Skip to main content
Erschienen in: neurogenetics 3-4/2013

01.11.2013 | Original Article

Homozygous truncating mutation of the KBP gene, encoding a KIF1B-binding protein, in a familial case of fetal polymicrogyria

verfasst von: Stéphanie Valence, Karine Poirier, Nicolas Lebrun, Yoann Saillour, Pascale Sonigo, Bettina Bessières, Tania Attié-Bitach, Alexandra Benachi, Cécile Masson, Ferechté Encha-Razavi, Jamel Chelly, Nadia Bahi-Buisson

Erschienen in: Neurogenetics | Ausgabe 3-4/2013

Einloggen, um Zugang zu erhalten

Abstract

Polymicrogyria (PMG) is a clinically heterogeneous malformation of cortical development, characterized by a loss of the normal gyral pattern that is replaced by many small and infolded gyri separated by shallow sulci that are partly fused in their depths. Causes of PMG are heterogeneous and include acquired and genetic causes. There are more than 100 syndromes possibly associated with PMG but mutations in specific genes such as SRPX2, GPR56, TUBB2B, TUBB3, NHEJ1, TUBA1A, TUBA8, and WDR62 have been reported only in a minority of patients.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat McBride MC, Kemper TL (1982) Pathogenesis of four-layered microgyric cortex in man. Acta Neuropathol 57(2–3):93–98PubMedCrossRef McBride MC, Kemper TL (1982) Pathogenesis of four-layered microgyric cortex in man. Acta Neuropathol 57(2–3):93–98PubMedCrossRef
2.
Zurück zum Zitat Kuzniecky R, Andermann F, Guerrini R (1993) Congenital bilateral perisylvian syndrome: study of 31 patients. The CBPS Multicenter Collaborative Study. Lancet 341(8845):608–612PubMedCrossRef Kuzniecky R, Andermann F, Guerrini R (1993) Congenital bilateral perisylvian syndrome: study of 31 patients. The CBPS Multicenter Collaborative Study. Lancet 341(8845):608–612PubMedCrossRef
3.
Zurück zum Zitat Leventer RJ, Jansen A, Pilz DT, Stoodley N, Marini C, Dubeau F, Malone J, Mitchell LA, Mandelstam S, Scheffer IE, Berkovic SF, Andermann F, Andermann E, Guerrini R, Dobyns WB (2010) Clinical and imaging heterogeneity of polymicrogyria: a study of 328 patients. Brain 133(Pt 5):1415–1427PubMedCrossRef Leventer RJ, Jansen A, Pilz DT, Stoodley N, Marini C, Dubeau F, Malone J, Mitchell LA, Mandelstam S, Scheffer IE, Berkovic SF, Andermann F, Andermann E, Guerrini R, Dobyns WB (2010) Clinical and imaging heterogeneity of polymicrogyria: a study of 328 patients. Brain 133(Pt 5):1415–1427PubMedCrossRef
5.
Zurück zum Zitat Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB (2012) A developmental and genetic classification for malformations of cortical development: update 2012. Brain 135(Pt 5):1348–1369. doi:10.1093/brain/aws019 PubMedCrossRef Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB (2012) A developmental and genetic classification for malformations of cortical development: update 2012. Brain 135(Pt 5):1348–1369. doi:10.​1093/​brain/​aws019 PubMedCrossRef
6.
Zurück zum Zitat Levine DN, Fisher MA, Caviness VS Jr (1974) Porencephaly with microgyria: a pathologic study. Acta Neuropathol 29(2):99–113PubMedCrossRef Levine DN, Fisher MA, Caviness VS Jr (1974) Porencephaly with microgyria: a pathologic study. Acta Neuropathol 29(2):99–113PubMedCrossRef
7.
Zurück zum Zitat Crome L, France NE (1959) Microgyria and cytomegalic inclusion disease in infancy. J Clin Pathol 12:427–434PubMedCrossRef Crome L, France NE (1959) Microgyria and cytomegalic inclusion disease in infancy. J Clin Pathol 12:427–434PubMedCrossRef
8.
