Skip to main content
Erschienen in: Strahlentherapie und Onkologie 1/2014

01.01.2014 | Original article

Hounsfield units variations

Impact on CT-density based conversion tables and their effects on dose distribution

verfasst von: Dr. B. Zurl, PhD, R. Tiefling, P. Winkler, P. Kindl, K.S. Kapp

Erschienen in: Strahlentherapie und Onkologie | Ausgabe 1/2014

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Determination of dose error margins in radiation therapy planning due to variations in Hounsfield Units (HU) values dependent on the use of different CT scanning protocols.

Patients and methods

Based on a series of different CT scanning protocols used in clinical practice, conversion tables for radiation dose calculations were generated and subsequently tested on a phantom. These tables were then used to recalculate the radiation therapy plans of 28 real patients after an incorrect scanning protocol had inadvertently been used for these patients.

Results

Different CT parameter settings resulted in errors of HU values of up to 2.6 % for densities of < 1.1 g/cm3, but up to 25.6 % for densities of > 1.1 g/cm3. The largest errors were associated with changes in the tube voltage. Tests on a virtual water phantom with layers of variable thickness and density revealed a sawtooth-shaped curve for the increase of dose differences from 0.3 to 0.6 % and 1.5 % at layer thicknesses of 1, 3, and 7 cm, respectively. Use of a beam hardening filter resulted in a reference dose difference of 0.6 % in response to a density change of 5 %. The recalculation of data from 28 patients who received radiation therapy to the head revealed an overdose of 1.3 ± 0.4 % to the bone and 0.7 ± 0.1 % to brain tissue. On average, therefore, one monitor unit (range 0–3 MU) per 100 MU more than the correct dose had been given.

