Skip to main content
Erschienen in: Neurotherapeutics 2/2012

01.04.2012 | Review

Huntington’s Disease and the Striatal Medium Spiny Neuron: Cell-Autonomous and Non-Cell-Autonomous Mechanisms of Disease

verfasst von: Michelle E. Ehrlich

Erschienen in: Neurotherapeutics | Ausgabe 2/2012

Einloggen, um Zugang zu erhalten

Abstract

Huntington’s disease is an autosomal dominant disorder caused by a mutation in the gene encoding the protein huntingtin on chromosome 4. The mutation is an expanded CAG repeat in the first exon, encoding a polyglutamine tract. If the polyglutamine tract is >40, penetrance is 100% and death is inevitable. Despite the widespread expression of huntingtin, HD has long been considered primarily as a disease of the striatum. It is characterized by selective vulnerability with dysfunction followed by death of the medium size spiny neuron. Considerable effort is being expended to determine whether striatal damage is cell-autonomous, non-cell-autonomous, requiring cell-cell and region to region communication, or both. We review data supporting both mechanisms. We also attempt to organize the data into common mechanisms that may arise outside the medium, spiny neuron, but ultimately have their greatest impact in the striatum.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 1993;72:971-983.CrossRef Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 1993;72:971-983.CrossRef
2.
Zurück zum Zitat Han I, You Y, Kordower JH, Brady ST, Morfini GA. Differential vulnerability of neurons in Huntington's disease: the role of cell type-specific features. J Neurochem 2010;113:1073-1091.PubMed Han I, You Y, Kordower JH, Brady ST, Morfini GA. Differential vulnerability of neurons in Huntington's disease: the role of cell type-specific features. J Neurochem 2010;113:1073-1091.PubMed
3.
Zurück zum Zitat Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr. Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol 1985;44:559-577.CrossRefPubMed Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr. Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol 1985;44:559-577.CrossRefPubMed
4.
Zurück zum Zitat Trottier Y, Devys D, Imbert G, Saudou F, An I, Lutz Y, et al. Cellular localization of the Huntington’s disease protein and discrimination of the normal and mutated form. Nat Genet 1995;10:104-110.CrossRefPubMed Trottier Y, Devys D, Imbert G, Saudou F, An I, Lutz Y, et al. Cellular localization of the Huntington’s disease protein and discrimination of the normal and mutated form. Nat Genet 1995;10:104-110.CrossRefPubMed
5.
Zurück zum Zitat La Spada AR, Fu YH, Sopher BL, et al. Polyglutamine¬expanded ataxin-7 antagonizes CRX function and induces cone-rod dystrophy in a mouse model of SCA7. Neuron 2001;31: 913-927.CrossRefPubMed La Spada AR, Fu YH, Sopher BL, et al. Polyglutamine¬expanded ataxin-7 antagonizes CRX function and induces cone-rod dystrophy in a mouse model of SCA7. Neuron 2001;31: 913-927.CrossRefPubMed
6.
Zurück zum Zitat Yoo SY, Pennesi ME, Weeber EJ, et al. SCA7 knockin mice model human SCA7 and reveal gradual accumulation of mutant ataxin-7 in neurons and abnormalities in short-term plasticity. Neuron 2003;37:383-401CrossRefPubMed Yoo SY, Pennesi ME, Weeber EJ, et al. SCA7 knockin mice model human SCA7 and reveal gradual accumulation of mutant ataxin-7 in neurons and abnormalities in short-term plasticity. Neuron 2003;37:383-401CrossRefPubMed
7.
Zurück zum Zitat Jafar-Nejad P, Ward CS, Richman R, Orr HT, Zoghbi HY. Regional rescue of spinocerebellar ataxia type 1 phenotypes by 14-3-3epsilon haploin sufficiency in mice underscores complex pathogenicity in neurodegeneration. Proc Natl Acad Sci USA 2011;108:2142-2147.CrossRefPubMed Jafar-Nejad P, Ward CS, Richman R, Orr HT, Zoghbi HY. Regional rescue of spinocerebellar ataxia type 1 phenotypes by 14-3-3epsilon haploin sufficiency in mice underscores complex pathogenicity in neurodegeneration. Proc Natl Acad Sci USA 2011;108:2142-2147.CrossRefPubMed
8.