Zurück zum Zitat Jansen A, Andermann E (2005) Genetics of the polymicrogyria syndromes. J Med Genet 42(5):369–378PubMedCrossRef Jansen A, Andermann E (2005) Genetics of the polymicrogyria syndromes. J Med Genet 42(5):369–378PubMedCrossRef
9.
Zurück zum Zitat Dobyns WB, Mirzaa G, Christian SL, Petras K, Roseberry J, Clark GD, Curry CJ, McDonald-McGinn D, Medne L, Zackai E, Parsons J, Zand DJ, Hisama FM, Walsh CA, Leventer RJ, Martin CL, Gajecka M, Shaffer LG (2008) Consistent chromosome abnormalities identify novel polymicrogyria loci in 1p36.3, 2p16.1-p23.1, 4q21.21-q22.1, 6q26-q27, and 21q2. Am J Med Genet A 146A(13):1637–1654PubMedCrossRef Dobyns WB, Mirzaa G, Christian SL, Petras K, Roseberry J, Clark GD, Curry CJ, McDonald-McGinn D, Medne L, Zackai E, Parsons J, Zand DJ, Hisama FM, Walsh CA, Leventer RJ, Martin CL, Gajecka M, Shaffer LG (2008) Consistent chromosome abnormalities identify novel polymicrogyria loci in 1p36.3, 2p16.1-p23.1, 4q21.21-q22.1, 6q26-q27, and 21q2. Am J Med Genet A 146A(13):1637–1654PubMedCrossRef
10.
Zurück zum Zitat Quelin C, Saillour Y, Poirier K, Roubertie A, Boddaert N, Desguerre I, Letourneur F, Beldjord C, Chelly J, Bahi-Buisson N (2012) Focal polymicrogyria are associated with submicroscopic chromosomal rearrangements detected by CGH microarray analysis. Eur J Med Genet 55(10):527–530. doi:10.1016/j.ejmg.2012.06.004 PubMedCrossRef Quelin C, Saillour Y, Poirier K, Roubertie A, Boddaert N, Desguerre I, Letourneur F, Beldjord C, Chelly J, Bahi-Buisson N (2012) Focal polymicrogyria are associated with submicroscopic chromosomal rearrangements detected by CGH microarray analysis. Eur J Med Genet 55(10):527–530. doi:10.​1016/​j.​ejmg.​2012.​06.​004 PubMedCrossRef
11.
Zurück zum Zitat Roll P, Rudolf G, Pereira S, Royer B, Scheffer IE, Massacrier A, Valenti MP, Roeckel-Trevisiol N, Jamali S, Beclin C, Seegmuller C, Metz-Lutz MN, Lemainque A, Delepine M, Caloustian C, de Saint MA, Bruneau N, Depetris D, Mattei MG, Flori E, Robaglia-Schlupp A, Levy N, Neubauer BA, Ravid R, Marescaux C, Berkovic SF, Hirsch E, Lathrop M, Cau P, Szepetowski P (2006) SRPX2 mutations in disorders of language cortex and cognition. Hum Mol Genet 15(7):1195–1207PubMedCrossRef Roll P, Rudolf G, Pereira S, Royer B, Scheffer IE, Massacrier A, Valenti MP, Roeckel-Trevisiol N, Jamali S, Beclin C, Seegmuller C, Metz-Lutz MN, Lemainque A, Delepine M, Caloustian C, de Saint MA, Bruneau N, Depetris D, Mattei MG, Flori E, Robaglia-Schlupp A, Levy N, Neubauer BA, Ravid R, Marescaux C, Berkovic SF, Hirsch E, Lathrop M, Cau P, Szepetowski P (2006) SRPX2 mutations in disorders of language cortex and cognition. Hum Mol Genet 15(7):1195–1207PubMedCrossRef
12.
Zurück zum Zitat Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L, Straussberg R, Dobyns WB, Qasrawi B, Winter RM, Innes AM, Voit T, Ross ME, Michaud JL, Descarie JC, Barkovich AJ, Walsh CA (2004) G protein-coupled receptor-dependent development of human frontal cortex. Science (New York NY) 303(5666):2033–2036CrossRef Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L, Straussberg R, Dobyns WB, Qasrawi B, Winter RM, Innes AM, Voit T, Ross ME, Michaud JL, Descarie JC, Barkovich AJ, Walsh CA (2004) G protein-coupled receptor-dependent development of human frontal cortex. Science (New York NY) 303(5666):2033–2036CrossRef
15.
