29.0 (31.5)
− 40.6 (28.8)
ns
ns
ns
Significant difference (p < 0.05) and (p < 0.01) indicated by * and ** where parametric or and †† where non-parametric tests used
ns indicates no significance
aData missing for one subject

Kinematics

Compared to the control group, patients adopted a significantly larger frontal plane trunk sway ROM (p = 0.031) before, but not after HTO (ns). Sagittal plane knee ROM was smaller than controls pre- (p < 0.001) and post-HTO (p = 0.003) (Table 3). The presence of varus or valgus thrust was not confirmed.

Knee loading

External knee moments are listed in Table 4 and displayed in Fig. 3. High EKAM measures were significantly reduced following HTO (p < 0.001) becoming nonsignificant compared to controls. Flexion moments remained consistently lower than controls both pre- (p = 0.005) and post-HTO (p = 0.016). An elevated internal rotation moment pre-HTO (p = 0.032) reduced significantly following HTO (p < 0.001).
Table 4
Knee moments
External knee moments, % BW.h
Controls
Mean (SD)
Pre-HTO
Mean (SD)
Post-HTO
Mean
(SD)
Control vs
pre-HTO
p value
Control vs post-HTO
p value
Pre- vs
post-HTO
p value
Adduction (+) moment
      
Maximum
2.18 (0.60)
3.15 (1.25)
2.11 (0.97)
0.005**
ns
< 0.001††
1st peak (1st half stance)
2.11 (0.60)
3.02 (1.25)
2.06 (0.96)
0.008**
ns
< 0.001††
2nd peak (2nd half stance)
1.44 (0.72)
2.46 (1.14)
1.49 (0.80)
0.003**
ns
< 0.001**
Midstance
1.21 (0.47)
2.07 (0.80)
1.23 (0.58)
< 0.001**
ns
< 0.001††
Flexion (+) moment peak
3.57 (1.41)
2.29 (1.16)
2.52 (1.05)
0.005**
0.016*
ns
Extension (−) moment peak
− 2.36 (0.79)
− 2.01 (0.76)
− 1.81 (0.78)
ns
0.042*
ns
Internal (+) rotation moment peak
0.76 (0.24)
1.05 (0.50)
0.68 (0.39)
0.032*
ns
< 0.001††
External (−) rotation moment peak
− 0.18 (0.10)
− 0.11 (0.09)
− 0.12 (0.09)
0.026
ns
ns
Significant difference (p < 0.01) indicated by ** where parametric or †† where non-parametric tests used
ns no significance
Table 5 displays knee angular impulses. KAAI during each portion of stance was statistically higher than controls pre-HTO (p ≤ 0.026) and restored to normal levels following HTO (p ≤ 0.002). A significant increase in the abduction angular impulse at the start of EKAM was also observed (p = 0.014). Post-HTO, the extension angular impulse reduced (p = 0.013) but remained within normal ranges and a high internal angular impulse (p = 0.002) reduced to normal levels (p < 0.001).
Table 5
Knee angular impulse
Knee angular impulse, %BW.h.s
Controls
Mean (SD)
Pre-HTO
Mean (SD)
Post-HTO
Mean (SD)
Control vs pre-HTO
p value
Control vs post-HTO
p value
Pre- vs post-HTO
p value
Adduction (+) angular impulse
      
 Stance
0.73 (0.28)
1.35 (0.54)
0.79 (0.39)
 < 0.001**
ns
 < 0.001**
 1st half stance
0.42 (0.14)
0.73 (0.28)
0.45 (0.20)
 < 0.001**
ns
 < 0.001**
 2nd half stance
0.31 (0.16)
0.61 (0.28)
0.35 (0.20)
 < 0.001††
ns
 < 0.001**
 0–16% stance
0.05 (0.02)
0.11 (0.07)
0.06 (0.03)
0.002††
ns
 < 0.001**
 17%–midstance
0.36 (0.11)
0.61 (0.22)
0.38 (0.17)
 < 0.001**
ns
 < 0.001**
 Midstance–83% stance
0.26 (0.13)
0.52 (0.23)
0.29 (0.16)
 < 0.001††
ns
 < 0.001**
 84–100% stance
0.04 (0.02)
0.07 (0.05)
0.04 (0.03)
0.026*
ns
0.002**
Abduction (−) angular impulse in stance
      