Zurück zum Zitat Harjes P, Wanker EE. The hunt for huntingtin function; interaction partners tell many different stories. Trends Biochem Sci 2003;28:425-433.CrossRefPubMed Harjes P, Wanker EE. The hunt for huntingtin function; interaction partners tell many different stories. Trends Biochem Sci 2003;28:425-433.CrossRefPubMed
9.
Zurück zum Zitat Marcora E, Gowan K, Lee JE. Stimulation of NeuroD activity by huntingtin and huntingtin-associated proteins HAP1 and MLK2. Proc Natl Acad Sci USA 2003;100:9578-9583.CrossRefPubMed Marcora E, Gowan K, Lee JE. Stimulation of NeuroD activity by huntingtin and huntingtin-associated proteins HAP1 and MLK2. Proc Natl Acad Sci USA 2003;100:9578-9583.CrossRefPubMed
10.
Zurück zum Zitat Yanai A, Huang K, Kang R, et al. Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nat Neurosci 2006;9:824-831.CrossRefPubMed Yanai A, Huang K, Kang R, et al. Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nat Neurosci 2006;9:824-831.CrossRefPubMed
11.
Zurück zum Zitat Subramaniam S, Sixt KM, Barrow R, Snyder SH. Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science 2009;324:1327-1330.CrossRefPubMed Subramaniam S, Sixt KM, Barrow R, Snyder SH. Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science 2009;324:1327-1330.CrossRefPubMed
12.
Zurück zum Zitat Subramaniam S, Snyder SH. Huntington's disease is a disorder of the corpus striatum: focus on Rhes (Ras homologue enriched in the striatum). Neuropharmacology 2011;60:1187-1192.CrossRefPubMed Subramaniam S, Snyder SH. Huntington's disease is a disorder of the corpus striatum: focus on Rhes (Ras homologue enriched in the striatum). Neuropharmacology 2011;60:1187-1192.CrossRefPubMed
13.
Zurück zum Zitat Ilieva H, Polymenidou M, Cleveland DW. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 2009;187:761-772.CrossRefPubMed Ilieva H, Polymenidou M, Cleveland DW. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 2009;187:761-772.CrossRefPubMed
15.
Zurück zum Zitat Gu X, Li C, Wei W, et al. Pathological cell-cell interactions elicited by a neuropathogenic form of mutant Huntingtin contribute to cortical pathogenesis in HD mice. Neuron 2005;46:433-444.CrossRefPubMed Gu X, Li C, Wei W, et al. Pathological cell-cell interactions elicited by a neuropathogenic form of mutant Huntingtin contribute to cortical pathogenesis in HD mice. Neuron 2005;46:433-444.CrossRefPubMed
16.
Zurück zum Zitat Gu X, Andre VM, Cepeda C, et al. Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington's disease. Mol Neurodegener 2007;2:8.CrossRefPubMed Gu X, Andre VM, Cepeda C, et al. Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington's disease. Mol Neurodegener 2007;2:8.CrossRefPubMed
17.
Zurück zum Zitat Crook ZR, Housman D. Huntington's disease: can mice lead the way to treatment? Neuron 2011;69:423-435.CrossRefPubMed Crook ZR, Housman D. Huntington's disease: can mice lead the way to treatment? Neuron 2011;69:423-435.CrossRefPubMed
18.
Zurück zum Zitat Ouimet CC, Langley-Guillon KC, Greengard P. Quantitative immunocytochemistry of DARPP-32-expressing neurons in the rat caudatoputamen. Brain Res 1998;808:8-12.CrossRefPubMed Ouimet CC, Langley-Guillon KC, Greengard P. Quantitative immunocytochemistry of DARPP-32-expressing neurons in the rat caudatoputamen. Brain Res 1998;808:8-12.CrossRefPubMed
19.