Zurück zum Zitat Cantagrel V, Lossi AM, Lisgo S, Missirian C, Borges A, Philip N, Fernandez C, Cardoso C, Figarella-Branger D, Moncla A, Lindsay S, Dobyns WB, Villard L (2007) Truncation of NHEJ1 in a patient with polymicrogyria. Hum Mutat 28(4):356–364. doi:10.1002/humu.20450 PubMedCrossRef Cantagrel V, Lossi AM, Lisgo S, Missirian C, Borges A, Philip N, Fernandez C, Cardoso C, Figarella-Branger D, Moncla A, Lindsay S, Dobyns WB, Villard L (2007) Truncation of NHEJ1 in a patient with polymicrogyria. Hum Mutat 28(4):356–364. doi:10.​1002/​humu.​20450 PubMedCrossRef
16.
Zurück zum Zitat Jansen AC, Oostra A, Desprechins B, De Vlaeminck Y, Verhelst H, Regal L, Verloo P, Bockaert N, Keymolen K, Seneca S, De Meirleir L, Lissens W (2011) TUBA1A mutations: from isolated lissencephaly to familial polymicrogyria. Neurology 76(11):988–992. doi:10.1212/WNL.0b013e31821043f5 PubMedCrossRef Jansen AC, Oostra A, Desprechins B, De Vlaeminck Y, Verhelst H, Regal L, Verloo P, Bockaert N, Keymolen K, Seneca S, De Meirleir L, Lissens W (2011) TUBA1A mutations: from isolated lissencephaly to familial polymicrogyria. Neurology 76(11):988–992. doi:10.​1212/​WNL.​0b013e31821043f5​ PubMedCrossRef
17.
Zurück zum Zitat Poirier K, Saillour Y, Fourniol F, Francis F, Souville I, Valence S, Desguerre I, Marie Lepage J, Boddaert N, Line Jacquemont M, Beldjord C, Chelly J, Bahi-Buisson N (2012) Expanding the spectrum of TUBA1A-related cortical dysgenesis to polymicrogyria. Eur J Hum Genet. doi:10.1038/ejhg.2012.195 PubMed Poirier K, Saillour Y, Fourniol F, Francis F, Souville I, Valence S, Desguerre I, Marie Lepage J, Boddaert N, Line Jacquemont M, Beldjord C, Chelly J, Bahi-Buisson N (2012) Expanding the spectrum of TUBA1A-related cortical dysgenesis to polymicrogyria. Eur J Hum Genet. doi:10.​1038/​ejhg.​2012.​195 PubMed
18.
Zurück zum Zitat Bilguvar K, Ozturk AK, Louvi A, Kwan KY, Choi M, Tatli B, Yalnizoglu D, Tuysuz B, Caglayan AO, Gokben S, Kaymakcalan H, Barak T, Bakircioglu M, Yasuno K, Ho W, Sanders S, Zhu Y, Yilmaz S, Dincer A, Johnson MH, Bronen RA, Kocer N, Per H, Mane S, Pamir MN, Yalcinkaya C, Kumandas S, Topcu M, Ozmen M, Sestan N, Lifton RP, State MW, Gunel M (2010) Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 467(7312):207–210. doi:10.1038/nature09327 PubMedCrossRef Bilguvar K, Ozturk AK, Louvi A, Kwan KY, Choi M, Tatli B, Yalnizoglu D, Tuysuz B, Caglayan AO, Gokben S, Kaymakcalan H, Barak T, Bakircioglu M, Yasuno K, Ho W, Sanders S, Zhu Y, Yilmaz S, Dincer A, Johnson MH, Bronen RA, Kocer N, Per H, Mane S, Pamir MN, Yalcinkaya C, Kumandas S, Topcu M, Ozmen M, Sestan N, Lifton RP, State MW, Gunel M (2010) Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 467(7312):207–210. doi:10.​1038/​nature09327 PubMedCrossRef
19.