 1st half stance
− 0.02 (0.01)
− 0.01 (0.01)
− 0.01 (0.01)
0.002††
ns
0.014
 2nd half stance
− 0.02 (0.01)
− 0.01 (0.01)
− 0.01 (0.01)
0.036
ns
ns
 Flexion (+) angular impulse
0.64 (0.26)
0.53 (0.40)
0.57 (0.30)
ns
ns
ns
 Extension (−) angular impulse
− 0.30 (0.17)
− 0.37 (0.33)
− 0.25 (0.27)
ns
ns
0.013*
 Internal (+) angular impulse
0.19 (0.07)
0.32 (0.15)
0.18 (0.11)
0.002**
ns
 < 0.001**
 External (−) angular impulse
− 0.02 (0.01)
− 0.01 (0.01)
− 0.02 (0.02)
0.049
ns
ns
Significant difference (p < 0.05) and (p < 0.01) indicated by * and ** where parametric or and †† where non-parametric tests used
ns no significance

Work done

More work was generated (p = 0.004) and absorbed (p = 0.012) in the frontal plane, and absorbed (p < 0.001) in the sagittal plane pre-HTO compared to controls (Table 6). These were restored to normal levels following HTO (p < 0.01). HTO surgery resulted in transverse plane energy generation (p = 0.008) and absorption (p < 0.001) reducing to levels below that of the control group.
Table 6
Knee powers
Work done at the knee, mJ/kg
Controls
Mean (SD)
Pre-HTO
Mean (SD)
Post-HTO
Mean (SD)
Control vs pre-HTO
p value
Control vs post-HTO
p value
Pre- vs post-HTO
p value
Frontal plane positive work
24.4 (16.4)
50.4 (43.1)
27.0 (16.5)
0.004††
ns
0.009††
Frontal plane negative work
− 20.1 (12.9)
− 32.6 (17.6)
− 18.9 (11.5)
0.012
ns
 < 0.001**
Sagittal plane positive work
83.4 (36.7)
68.7 (37.0)
57.3 (26.3)
ns
0.018*
ns
Sagittal plane negative work
− 137.5 (49.6)
− 84.0 (32.6)
− 106.7 (44.4)
< 0.001**
ns
0.007**
Transverse plane positive work
8.1 (4.0)
8.7 (5.2)
5.5 (3.6)
ns
0.007††
0.008**
Transverse plane negative work
− 11.8 (4.1)
− 14.7 (9.4)
− 8.0 (3.8)
ns
0.005**
 < 0.001**
Significant difference (p < 0.05) and (p < 0.01) indicated by * and ** where parametric or and †† where non-parametric tests used
ns no significance

COP measured relative to the foot

Small differences in COP location relative to the control group were only significant post-HTO. However, there was no effect due to surgery as shown in Fig. 5 and Table 3.

COP measured relative to the knee

HTO moved the COP laterally, which was observed at the timing of EKAM peak 1 and EKAM peak 2 (p < 0.001) (Fig. 6). At EKAM peak 1, the COP remained in a more anterior position to the knee centre both pre- (p = 0.027) and post-HTO (p = 0.025) compared to controls, due to a combination of the forefoot COP and a lower knee flexion angle. At EKAM peak 2, the COP location shifted posteriorly post-HTO (p = 0.012), but remained nonsignificant compared to the controls.