Zurück zum Zitat Raymond LA, André VM, Cepeda C, Gladding CM, Milnerwood AJ, Levine MS. Pathophysiology of Huntington’s disease: time-dependent alterations in synaptic and receptor function. Neuroscience 2011;198:252-273.CrossRefPubMed Raymond LA, André VM, Cepeda C, Gladding CM, Milnerwood AJ, Levine MS. Pathophysiology of Huntington’s disease: time-dependent alterations in synaptic and receptor function. Neuroscience 2011;198:252-273.CrossRefPubMed
20.
Zurück zum Zitat Igarashi S, Morita H, Bennett KM, et al. Inducible PC12 cell model of Huntington’s disease shows toxicity and decreased histone acetylation. Neuroreport 2003;14:565-568.CrossRefPubMed Igarashi S, Morita H, Bennett KM, et al. Inducible PC12 cell model of Huntington’s disease shows toxicity and decreased histone acetylation. Neuroreport 2003;14:565-568.CrossRefPubMed
21.
Zurück zum Zitat Ehrlich ME, Conti L, Toselli M, et al. ST14A cells have properties of a medium-size spiny neuron. Exp Neurol 2001;167:215-226.CrossRefPubMed Ehrlich ME, Conti L, Toselli M, et al. ST14A cells have properties of a medium-size spiny neuron. Exp Neurol 2001;167:215-226.CrossRefPubMed
22.
Zurück zum Zitat Sipione S, Rigamonti D, Valenza M, et al. Early transcriptional profiles in huntingtin-inducible striatal cells by microarray analyses. Hum Mol Genet 2002;11:1953-1965.CrossRefPubMed Sipione S, Rigamonti D, Valenza M, et al. Early transcriptional profiles in huntingtin-inducible striatal cells by microarray analyses. Hum Mol Genet 2002;11:1953-1965.CrossRefPubMed
23.
Zurück zum Zitat Trettel F, Rigamonti D, Hilditch-Maguire P, et al. Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. Hum Mol Genet 2000;9:2799-2809.CrossRefPubMed Trettel F, Rigamonti D, Hilditch-Maguire P, et al. Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. Hum Mol Genet 2000;9:2799-2809.CrossRefPubMed
25.
Zurück zum Zitat Brown TB, Bogush AI, Ehrlich ME. Neocortical expression of mutant huntingtin is not required for alterations in striatal gene expression or motor dysfunction in a transgenic mouse. Hum Mol Genet 2008;17:3095-3104.CrossRefPubMed Brown TB, Bogush AI, Ehrlich ME. Neocortical expression of mutant huntingtin is not required for alterations in striatal gene expression or motor dysfunction in a transgenic mouse. Hum Mol Genet 2008;17:3095-3104.CrossRefPubMed
26.
Zurück zum Zitat Cantle JP, Wang N, Gray M, et al. Genetic and molecular analyses of non-cell-autonomous disease pathogenesis in a conditional BAC transgenic mouse model of Huntington’s disease (BACHD). SFN Annual Meeting 2011:148.21. Cantle JP, Wang N, Gray M, et al. Genetic and molecular analyses of non-cell-autonomous disease pathogenesis in a conditional BAC transgenic mouse model of Huntington’s disease (BACHD). SFN Annual Meeting 2011:148.21.
27.
Zurück zum Zitat Sugars KL, Rubinsztein DC. Transcriptional abnormalities in Huntington disease. Trends Genet 2003;19:233-238.CrossRefPubMed Sugars KL, Rubinsztein DC. Transcriptional abnormalities in Huntington disease. Trends Genet 2003;19:233-238.CrossRefPubMed
28.
Zurück zum Zitat Desplats PA, Kass KE, Gilmartin T, et al. Selective deficits in the expression of striatal-enriched mRNAs in Huntington’s disease. J Neurochem 2006;96:743-757.CrossRefPubMed Desplats PA, Kass KE, Gilmartin T, et al. Selective deficits in the expression of striatal-enriched mRNAs in Huntington’s disease. J Neurochem 2006;96:743-757.CrossRefPubMed
29.