Zurück zum Zitat Kheradmand Kia S, Verbeek E, Engelen E, Schot R, Poot RA, de Coo IF, Lequin MH, Poulton CJ, Pourfarzad F, Grosveld FG, Brehm A, de Wit MC, Oegema R, Dobyns WB, Verheijen FW, Mancini GM (2012) RTTN mutations link primary cilia function to organization of the human cerebral cortex. Am J Hum Genet 91(3):533–540. doi:10.1016/j.ajhg.2012.07.008 PubMedCrossRef Kheradmand Kia S, Verbeek E, Engelen E, Schot R, Poot RA, de Coo IF, Lequin MH, Poulton CJ, Pourfarzad F, Grosveld FG, Brehm A, de Wit MC, Oegema R, Dobyns WB, Verheijen FW, Mancini GM (2012) RTTN mutations link primary cilia function to organization of the human cerebral cortex. Am J Hum Genet 91(3):533–540. doi:10.​1016/​j.​ajhg.​2012.​07.​008 PubMedCrossRef
20.
Zurück zum Zitat Barak T, Kwan KY, Louvi A, Demirbilek V, Saygi S, Tuysuz B, Choi M, Boyaci H, Doerschner K, Zhu Y, Kaymakcalan H, Yilmaz S, Bakircioglu M, Caglayan AO, Ozturk AK, Yasuno K, Brunken WJ, Atalar E, Yalcinkaya C, Dincer A, Bronen RA, Mane S, Ozcelik T, Lifton RP, Sestan N, Bilguvar K, Gunel M (2011) Recessive LAMC3 mutations cause malformations of occipital cortical development. Nature Genet 43(6):590–594. doi:10.1038/ng.836 PubMedCrossRef Barak T, Kwan KY, Louvi A, Demirbilek V, Saygi S, Tuysuz B, Choi M, Boyaci H, Doerschner K, Zhu Y, Kaymakcalan H, Yilmaz S, Bakircioglu M, Caglayan AO, Ozturk AK, Yasuno K, Brunken WJ, Atalar E, Yalcinkaya C, Dincer A, Bronen RA, Mane S, Ozcelik T, Lifton RP, Sestan N, Bilguvar K, Gunel M (2011) Recessive LAMC3 mutations cause malformations of occipital cortical development. Nature Genet 43(6):590–594. doi:10.​1038/​ng.​836 PubMedCrossRef
21.
Zurück zum Zitat Hurst JA, Markiewicz M, Kumar D, Brett EM (1988) Unknown syndrome: Hirschsprung's disease, microcephaly, and iris coloboma: a new syndrome of defective neuronal migration. J Med Genet 25(7):494–497PubMedCrossRef Hurst JA, Markiewicz M, Kumar D, Brett EM (1988) Unknown syndrome: Hirschsprung's disease, microcephaly, and iris coloboma: a new syndrome of defective neuronal migration. J Med Genet 25(7):494–497PubMedCrossRef
22.
Zurück zum Zitat Brooks AS, Breuning MH, Osinga J, vd Smagt JJ, Catsman CE, Buys CH, Meijers C, Hofstra RM (1999) A consanguineous family with Hirschsprung disease, microcephaly, and mental retardation (Goldberg–Shprintzen syndrome). J Med Genet 36(6):485–489PubMed Brooks AS, Breuning MH, Osinga J, vd Smagt JJ, Catsman CE, Buys CH, Meijers C, Hofstra RM (1999) A consanguineous family with Hirschsprung disease, microcephaly, and mental retardation (Goldberg–Shprintzen syndrome). J Med Genet 36(6):485–489PubMed
23.
Zurück zum Zitat Brooks AS, Bertoli-Avella AM, Burzynski GM, Breedveld GJ, Osinga J, Boven LG, Hurst JA, Mancini GM, Lequin MH, de Coo RF, Matera I, de Graaff E, Meijers C, Willems PJ, Tibboel D, Oostra BA, Hofstra RM (2005) Homozygous nonsense mutations in KBP are associated with malformations of the central and enteric nervous systems. Am J Human Genet 77(1):120–126. doi:10.1086/431244 CrossRef Brooks AS, Bertoli-Avella AM, Burzynski GM, Breedveld GJ, Osinga J, Boven LG, Hurst JA, Mancini GM, Lequin MH, de Coo RF, Matera I, de Graaff E, Meijers C, Willems PJ, Tibboel D, Oostra BA, Hofstra RM (2005) Homozygous nonsense mutations in KBP are associated with malformations of the central and enteric nervous systems. Am J Human Genet 77(1):120–126. doi:10.​1086/​431244 CrossRef
25.