Discussion

The most important finding of the present study was that HTO reduced frontal and transverse plane knee loading. This reduction is observed following surgery despite a significant increase in walking speed (p = 0.014), typically known to increase joint loading.
Overloading in the medial knee compartment pre-HTO, was reduced to normal levels by correcting the varus malalignment. In line with other studies [6, 26, 27], maximum EKAM, and the peaks in the first and second half of stance, and trough at 50% stance, were significantly reduced (p < 0.001) following HTO, by 33%, 32%, 39% and 41%, respectively.
The response of articular cartilage to mechanical load is not only affected by magnitude of load, but also the loading rate and duration [10]. For example, when high moments act over a longer duration, this may have important implications to cartilage degradation [4]. Pre-HTO, the KAAI calculated across the entirety of stance was significantly higher compared to levels found in the control group (p < 0.001); reducing by 41% (p < 0.001) to become ns compared to controls post-HTO. A reduction in KAAI as a result of HTO agrees with a previous study [6]. This reduction was consistent throughout the gait cycle. KAAI is known to be a better predictor of future OA progression than knee alignment alone, and it can be concluded that HTO is an effective method of reducing joint loading in-vivo, and thus provides effective mechanical protection for the degenerating medial compartment [4].
In the sagittal plane, the extension angular impulse decreased significantly after HTO (p = 0.013), though pre- and post-HTO values were nonsignificant compared to controls. In agreement with [26], varus malaligned patients with OA walk with reduced flexion moment peaks compared to controls (p = 0.005) and this is not corrected following HTO surgery (p = 0.016).
Early stance transverse plane loading was less than the control group pre-HTO, and this did not significantly increase post-HTO. In late stance, pre-HTO loading was higher than controls, indicated by higher peak internal rotation moment and internal angular impulse. Both decreased significantly (p < 0.001) becoming comparable to controls, in agreement with the study by [17].
The findings support the hypotheses that loading is altered in all three planes relative to controls pre-HTO and that HTO restores frontal plane loading to the level of control subjects, whilst also affecting load in the sagittal and transverse planes. Possible explanations for these findings are that improved alignment of the knee after surgery reduces out-of-plane knee loading during gait, hence improving the mechanical efficiency of gait. This is further supported by the normalisation of trunk lean (p = 0.007), previously identified as a gait modification strategy with high metabolic cost [9].
The finding of reduced knee joint loading following HTO corroborated with the knee joint power parameters. Work done at the knee was investigated to explore muscle performance in terms of energy generated and absorbed during joint motion in the stance phase. Positive (p = 0.004) and negative (p = 0.012) work done at the knee in the frontal plane was significantly higher pre-HTO compared to controls, as the pre-HTO subjects control the knee in greater varus alignment, returning to a normal level post-HTO (p < 0.01). In the transverse plane, pre-HTO energy absorption and generation were similar to control levels, decreasing significantly (p ≤ 0.008) as a result of surgery to a level significantly lower than controls (p ≤ 0.007). This may have important clinical implications. It is possible these differences reflect sub-optimal joint motion and/or muscle activity at the knee and normalisation of these features could further restore joint loading patterns and improve outcomes following HTO surgery.
Additional gait features known to influence EKAM magnitude were investigated, including foot progression angle, stance width and frontal plane trunk ROM. There was no significant difference in foot progression angle and stance width between patients and controls and this did not change significantly post-HTO. Preoperatively, patients used a significantly higher frontal plane trunk sway ROM (p = 0.031) than controls as a compensatory strategy to reduce medial compartment loading. This gait adaptation was not retained following HTO, in agreement with a previous study, and is representative of a more efficient gait pattern after surgery [6].
Motion of the knee during gait was altered in the sagittal plane for patients with knee OA and varus deformity, indicated by significantly smaller ROM compared to controls (p < 0.001). Although significant improvements were shown following HTO (p = 0.021), the hypothesis that all gait patterns would return to normal levels was disproven as sagittal plane ROM remained significantly lower than the control group (p = 0.003).
The presence of varus thrust represents a worsening of varus alignment during weight bearing. In contrast to the study by [14], the presence of varus thrust was not identified. A pairwise decrease in maximum, and an increase in minimum frontal plane velocity did approach significance, indicating there might be a shift from a varus towards a valgus thrust post-HTO. Due to large variations within the group, it is possible that some patients exhibited this gait feature as a load reducing compensatory mechanism, warranting further investigation. In addition, marker-based motion capture may not be a suitable measurement technique for detecting small changes in joint velocities due to errors recognised to be related to differentiation of marker displacement data.
The proposed biomechanical mechanism of HTO is to lateralise the COP relative to the knee joint centre (KJC) during gait, reducing frontal plane loading. The findings of this study confirm that the COP acts medial to the knee at the timing of both EKAM peaks pre-operatively and is shifted laterally (p < 0.001) with respect to the KJC following re-alignment surgery, thus reducing loading.
In the sagittal plane, the COP is positioned significantly more anterior to the knee at the first EKAM peak at weight acceptance for pre-HTO patients, and this feature is not corrected following surgery. This suggests the typical OA strategy of reducing knee extensor muscle demand and joint loading through reduced knee excursion during load acceptance [28] is still present post-HTO. This cohort appears to maintain a stiff-knee gait post-operatively which may result from weakness, instability, or retention of a pre-operative gait pattern.
Results from PROMs support the hypothesis, revealing clinically meaningful improvements to function and pain, despite scores not reaching the level of the control cohort. The reduction in pain is important to consider in more detail in future work as this may contribute to the improvement in mechanisms employed pre-HTO to reduce loading.
This work has demonstrated a number of clinically important findings. HTO is an effective operation at reducing both peak loading and knee angular impulse at the knee, in a way that would be expected to reduce structural disease progression in the future. Its effect is therefore not just pain relieving but is also likely to be protective against OA progression. After HTO, there are substantial biomechanical changes in all three planes which serve to make gait more efficient. However, gait does not fully return to normal after surgery, and there are persisting abnormalities which are important to understand as these may be addressed by targeted rehabilitation in the future.
A limitation to this work is the small cohort sizes which reflect the number of HTO surgeries performed in the UK. In addition, although providing comparisons with a control cohort is a study strength, participants are not matched for age, gender, or weight.