Zurück zum Zitat Ouimet CC, Miller PE, Hemmings HC Jr, Walaas SI, Greengard P. DARPP-32, a dopamine- and adenosine 3’: 5’-monophosphate- regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. J Neurosci 1984;4:111-124. Ouimet CC, Miller PE, Hemmings HC Jr, Walaas SI, Greengard P. DARPP-32, a dopamine- and adenosine 3’: 5’-monophosphate- regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. J Neurosci 1984;4:111-124.
30.
Zurück zum Zitat Bibb JA, Yan Z, Svenningsson P, et al. Severe deficiencies in dopamine signaling in presymptomatic Huntington‘s disease mice. Proc Natl Acad Sci USA 2000;97:6809-6814.CrossRefPubMed Bibb JA, Yan Z, Svenningsson P, et al. Severe deficiencies in dopamine signaling in presymptomatic Huntington‘s disease mice. Proc Natl Acad Sci USA 2000;97:6809-6814.CrossRefPubMed
31.
Zurück zum Zitat Menalled LB, Sison JD, Wu Y, et al. Early motor dysfunction and striosomal distribution of huntingtin microaggregates in Huntington's disease knock-in mice. J Neurosci 2002;22:8266-8276.PubMed Menalled LB, Sison JD, Wu Y, et al. Early motor dysfunction and striosomal distribution of huntingtin microaggregates in Huntington's disease knock-in mice. J Neurosci 2002;22:8266-8276.PubMed
32.
Zurück zum Zitat Van Raamsdonk JM, Pearson J, Rogers DA, et al. Loss of wild-type huntingtin influences motor dysfunction and survival in the YAC128 mouse model of Huntington disease. Hum Mol Genet 2005;14:1379-1392.CrossRefPubMed Van Raamsdonk JM, Pearson J, Rogers DA, et al. Loss of wild-type huntingtin influences motor dysfunction and survival in the YAC128 mouse model of Huntington disease. Hum Mol Genet 2005;14:1379-1392.CrossRefPubMed
33.
Zurück zum Zitat Tallaksen-Greene SJ, Crouse AB, Hunter JM, Detloff PJ, Albin RL. Neuronal intranuclear inclusions and neuropil aggregates in HdhCAG(150) knockin mice. Neuroscience 2005;131:843-852.PubMed Tallaksen-Greene SJ, Crouse AB, Hunter JM, Detloff PJ, Albin RL. Neuronal intranuclear inclusions and neuropil aggregates in HdhCAG(150) knockin mice. Neuroscience 2005;131:843-852.PubMed
34.
Zurück zum Zitat Zeron MM, Hansson O, Chen N, et al. Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease. Neuron 2002;33:849-860.CrossRefPubMed Zeron MM, Hansson O, Chen N, et al. Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease. Neuron 2002;33:849-860.CrossRefPubMed
35.
Zurück zum Zitat Gines S, Ivanova E, Seong IS, Saura CA, MacDonald ME. Enhanced Akt signaling is an early pro-survival response that reflects N-Methyl-D-aspartate receptor activation in Huntington's disease knock-in striatal cells. J Biol Chem 2003;278:50514-50522.CrossRefPubMed Gines S, Ivanova E, Seong IS, Saura CA, MacDonald ME. Enhanced Akt signaling is an early pro-survival response that reflects N-Methyl-D-aspartate receptor activation in Huntington's disease knock-in striatal cells. J Biol Chem 2003;278:50514-50522.CrossRefPubMed
36.
Zurück zum Zitat Gines S, Seong IS, Fossale E, et al. Specific progressive cAMP reduction implicates energy deficit in presymptomatic Huntington’s disease knock-in mice. Hum Mol Genet 2003;12:497-508.CrossRefPubMed Gines S, Seong IS, Fossale E, et al. Specific progressive cAMP reduction implicates energy deficit in presymptomatic Huntington’s disease knock-in mice. Hum Mol Genet 2003;12:497-508.CrossRefPubMed
37.
