Skip to main content
main-content

01.12.2014 | Education & Training | Ausgabe 12/2014

Journal of Medical Systems 12/2014

HMM for Classification of Parkinson’s Disease Based on the Raw Gait Data

Zeitschrift:
Journal of Medical Systems > Ausgabe 12/2014
Autoren:
Abed Khorasani, Mohammad Reza Daliri
Wichtige Hinweise
This article is part of the Topical Collection on Education & Training

Abstract

The central nervous system (CNS) plays an important role in regulation of human gait. Parkinson’s disease (PD) is a common neurodegenerative disease that may cause neurophysiologic change in the CNS and as a result change the gait cycle duration (stride interval). This article used the Hidden Markov Model (HMM) with Gaussian Mixtures to separate the patients with PD from healthy subjects. The results showed that the performance of the HMM classifier in classifying the gait data corresponding to 16 healthy and 15 PD subjects is comparable to the results obtained from the least squares support vector machine (LS-SVM) classifier. In this study, the leave-one-out cross-validation method was used to evaluate the performance of each classifier. The HMM method could effectively separate the gait data in terms of stride interval obtained from healthy subjects and PD patients with an accuracy rate of 90.3 % . All in all, the results showed that the proposed method can be used for distinguishing PD patients from healthy subjects based on the gait data classification.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 12/2014

Journal of Medical Systems 12/2014 Zur Ausgabe