Conclusions

In this cohort, HTO surgery successfully reduced both frontal and transverse plane joint loading. The location of COP relative to the knee was lateralised and patients reported significant improvements in pain and function. Reduced gait speed and increased trunk sway were naturally corrected post-HTO, however patients continued to spend a longer time in stance, walked with reduced sagittal range of motion and experienced reduced sagittal plane knee loading following surgery. Work done at the knee in the transverse plane reduced below normal levels post-HTO. Additional physiotherapy or gait retraining may provide a means to correcting remaining movement abnormalities and further work is required to address the biomechanical differences that remain for patients when compared to healthy controls, and their implications.

Acknowledgements

Research support provided by NISCHR CRC contributing to data collection and recruitment.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Approval for this work was granted by the Wales Research Ethics Committee 3 (10/MRE09/28) and Cardiff and Vale University Health Board.

Funding

Grant funding received from Arthritis Research UK (18461), Versus Arthritis (formerly Arthritis Research UK) (20781) and EPSRC (EP/J010111/1).
Written informed consent was obtained from each participant prior to data collection.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Orthopädie & Unfallchirurgie

Kombi-Abonnement

Mit e.Med Orthopädie & Unfallchirurgie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Andriacchi TP (1994) Dynamics of knee malalignment. Orthop Clin North Am 25:395–403PubMed Andriacchi TP (1994) Dynamics of knee malalignment. Orthop Clin North Am 25:395–403PubMed
2.
Zurück zum Zitat Baliunas AJ, Hurwitz DE, Ryals AB, Karrar A, Case JP, Block JA, Andriacchi TP (2002) Increased knee joint loads during walking are present in subjects with knee osteoarthritis. Osteoarthr Cartil 10:573–579CrossRef Baliunas AJ, Hurwitz DE, Ryals AB, Karrar A, Case JP, Block JA, Andriacchi TP (2002) Increased knee joint loads during walking are present in subjects with knee osteoarthritis. Osteoarthr Cartil 10:573–579CrossRef
3.
Zurück zum Zitat Bell AL, Brand RA, Pedersen DR (1989) Prediction of hip joint centre location from external landmarks. Hum Mov Sci 8:3–16CrossRef Bell AL, Brand RA, Pedersen DR (1989) Prediction of hip joint centre location from external landmarks. Hum Mov Sci 8:3–16CrossRef
4.
Zurück zum Zitat Bennell KL, Bowles K-A, Wang Y, Cicuttini F, Davies-Tuck M, Hinman RS (2011) Higher dynamic medial knee load predicts greater cartilage loss over 12 months in medial knee osteoarthritis. Ann Rheum Dis 70:1770–1774CrossRef Bennell KL, Bowles K-A, Wang Y, Cicuttini F, Davies-Tuck M, Hinman RS (2011) Higher dynamic medial knee load predicts greater cartilage loss over 12 months in medial knee osteoarthritis. Ann Rheum Dis 70:1770–1774CrossRef
5.
Zurück zum Zitat Bhatnagar T, Jenkyn TR (2010) Internal kinetic changes in the knee due to high tibial osteotomy are well-correlated with change in external adduction moment: An osteoarthritic knee model. J Biomech 43:2261–2266CrossRef Bhatnagar T, Jenkyn TR (2010) Internal kinetic changes in the knee due to high tibial osteotomy are well-correlated with change in external adduction moment: An osteoarthritic knee model. J Biomech 43:2261–2266CrossRef
6.
Zurück zum Zitat Birmingham TB, Giffin JR, Chesworth BM, Bryant DM, Litchfield RB, Willits K, Jenkyn TR, Fowler PJ (2009) Medial opening wedge high tibial osteotomy: A prospective cohort study of gait, radiographic, and patient-reported outcomes. Arthritis Rheum 61:648–657CrossRef Birmingham TB, Giffin JR, Chesworth BM, Bryant DM, Litchfield RB, Willits K, Jenkyn TR, Fowler PJ (2009) Medial opening wedge high tibial osteotomy: A prospective cohort study of gait, radiographic, and patient-reported outcomes. Arthritis Rheum 61:648–657CrossRef