Zurück zum Zitat Bruno DL, Stark Z, Amor DJ, Burgess T, Butler K, Corrie S, Francis D, Ganesamoorthy D, Hills L, James PA, O'Rielly D, Oertel R, Savarirayan R, Prabhakara K, Salce N, Slater HR (2011) Extending the scope of diagnostic chromosome analysis: detection of single gene defects using high-resolution SNP microarrays. Hum Mutat 32(12):1500–1506. doi:10.1002/humu.21581 PubMedCrossRef Bruno DL, Stark Z, Amor DJ, Burgess T, Butler K, Corrie S, Francis D, Ganesamoorthy D, Hills L, James PA, O'Rielly D, Oertel R, Savarirayan R, Prabhakara K, Salce N, Slater HR (2011) Extending the scope of diagnostic chromosome analysis: detection of single gene defects using high-resolution SNP microarrays. Hum Mutat 32(12):1500–1506. doi:10.​1002/​humu.​21581 PubMedCrossRef
26.
Zurück zum Zitat Drevillon L, Megarbane A, Demeer B, Matar C, Benit P, Briand-Suleau A, Bodereau V, Ghoumid J, Nasser M, Decrouy X, Doco-Fenzy M, Rustin P, Gaillard D, Goossens M, Giurgea I (2013) KBP-cytoskeleton interactions underlie developmental anomalies in Goldberg–Shprintzen syndrome. Hum Mol Genet. doi:10.1093/hmg/ddt083 Drevillon L, Megarbane A, Demeer B, Matar C, Benit P, Briand-Suleau A, Bodereau V, Ghoumid J, Nasser M, Decrouy X, Doco-Fenzy M, Rustin P, Gaillard D, Goossens M, Giurgea I (2013) KBP-cytoskeleton interactions underlie developmental anomalies in Goldberg–Shprintzen syndrome. Hum Mol Genet. doi:10.​1093/​hmg/​ddt083
27.
Zurück zum Zitat Goldberg RB, Shprintzen RJ (1981) Hirschsprung megacolon and cleft palate in two sibs. J Craniofac Genet Dev Biol 1(2):185–189PubMed Goldberg RB, Shprintzen RJ (1981) Hirschsprung megacolon and cleft palate in two sibs. J Craniofac Genet Dev Biol 1(2):185–189PubMed
28.
Zurück zum Zitat Gillis DA, Grantmyre EB (1965) The meconium-plug syndrome and Hirschsprung's disease. Can Med Assoc J 92:225–227PubMed Gillis DA, Grantmyre EB (1965) The meconium-plug syndrome and Hirschsprung's disease. Can Med Assoc J 92:225–227PubMed
30.
Zurück zum Zitat Attie T, Pelet A, Edery P, Eng C, Mulligan LM, Amiel J, Boutrand L, Beldjord C, Nihoul-Fekete C, Munnich A et al (1995) Diversity of RET proto-oncogene mutations in familial and sporadic Hirschsprung disease. Hum Mol Genet 4(8):1381–1386PubMedCrossRef Attie T, Pelet A, Edery P, Eng C, Mulligan LM, Amiel J, Boutrand L, Beldjord C, Nihoul-Fekete C, Munnich A et al (1995) Diversity of RET proto-oncogene mutations in familial and sporadic Hirschsprung disease. Hum Mol Genet 4(8):1381–1386PubMedCrossRef
31.