Conclusion

Use of different CT scanning protocols leads to variations of up to 20 % in the HU values. This can result in a mean systematic dose error of 1.5 %. Specific conversion tables and automatic CT scanning protocol recognition could reduce dose errors of these types.
Literatur
1.
Zurück zum Zitat Coffey CW, Hines HC, Eckert DW, Martin JL (1985) An on going quality assurance program for CT interfaced treatment planning computers: initial experience. Med Dosim 10:9–15 Coffey CW, Hines HC, Eckert DW, Martin JL (1985) An on going quality assurance program for CT interfaced treatment planning computers: initial experience. Med Dosim 10:9–15
2.
Zurück zum Zitat Cozzi L, Fogliata A, Buffa F et al (1998) Dosimetric impact of computed tomography calibration on a commercial treatment planning system for external radiation therapy. Radiother Oncol 48:335–338PubMedCrossRef Cozzi L, Fogliata A, Buffa F et al (1998) Dosimetric impact of computed tomography calibration on a commercial treatment planning system for external radiation therapy. Radiother Oncol 48:335–338PubMedCrossRef
3.
Zurück zum Zitat Dzierma Y, Nuesken FG, Licht NP, Ruebe C (2013) Dosimetric properties and commissioning of cone-beam CT image beam line with a carbon target. Strahlenther Onkol 189:566–572PubMedCrossRef Dzierma Y, Nuesken FG, Licht NP, Ruebe C (2013) Dosimetric properties and commissioning of cone-beam CT image beam line with a carbon target. Strahlenther Onkol 189:566–572PubMedCrossRef
4.
Zurück zum Zitat Fraassa B, Doppke K, Hunt M et al (1998) American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: quality assurance for clinical radiotherapy treatment planning. Med Phys 25(10):1773–1829CrossRef Fraassa B, Doppke K, Hunt M et al (1998) American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: quality assurance for clinical radiotherapy treatment planning. Med Phys 25(10):1773–1829CrossRef
5.
Zurück zum Zitat Geise RA, McCullough EC (1977) The use of CT scanners in megavoltage photon-beam therapy planning. Radiology 124:133–141PubMed Geise RA, McCullough EC (1977) The use of CT scanners in megavoltage photon-beam therapy planning. Radiology 124:133–141PubMed
6.
Zurück zum Zitat Görlitz E (2006) Dosimetrische und verfahrenstechnische Untersuchungen zur Qualitätssicherung eines Bestrahlungsplanungsprogramms. http://www.uke.de/kliniken/strahlentherapie/downloads/klinik-strahlentherapie-radioonkologie/Diplomarbeit_Goerlitz.pdf. Accessed 28 October 2013 Görlitz E (2006) Dosimetrische und verfahrenstechnische Untersuchungen zur Qualitätssicherung eines Bestrahlungsplanungsprogramms. http://​www.​uke.​de/​kliniken/​strahlentherapie​/​downloads/​klinik-strahlentherapie​-radioonkologie/​Diplomarbeit_​Goerlitz.​pdf.​ Accessed 28 October 2013
7.
Zurück zum Zitat Guan H, Dong H (2009) Dose calculation accuracy using cone-beam CT (CBCT) for pelvic adaptive radiotherapy. Phys Med Biol 54(20):6239–6250PubMedCrossRef Guan H, Dong H (2009) Dose calculation accuracy using cone-beam CT (CBCT) for pelvic adaptive radiotherapy. Phys Med Biol 54(20):6239–6250PubMedCrossRef
8.
Zurück zum Zitat Hatton J, McCurdy B, Greer PB (2009) Cone beam computerized tomography: the effect of calibration of the Hounsfield unit number to electron density on dose calculation accuracy for adaptive radiation therapy. Phys Med Biol 54(15):N329–N346PubMedCrossRef Hatton J, McCurdy B, Greer PB (2009) Cone beam computerized tomography: the effect of calibration of the Hounsfield unit number to electron density on dose calculation accuracy for adaptive radiation therapy. Phys Med Biol 54(15):N329–N346PubMedCrossRef
9.
Zurück zum Zitat Hu CC, Huang WT, Tsai CL et al (2011) Practically acquired and modified cone-beam computed tomography images for accurate dose calculation in head and neck cancer. Strahlenther Onkol 187(10):633–644PubMedCrossRef Hu CC, Huang WT, Tsai CL et al (2011) Practically acquired and modified cone-beam computed tomography images for accurate dose calculation in head and neck cancer. Strahlenther Onkol 187(10):633–644PubMedCrossRef
10.
Zurück zum Zitat Kilby W, Sage J, Rabett V (2002) Tolerance levels for quality assurance of electron density values generated from CT in radiotherapy treatment planning. Phys Med Biol 47:1485–1492PubMedCrossRef Kilby W, Sage J, Rabett V (2002) Tolerance levels for quality assurance of electron density values generated from CT in radiotherapy treatment planning. Phys Med Biol 47:1485–1492PubMedCrossRef
11.
Zurück zum Zitat Klemm S, Rhein B, Häring P et al (2007) Definition of HU tolerance levels for CT scanner QA. Radiother Oncol 84(Suppl 1):241 Klemm S, Rhein B, Häring P et al (2007) Definition of HU tolerance levels for CT scanner QA. Radiother Oncol 84(Suppl 1):241
12.
Zurück zum Zitat Kowatsch M, Winkler P, Zurl B et al (2011) Analysis of image quality and dose calculation accuracy in cone beam CT acquisitions with limited projection data (half scan, half fan) with regard to usability for adaptive radiation therapy treatment planning. Z Med Phys 21(1):11–18PubMedCrossRef Kowatsch M, Winkler P, Zurl B et al (2011) Analysis of image quality and dose calculation accuracy in cone beam CT acquisitions with limited projection data (half scan, half fan) with regard to usability for adaptive radiation therapy treatment planning. Z Med Phys 21(1):11–18PubMedCrossRef
13.