7.
Zurück zum Zitat Briem K, Ramsey DK, Newcomb W, Rudolph KS, Snyder-Mackler L (2007) Effects of the amount of valgus correction for medial compartment knee osteoarthritis on clinical outcome, knee kinetics and muscle co-contraction after opening wedge high tibial osteotomy. J Orthop Res 25:311–318CrossRef Briem K, Ramsey DK, Newcomb W, Rudolph KS, Snyder-Mackler L (2007) Effects of the amount of valgus correction for medial compartment knee osteoarthritis on clinical outcome, knee kinetics and muscle co-contraction after opening wedge high tibial osteotomy. J Orthop Res 25:311–318CrossRef
8.
Zurück zum Zitat Brinkman J-M, Lobenhoffer P, Agneskirchner JD, Staubli AE, Wymenga AB, van Heerwaarden RJ (2008) Osteotomies around the knee: patient selection, stability of fixation and bone healing in high tibial osteotomies. J Bone Joint Surg Br 90:1548–1557CrossRef Brinkman J-M, Lobenhoffer P, Agneskirchner JD, Staubli AE, Wymenga AB, van Heerwaarden RJ (2008) Osteotomies around the knee: patient selection, stability of fixation and bone healing in high tibial osteotomies. J Bone Joint Surg Br 90:1548–1557CrossRef
9.
Zurück zum Zitat Caldwell LK, Laubach LL, Barrios JA (2013) Effect of specific gait modifications on medial knee loading, metabolic cost and perception of task difficulty. Clin Biomech Elsevier 28:649–654CrossRef Caldwell LK, Laubach LL, Barrios JA (2013) Effect of specific gait modifications on medial knee loading, metabolic cost and perception of task difficulty. Clin Biomech Elsevier 28:649–654CrossRef
10.
Zurück zum Zitat Chen C-T, Burton-Wurster N, Lust G, Bank RA, Tekoppele JM (1999) Compositional and metabolic changes in damaged cartilage are peak-stress, stress-rate, and loading-duration dependent. J Orthop Res 17:870–879CrossRef Chen C-T, Burton-Wurster N, Lust G, Bank RA, Tekoppele JM (1999) Compositional and metabolic changes in damaged cartilage are peak-stress, stress-rate, and loading-duration dependent. J Orthop Res 17:870–879CrossRef
11.
Zurück zum Zitat Cole GK, Nigg BM, Ronsky JL, Yeadon MR (1993) Application of the joint coordinate system to three-dimensional joint attitude and movement representation: a standardization proposal. J Biomech Eng 115:344CrossRef Cole GK, Nigg BM, Ronsky JL, Yeadon MR (1993) Application of the joint coordinate system to three-dimensional joint attitude and movement representation: a standardization proposal. J Biomech Eng 115:344CrossRef
12.
Zurück zum Zitat Dai Y, Bischoff JE (2013) Comprehensive assessment of tibial plateau morphology in total knee arthroplasty: Influence of shape and size on anthropometric variability. J Orthop Res 31:1643–1652CrossRef Dai Y, Bischoff JE (2013) Comprehensive assessment of tibial plateau morphology in total knee arthroplasty: Influence of shape and size on anthropometric variability. J Orthop Res 31:1643–1652CrossRef
13.
Zurück zum Zitat Dawson J, Fitzpatrick R, Murray D, Carr A (1998) Questionnaire on the perceptions of patients about total knee replacement. J Bone Joint Surg Br 80:63–69CrossRef Dawson J, Fitzpatrick R, Murray D, Carr A (1998) Questionnaire on the perceptions of patients about total knee replacement. J Bone Joint Surg Br 80:63–69CrossRef
14.
Zurück zum Zitat Deie M, Hoso T, Shimada N, Iwaki D, Nakamae A, Adachi N, Ochi M (2014) Differences between opening versus closing high tibial osteotomy on clinical outcomes and gait analysis. Knee 21:1046–1051CrossRef Deie M, Hoso T, Shimada N, Iwaki D, Nakamae A, Adachi N, Ochi M (2014) Differences between opening versus closing high tibial osteotomy on clinical outcomes and gait analysis. Knee 21:1046–1051CrossRef