Zurück zum Zitat Cowan CM, Fan MM, Fan J, et al. Polyglutamine-modulated striatal calpain activity in YAC transgenic huntington disease mouse model: impact on NMDA receptor function and toxicity. J Neurosci 2008;28:12725-12735.CrossRefPubMed Cowan CM, Fan MM, Fan J, et al. Polyglutamine-modulated striatal calpain activity in YAC transgenic huntington disease mouse model: impact on NMDA receptor function and toxicity. J Neurosci 2008;28:12725-12735.CrossRefPubMed
38.
Zurück zum Zitat de Almeida LP, Ross CA, Zala D, Aebischer P, Deglon N. Lentiviral-mediated delivery of mutant huntingtin in the striatum of rats induces a selective neuropathology modulated by polyglytamine repeat size, huntingtin expression levels, and protein length. J Neurosci 2002;22:3473-3483.PubMed de Almeida LP, Ross CA, Zala D, Aebischer P, Deglon N. Lentiviral-mediated delivery of mutant huntingtin in the striatum of rats induces a selective neuropathology modulated by polyglytamine repeat size, huntingtin expression levels, and protein length. J Neurosci 2002;22:3473-3483.PubMed
39.
Zurück zum Zitat Regulier E, Trottier Y, Perrin V, Aebischer P, Deglon N. Early and reversible neuropathology induced by tetracycline-regulated lentiviral overexpression of mutant huntingtin in rat striatum. Hum Mol Genet 2003;12:2827-2836.CrossRefPubMed Regulier E, Trottier Y, Perrin V, Aebischer P, Deglon N. Early and reversible neuropathology induced by tetracycline-regulated lentiviral overexpression of mutant huntingtin in rat striatum. Hum Mol Genet 2003;12:2827-2836.CrossRefPubMed
40.
Zurück zum Zitat DiFiglia M, Sena-Esteves M, Chase K, et al. Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci USA 2007;104:17204-17209.CrossRefPubMed DiFiglia M, Sena-Esteves M, Chase K, et al. Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci USA 2007;104:17204-17209.CrossRefPubMed
41.
Zurück zum Zitat Drouet V, Perrin V, Hassig R, et al. Sustained effects of nonallele-specific Huntingtin silencing. Ann Neurol 2009;65:276-285.CrossRefPubMed Drouet V, Perrin V, Hassig R, et al. Sustained effects of nonallele-specific Huntingtin silencing. Ann Neurol 2009;65:276-285.CrossRefPubMed
42.
Zurück zum Zitat Zala D, Benchoua A, Brouillet E, et al. Progressive and selective striatal degeneration in primary neuronal cultures using lentiviral vector coding for a mutant huntingtin fragment. Neurobiol Dis 2005;20:785-798.CrossRefPubMed Zala D, Benchoua A, Brouillet E, et al. Progressive and selective striatal degeneration in primary neuronal cultures using lentiviral vector coding for a mutant huntingtin fragment. Neurobiol Dis 2005;20:785-798.CrossRefPubMed
43.
Zurück zum Zitat Bogush AI, McCarthy LE, Tian C, et al. DARPP-32 genomic fragments drive Cre expression in postnatal striatum. Genesis 2005;42:37-46.CrossRefPubMed Bogush AI, McCarthy LE, Tian C, et al. DARPP-32 genomic fragments drive Cre expression in postnatal striatum. Genesis 2005;42:37-46.CrossRefPubMed
44.
Zurück zum Zitat Thomas EA, Coppola G, Tang B, et al. In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons. Hum Mol Genetics 2011;20:1049-1060.CrossRef Thomas EA, Coppola G, Tang B, et al. In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons. Hum Mol Genetics 2011;20:1049-1060.CrossRef
45.