Zurück zum Zitat Amiel J, Sproat-Emison E, Garcia-Barcelo M, Lantieri F, Burzynski G, Borrego S, Pelet A, Arnold S, Miao X, Griseri P, Brooks AS, Antinolo G, de Pontual L, Clement-Ziza M, Munnich A, Kashuk C, West K, Wong KK, Lyonnet S, Chakravarti A, Tam PK, Ceccherini I, Hofstra RM, Fernandez R (2008) Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet 45(1):1–14. doi:10.1136/jmg.2007.053959 PubMedCrossRef Amiel J, Sproat-Emison E, Garcia-Barcelo M, Lantieri F, Burzynski G, Borrego S, Pelet A, Arnold S, Miao X, Griseri P, Brooks AS, Antinolo G, de Pontual L, Clement-Ziza M, Munnich A, Kashuk C, West K, Wong KK, Lyonnet S, Chakravarti A, Tam PK, Ceccherini I, Hofstra RM, Fernandez R (2008) Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet 45(1):1–14. doi:10.​1136/​jmg.​2007.​053959 PubMedCrossRef
33.
34.
Zurück zum Zitat Alves MM, Burzynski G, Delalande JM, Osinga J, van der Goot A, Dolga AM, de Graaff E, Brooks AS, Metzger M, Eisel UL, Shepherd I, Eggen BJ, Hofstra RM (2010) KBP interacts with SCG10, linking Goldberg–Shprintzen syndrome to microtubule dynamics and neuronal differentiation. Hum Mol Genet 19(18):3642–3651. doi:10.1093/hmg/ddq280 PubMedCrossRef Alves MM, Burzynski G, Delalande JM, Osinga J, van der Goot A, Dolga AM, de Graaff E, Brooks AS, Metzger M, Eisel UL, Shepherd I, Eggen BJ, Hofstra RM (2010) KBP interacts with SCG10, linking Goldberg–Shprintzen syndrome to microtubule dynamics and neuronal differentiation. Hum Mol Genet 19(18):3642–3651. doi:10.​1093/​hmg/​ddq280 PubMedCrossRef
36.
Zurück zum Zitat Yonekawa Y, Harada A, Okada Y, Funakoshi T, Kanai Y, Takei Y, Terada S, Noda T, Hirokawa N (1998) Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. J Cell Biol 141(2):431–441PubMedCrossRef Yonekawa Y, Harada A, Okada Y, Funakoshi T, Kanai Y, Takei Y, Terada S, Noda T, Hirokawa N (1998) Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. J Cell Biol 141(2):431–441PubMedCrossRef
37.
Zurück zum Zitat Lyons DA, Naylor SG, Mercurio S, Dominguez C, Talbot WS (2008) KBP is essential for axonal structure, outgrowth and maintenance in zebrafish, providing insight into the cellular basis of Goldberg-Shprintzen syndrome. Development 135(3):599–608. doi:10.1242/dev.012377 PubMedCrossRef Lyons DA, Naylor SG, Mercurio S, Dominguez C, Talbot WS (2008) KBP is essential for axonal structure, outgrowth and maintenance in zebrafish, providing insight into the cellular basis of Goldberg-Shprintzen syndrome. Development 135(3):599–608. doi:10.​1242/​dev.​012377 PubMedCrossRef
38.
Zurück zum Zitat Jaglin XH, Poirier K, Saillour Y, Buhler E, Tian G, Bahi-Buisson N et al (2009) Mutations in the beta-tubulin gene TUBB2B result in asymmetrical polymicrogyria. Nat Genet 41(6):746–752PubMedCrossRef Jaglin XH, Poirier K, Saillour Y, Buhler E, Tian G, Bahi-Buisson N et al (2009) Mutations in the beta-tubulin gene TUBB2B result in asymmetrical polymicrogyria. Nat Genet 41(6):746–752PubMedCrossRef
Metadaten
Titel
Homozygous truncating mutation of the KBP gene, encoding a KIF1B-binding protein, in a familial case of fetal polymicrogyria
verfasst von
Stéphanie Valence
Karine Poirier
Nicolas Lebrun
Yoann Saillour
Pascale Sonigo
Bettina Bessières
Tania Attié-Bitach
Alexandra Benachi
Cécile Masson
Ferechté Encha-Razavi
Jamel Chelly
Nadia Bahi-Buisson
Publikationsdatum
01.11.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Neurogenetics / Ausgabe 3-4/2013
Print ISSN: 1364-6745
Elektronische ISSN: 1364-6753
DOI
https://doi.org/10.1007/s10048-013-0373-x

Weitere Artikel der Ausgabe 3-4/2013

neurogenetics 3-4/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.