15.
Zurück zum Zitat Elson DW, Petheram TG, Dawson MJ (2015) High reliability in digital planning of medial opening wedge high tibial osteotomy, using Miniaci’s method. Knee Surgery, Sport Traumatol Arthrosc 23:2041–2048CrossRef Elson DW, Petheram TG, Dawson MJ (2015) High reliability in digital planning of medial opening wedge high tibial osteotomy, using Miniaci’s method. Knee Surgery, Sport Traumatol Arthrosc 23:2041–2048CrossRef
16.
Zurück zum Zitat Golovakha ML, Orljanski W, Benedetto K-P, Panchenko S, Büchler P, Henle P, Aghayev E (2014) Comparison of theoretical fixation stability of three devices employed in medial opening wedge high tibial osteotomy: a finite element analysis. BMC Musculoskelet Disord 15:230CrossRef Golovakha ML, Orljanski W, Benedetto K-P, Panchenko S, Büchler P, Henle P, Aghayev E (2014) Comparison of theoretical fixation stability of three devices employed in medial opening wedge high tibial osteotomy: a finite element analysis. BMC Musculoskelet Disord 15:230CrossRef
17.
Zurück zum Zitat Goshima K, Sawaguchi T, Sakagoshi D, Shigemoto K, Hatsuchi Y, Akahane M (2017) Age does not affect the clinical and radiological outcomes after open-wedge high tibial osteotomy. Knee Surgery, Sport Traumatol Arthrosc 25:918–923CrossRef Goshima K, Sawaguchi T, Sakagoshi D, Shigemoto K, Hatsuchi Y, Akahane M (2017) Age does not affect the clinical and radiological outcomes after open-wedge high tibial osteotomy. Knee Surgery, Sport Traumatol Arthrosc 25:918–923CrossRef
18.
Zurück zum Zitat Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105:136–144CrossRef Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105:136–144CrossRef
19.
Zurück zum Zitat Hanavan EP (1964) A mathematical model of the human body. Aerospace Med. Res. Lab. Technical Report. Wright Patterson Air Force Base, Ohio 64:102 Hanavan EP (1964) A mathematical model of the human body. Aerospace Med. Res. Lab. Technical Report. Wright Patterson Air Force Base, Ohio 64:102
20.
Zurück zum Zitat Hernigou P, Medevielle D, Debeyre J, Goutallier D (1987) Proximal tibial osteotomy for osteoarthritis with varus deformity. A ten to thirteen-year follow-up study. J Bone Joint Surg Am 69:332–354CrossRef Hernigou P, Medevielle D, Debeyre J, Goutallier D (1987) Proximal tibial osteotomy for osteoarthritis with varus deformity. A ten to thirteen-year follow-up study. J Bone Joint Surg Am 69:332–354CrossRef
21.
Zurück zum Zitat Irrgang JJ, Snyder-Mackler L, Wainner RS, Fu FH, Harner CD (1998) Development of a patient-reported measure of function of the knee. J Bone Joint Surg Am 80:1132–1145CrossRef Irrgang JJ, Snyder-Mackler L, Wainner RS, Fu FH, Harner CD (1998) Development of a patient-reported measure of function of the knee. J Bone Joint Surg Am 80:1132–1145CrossRef
22.
Zurück zum Zitat Jackson JP, Waugh W (1961) Tibial osteotomy for osteoarthritis of the knee. J Bone Joint Surg Br Bone Joint J 43-B:746–751CrossRef Jackson JP, Waugh W (1961) Tibial osteotomy for osteoarthritis of the knee. J Bone Joint Surg Br Bone Joint J 43-B:746–751CrossRef
23.
Zurück zum Zitat Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502CrossRef Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502CrossRef
24.
Zurück zum Zitat Kutzner I, Trepczynski A, Heller MO, Bergmann G (2013) Knee adduction moment and medial contact force—facts about their correlation during gait. PLoS ONE 8:e81036CrossRef Kutzner I, Trepczynski A, Heller MO, Bergmann G (2013) Knee adduction moment and medial contact force—facts about their correlation during gait. PLoS ONE 8:e81036CrossRef
25.