Zurück zum Zitat Lohr F, Baus W, Vorwerk H et al (2012) Rules and regulations applying to incidents in radiotherapy. Patientensicherheit der DEGRO/DGMP/VMTRO sowie für die ÖGRO/ÖGMP und SASRO/SGSMP. Strahlenther Onkol 188(7):545–550PubMedCrossRef Lohr F, Baus W, Vorwerk H et al (2012) Rules and regulations applying to incidents in radiotherapy. Patientensicherheit der DEGRO/DGMP/VMTRO sowie für die ÖGRO/ÖGMP und SASRO/SGSMP. Strahlenther Onkol 188(7):545–550PubMedCrossRef
14.
Zurück zum Zitat Mißlbeck M, Kneschaurek P (2012) Comparison between Acuros XB and Brainlab Monte Carlo algorithms for photon dose calculation. Strahlenther Onkol 188(7):599–605PubMedCrossRef Mißlbeck M, Kneschaurek P (2012) Comparison between Acuros XB and Brainlab Monte Carlo algorithms for photon dose calculation. Strahlenther Onkol 188(7):599–605PubMedCrossRef
15.
Zurück zum Zitat ÖVE/ÖNORM EN 61223-2-6. Bewertung und routinemäßige Prüfung in Abteilungen für medizinische Bildgebung – Teil 2–6: Konstanzprüfungen – Röntgeneinrichtungen für die Computertomographie. 2012 ÖVE/ÖNORM EN 61223-2-6. Bewertung und routinemäßige Prüfung in Abteilungen für medizinische Bildgebung – Teil 2–6: Konstanzprüfungen – Röntgeneinrichtungen für die Computertomographie. 2012
16.
Zurück zum Zitat Poludniowski GG, Evans PM, Webb S (2012) Cone beam computed tomography number errors and consequences for radiotherapy planning: an investigation of correction methods. Int J Radiat Oncol Biol Phys 84(1):e109–e114PubMedCrossRef Poludniowski GG, Evans PM, Webb S (2012) Cone beam computed tomography number errors and consequences for radiotherapy planning: an investigation of correction methods. Int J Radiat Oncol Biol Phys 84(1):e109–e114PubMedCrossRef
17.
Zurück zum Zitat Ramm U, Damrau M, Mose S et al (2001) Influence of CT contrast agents on dose calculations in a 3D treatment planning system. Phys Med Biol 46(10):2631–2635PubMedCrossRef Ramm U, Damrau M, Mose S et al (2001) Influence of CT contrast agents on dose calculations in a 3D treatment planning system. Phys Med Biol 46(10):2631–2635PubMedCrossRef
18.
Zurück zum Zitat Richter A, Hu Q, Steglich D et al (2008) Investigation of the usability of conebeam CT data sets for dose calculation. Radiat Oncol 16(3):42CrossRef Richter A, Hu Q, Steglich D et al (2008) Investigation of the usability of conebeam CT data sets for dose calculation. Radiat Oncol 16(3):42CrossRef
19.
Zurück zum Zitat Sage J, Cullingford A, Dagless M et al (1998) A complete program of CT quality assurance for radiotherapy treatment planning. IPEM Annual Conference. Brighton Sage J, Cullingford A, Dagless M et al (1998) A complete program of CT quality assurance for radiotherapy treatment planning. IPEM Annual Conference. Brighton
20.
Zurück zum Zitat Skrzynski W, Zielinska-Dabrowska S, Wachowicz M et al (2010) Computed tomography as a source of electron density information for radiation treatment planning. Strahlenther Onkol 186(6):327–333PubMedCrossRef Skrzynski W, Zielinska-Dabrowska S, Wachowicz M et al (2010) Computed tomography as a source of electron density information for radiation treatment planning. Strahlenther Onkol 186(6):327–333PubMedCrossRef
21.
Zurück zum Zitat Thomas SJ (1999) Relative electron density calibration of CT scanners for radiotherapy treatment planning. Br J Radiol 72:781–786PubMed Thomas SJ (1999) Relative electron density calibration of CT scanners for radiotherapy treatment planning. Br J Radiol 72:781–786PubMed
22.
Zurück zum Zitat Toshiba Medical Systems. 2J201-066EN_F_AquilionLB Check sheet Toshiba Medical Systems. 2J201-066EN_F_AquilionLB Check sheet
23.
Zurück zum Zitat Van Dyk J, Battista JJ, Cunningham JR, Rider WD et al (1980) On the impact of CT scanning on radiotherapy treatment planning. Comput Tomogr 4:55–65CrossRef Van Dyk J, Battista JJ, Cunningham JR, Rider WD et al (1980) On the impact of CT scanning on radiotherapy treatment planning. Comput Tomogr 4:55–65CrossRef
24.
Zurück zum Zitat Van Dyk J, Barnett RB, Cygler JE, Shragge PC (1993) Commissioning and quality assurance of treatment planning computers. Int J Radiat Oncol Biol Phys 26:261–273CrossRef Van Dyk J, Barnett RB, Cygler JE, Shragge PC (1993) Commissioning and quality assurance of treatment planning computers. Int J Radiat Oncol Biol Phys 26:261–273CrossRef
25.
Zurück zum Zitat Venselaar J, Welleweerd H, Mijnheer B (2001) Tolerances for the accuracy of photon beam dose calculations of treatment planning systems. Radiother Oncol 60:191–201PubMedCrossRef Venselaar J, Welleweerd H, Mijnheer B (2001) Tolerances for the accuracy of photon beam dose calculations of treatment planning systems. Radiother Oncol 60:191–201PubMedCrossRef
26.
Zurück zum Zitat Zabel-du Bois A, Ackermann B, Hauswald H et al (2009) Influence of intravenous contrast agent on dose calculation in 3-D treatment planning for radiosurgery of cerebral arteriovenous malformations. Strahlenther Onkol 185(5):318–324CrossRef Zabel-du Bois A, Ackermann B, Hauswald H et al (2009) Influence of intravenous contrast agent on dose calculation in 3-D treatment planning for radiosurgery of cerebral arteriovenous malformations. Strahlenther Onkol 185(5):318–324CrossRef
Metadaten
Titel
Hounsfield units variations
Impact on CT-density based conversion tables and their effects on dose distribution
verfasst von
Dr. B. Zurl, PhD
R. Tiefling
P. Winkler
P. Kindl
K.S. Kapp
Publikationsdatum
01.01.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Strahlentherapie und Onkologie / Ausgabe 1/2014
Print ISSN: 0179-7158
Elektronische ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-013-0464-5

Weitere Artikel der Ausgabe 1/2014

Strahlentherapie und Onkologie 1/2014 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.