Zurück zum Zitat Kim SH, Thomas CA, André VM, et al. Forebrain striatal-specific expression of mutant huntingtin protein in vivo induces cell-autonomous age-dependent alterations in sensitivity to excitotoxicity and mitochondrial function. ASN Neuro 2011;3:e00060.PubMed Kim SH, Thomas CA, André VM, et al. Forebrain striatal-specific expression of mutant huntingtin protein in vivo induces cell-autonomous age-dependent alterations in sensitivity to excitotoxicity and mitochondrial function. ASN Neuro 2011;3:e00060.PubMed
46.
Zurück zum Zitat Fossale E, Seong IS, Coser KR, et al. Differential effects of the Huntington's disease CAG mutation in striatum and cerebellum are quantitative not qualitative. Hum Mol Genet 2011;20:4258-4267.CrossRefPubMed Fossale E, Seong IS, Coser KR, et al. Differential effects of the Huntington's disease CAG mutation in striatum and cerebellum are quantitative not qualitative. Hum Mol Genet 2011;20:4258-4267.CrossRefPubMed
47.
Zurück zum Zitat Mangiarini L, Sathasivam K, Mahal A, Mott R, Seller M, Bates GP. Instability of highly expanded CAG repeats in mice transgenic for the Huntington's disease mutation. Nat Genet 1997;15:197-200.CrossRefPubMed Mangiarini L, Sathasivam K, Mahal A, Mott R, Seller M, Bates GP. Instability of highly expanded CAG repeats in mice transgenic for the Huntington's disease mutation. Nat Genet 1997;15:197-200.CrossRefPubMed
48.
Zurück zum Zitat Goula AV, Berquist BR, Wilson DM 3 rd, Wheeler VC, Trottier Y, Merienne K. Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington's disease transgenic mice. PLoS Genet 2009;5:e1000749. Goula AV, Berquist BR, Wilson DM 3 rd, Wheeler VC, Trottier Y, Merienne K. Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington's disease transgenic mice. PLoS Genet 2009;5:e1000749.
49.
Zurück zum Zitat Lee JM, Pinto RM, Gillis T, St Claire JC, Wheeler VC. Quantification of age-dependent somatic CAG repeat instability in Hdh CAG knock-in mice reveals different expansion dynamics in striatum and liver. PLoS One 2011;6:e23647. Lee JM, Pinto RM, Gillis T, St Claire JC, Wheeler VC. Quantification of age-dependent somatic CAG repeat instability in Hdh CAG knock-in mice reveals different expansion dynamics in striatum and liver. PLoS One 2011;6:e23647.
50.
Zurück zum Zitat Watase K, Venken KJ, Sun Y, Orr HT, Zoghbi HY. Regional differences of somatic CAG repeat instability do not account for selective neuronal vulnerability in a knock-in mouse model of SCA1. Hum Mol Genet 2003;12:2789-2795.CrossRefPubMed Watase K, Venken KJ, Sun Y, Orr HT, Zoghbi HY. Regional differences of somatic CAG repeat instability do not account for selective neuronal vulnerability in a knock-in mouse model of SCA1. Hum Mol Genet 2003;12:2789-2795.CrossRefPubMed
51.
Zurück zum Zitat Sieradzan KA Mann DM. The selective vulnerability of nerve cells in Huntington’s disease. Neuropathol Appl Neurobiol 2001;27:1-21.CrossRefPubMed Sieradzan KA Mann DM. The selective vulnerability of nerve cells in Huntington’s disease. Neuropathol Appl Neurobiol 2001;27:1-21.CrossRefPubMed
52.
Zurück zum Zitat Davies SW, Turmaine M, Cozens BA, et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997;90:537-548.CrossRefPubMed Davies SW, Turmaine M, Cozens BA, et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997;90:537-548.CrossRefPubMed
53.
Zurück zum Zitat Beal MF. Huntington’s disease, energy, and excitotoxicity. Neurobiol Aging 1994;15:275-276.CrossRefPubMed Beal MF. Huntington’s disease, energy, and excitotoxicity. Neurobiol Aging 1994;15:275-276.CrossRefPubMed
54.