Zurück zum Zitat Lee SH, Lee O-S, Teo SH, Lee YS (2017) Change in gait after high tibial osteotomy: A systematic review and meta-analysis. Gait Posture 57:57–68CrossRef Lee SH, Lee O-S, Teo SH, Lee YS (2017) Change in gait after high tibial osteotomy: A systematic review and meta-analysis. Gait Posture 57:57–68CrossRef
26.
Zurück zum Zitat Lind M, McClelland J, Wittwer JE, Whitehead TS, Feller JA, Webster KE (2013) Gait analysis of walking before and after medial opening wedge high tibial osteotomy. Knee Surgery, Sport Traumatol Arthrosc 21:74–81CrossRef Lind M, McClelland J, Wittwer JE, Whitehead TS, Feller JA, Webster KE (2013) Gait analysis of walking before and after medial opening wedge high tibial osteotomy. Knee Surgery, Sport Traumatol Arthrosc 21:74–81CrossRef
27.
Zurück zum Zitat Marriott K, Birmingham TB, Kean C, Hui C, Jenkyn T, Giffin J (2015) Five-Year changes in gait biomechanics after concomitant high tibial osteotomy and ACL reconstruction in patients with medial knee osteoarthritis. Am J Sport Med 43:2277–2285CrossRef Marriott K, Birmingham TB, Kean C, Hui C, Jenkyn T, Giffin J (2015) Five-Year changes in gait biomechanics after concomitant high tibial osteotomy and ACL reconstruction in patients with medial knee osteoarthritis. Am J Sport Med 43:2277–2285CrossRef
28.
Zurück zum Zitat Mills K, Hunt MA, Ferber R (2013) Biomechanical deviations during level walking associated with knee osteoarthritis: a systematic review and meta-analysis. Arthritis Care Res 65:1642–1665 Mills K, Hunt MA, Ferber R (2013) Biomechanical deviations during level walking associated with knee osteoarthritis: a systematic review and meta-analysis. Arthritis Care Res 65:1642–1665
29.
Zurück zum Zitat Moisio KC, Sumner DR, Shott S, Hurwitz DE (2003) Normalization of joint moments during gait: a comparison of two techniques. J Biomech 36:599–603CrossRef Moisio KC, Sumner DR, Shott S, Hurwitz DE (2003) Normalization of joint moments during gait: a comparison of two techniques. J Biomech 36:599–603CrossRef
30.
Zurück zum Zitat Mündermann A, Dyrby CO, Andriacchi TP (2005) Secondary gait changes in patients with medial compartment knee osteoarthritis: Increased load at the ankle, knee, and hip during walking. Arthritis Rheum 52:2835–2844CrossRef Mündermann A, Dyrby CO, Andriacchi TP (2005) Secondary gait changes in patients with medial compartment knee osteoarthritis: Increased load at the ankle, knee, and hip during walking. Arthritis Rheum 52:2835–2844CrossRef
31.
Zurück zum Zitat Noyes FR, Barber-Westin SD, Hewett TE (2000) High tibial osteotomy and ligament reconstruction for varus angulated anterior cruciate ligament-deficient knees. Am J Sports Med 28:282–296CrossRef Noyes FR, Barber-Westin SD, Hewett TE (2000) High tibial osteotomy and ligament reconstruction for varus angulated anterior cruciate ligament-deficient knees. Am J Sports Med 28:282–296CrossRef
32.
Zurück zum Zitat Prodromos CC, Andriacchi TP, Galante JO (1985) A relationship between gait and clinical changes following high tibial osteotomy. J Bone Joint Surg Am 67:1188–1194CrossRef Prodromos CC, Andriacchi TP, Galante JO (1985) A relationship between gait and clinical changes following high tibial osteotomy. J Bone Joint Surg Am 67:1188–1194CrossRef
33.
Zurück zum Zitat Ramsey DK, Snyder-Mackler L, Lewek M, Newcomb W, Rudolph KS, Statistical analysis Ramsey R (2007) Effect of anatomic realignment on muscle function during gait in patients with medial compartment knee osteoarthritis. Arthritis Rheum 57:389–397CrossRef Ramsey DK, Snyder-Mackler L, Lewek M, Newcomb W, Rudolph KS, Statistical analysis Ramsey R (2007) Effect of anatomic realignment on muscle function during gait in patients with medial compartment knee osteoarthritis. Arthritis Rheum 57:389–397CrossRef
34.
Zurück zum Zitat Sharma L, Song J, Felson DT, Cahue S, Shamiyeh E, Dunlop DD (2001) The role of knee alignment in disease progression and functional decline in knee osteoarthritis. JAMA 286:188–195CrossRef Sharma L, Song J, Felson DT, Cahue S, Shamiyeh E, Dunlop DD (2001) The role of knee alignment in disease progression and functional decline in knee osteoarthritis. JAMA 286:188–195CrossRef
35.
Zurück zum Zitat Shelburne KB, Torry MR, Pandy MG (2006) Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J Orthop Res 24:1983–1990CrossRef Shelburne KB, Torry MR, Pandy MG (2006) Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J Orthop Res 24:1983–1990CrossRef
36.
Zurück zum Zitat Teichtahl AJ, Cicuttini FM, Janakiramanan N, Davis SR, Wluka AE (2006) Static knee alignment and its association with radiographic knee osteoarthritis. Osteoarthr Cartil 14:958–962CrossRef Teichtahl AJ, Cicuttini FM, Janakiramanan N, Davis SR, Wluka AE (2006) Static knee alignment and its association with radiographic knee osteoarthritis. Osteoarthr Cartil 14:958–962CrossRef
37.
Zurück zum Zitat Teichtahl AJ, Davies-Tuck ML, Wluka AE, Jones G, Cicuttini FM (2009) Change in knee angle influences the rate of medial tibial cartilage volume loss in knee osteoarthritis. Osteoarthr Cartil 17:8–11CrossRef Teichtahl AJ, Davies-Tuck ML, Wluka AE, Jones G, Cicuttini FM (2009) Change in knee angle influences the rate of medial tibial cartilage volume loss in knee osteoarthritis. Osteoarthr Cartil 17:8–11CrossRef
38.
Zurück zum Zitat Thorp LE, Sumner DR, Block JA, Moisio KC, Shott S, Wimmer MA (2006) Knee joint loading differs in individuals with mild compared with moderate medial knee osteoarthritis. Arthritis Rheum 54:3842–3849CrossRef Thorp LE, Sumner DR, Block JA, Moisio KC, Shott S, Wimmer MA (2006) Knee joint loading differs in individuals with mild compared with moderate medial knee osteoarthritis. Arthritis Rheum 54:3842–3849CrossRef
39.
Zurück zum Zitat Wang JW, Kuo KN, Andriacchi TP, Galante JO (1990) The influence of walking mechanics and time on the results of proximal tibial osteotomy. J Bone Joint Surg Am 72:905–909CrossRef Wang JW, Kuo KN, Andriacchi TP, Galante JO (1990) The influence of walking mechanics and time on the results of proximal tibial osteotomy. J Bone Joint Surg Am 72:905–909CrossRef
40.
Zurück zum Zitat Zhao D, Banks SA, Mitchell KH, D’Lima DD, Colwell CW, Fregly BJ (2007) Correlation between the knee adduction torque and medial contact force for a variety of gait patterns. J Orthop Res 25:789–797CrossRef Zhao D, Banks SA, Mitchell KH, D’Lima DD, Colwell CW, Fregly BJ (2007) Correlation between the knee adduction torque and medial contact force for a variety of gait patterns. J Orthop Res 25:789–797CrossRef
Metadaten
Titel
High tibial osteotomy results in improved frontal plane knee moments, gait patterns and patient-reported outcomes
verfasst von
Gemma M. Whatling
Paul R. Biggs
David W. Elson
Andrew Metcalfe
Chris Wilson
Cathy Holt
Publikationsdatum
05.08.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Knee Surgery, Sports Traumatology, Arthroscopy / Ausgabe 9/2020
Print ISSN: 0942-2056
Elektronische ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-019-05644-7

Weitere Artikel der Ausgabe 9/2020

Knee Surgery, Sports Traumatology, Arthroscopy 9/2020 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Arthroskopie kann Knieprothese nicht hinauszögern

25.04.2024 Gonarthrose Nachrichten

Ein arthroskopischer Eingriff bei Kniearthrose macht im Hinblick darauf, ob und wann ein Gelenkersatz fällig wird, offenbar keinen Unterschied.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.