Zurück zum Zitat Levine MS, Klapstein GJ, Koppel A, et al. Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington’s disease. J Neurosci Res 1999;58:515-532.CrossRefPubMed Levine MS, Klapstein GJ, Koppel A, et al. Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington’s disease. J Neurosci Res 1999;58:515-532.CrossRefPubMed
55.
Zurück zum Zitat Grunewald T, Beal MF. Bioenergetics in Huntington’s disease. Ann NY Acad Sci 1999;893:203-213.CrossRefPubMed Grunewald T, Beal MF. Bioenergetics in Huntington’s disease. Ann NY Acad Sci 1999;893:203-213.CrossRefPubMed
56.
Zurück zum Zitat Mattson MP. Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Med 2003;3:65-94.CrossRefPubMed Mattson MP. Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Med 2003;3:65-94.CrossRefPubMed
57.
Zurück zum Zitat Cowan CM, Raymond LA. Selective neuronal degeneration in Huntington’s disease. Curr Top Dev Biol 2006;75:25-71.CrossRefPubMed Cowan CM, Raymond LA. Selective neuronal degeneration in Huntington’s disease. Curr Top Dev Biol 2006;75:25-71.CrossRefPubMed
58.
Zurück zum Zitat Milnerwood AJ, Raymond LA. Early synaptic pathophysiology in neurodegeneration: insights from Huntington’s disease. Trends Neurosci 2010;33:513-523.CrossRefPubMed Milnerwood AJ, Raymond LA. Early synaptic pathophysiology in neurodegeneration: insights from Huntington’s disease. Trends Neurosci 2010;33:513-523.CrossRefPubMed
59.
Zurück zum Zitat Gourfinkel-An I, Parain K, Hartmann A, et al. Changes in GAD67 mRNA expression evidenced by in situ hybridization in the brain of R6/2 transgenic mice. J Neurochem 2003; 86:1369-1378.CrossRefPubMed Gourfinkel-An I, Parain K, Hartmann A, et al. Changes in GAD67 mRNA expression evidenced by in situ hybridization in the brain of R6/2 transgenic mice. J Neurochem 2003; 86:1369-1378.CrossRefPubMed
60.
Zurück zum Zitat Zuccato C, Ciammola A, Rigamonti D, et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science 2001;293:493-498.CrossRefPubMed Zuccato C, Ciammola A, Rigamonti D, et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science 2001;293:493-498.CrossRefPubMed
61.
Zurück zum Zitat Gauthier LR, Charrin BC, Borrell-Pages M, et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 2004;118:127-138.CrossRefPubMed Gauthier LR, Charrin BC, Borrell-Pages M, et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 2004;118:127-138.CrossRefPubMed
62.
Zurück zum Zitat Canals JM, Pineda JR, Torres-Peraza JF, et al. Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci 2004;24:7727-7739.CrossRefPubMed Canals JM, Pineda JR, Torres-Peraza JF, et al. Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci 2004;24:7727-7739.CrossRefPubMed
63.
Zurück zum Zitat Xie Y, Hayden MR, Xu B. BDNF overexpression in the forebrain rescues Huntington’s disease phenotypes in YAC128 mice. J Neurosci 2010;30:14708-14718.CrossRefPubMed Xie Y, Hayden MR, Xu B. BDNF overexpression in the forebrain rescues Huntington’s disease phenotypes in YAC128 mice. J Neurosci 2010;30:14708-14718.CrossRefPubMed
64.
Zurück zum Zitat Trushina E, Dyer RB, Badger JD 2nd, et al. Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol Cell Biol 2004;24:8195-8209.CrossRefPubMed Trushina E, Dyer RB, Badger JD 2nd, et al. Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol Cell Biol 2004;24:8195-8209.CrossRefPubMed
65.
Zurück zum Zitat Braunstein KE, Eschbach J, Ròna-Vörös K, et al. A point mutation in the dynein heavy chain gene leads to striatal atrophy and compromises neurite outgrowth of striatal neurons. Hum Mol Genet 2010;19:4385-4398.CrossRefPubMed Braunstein KE, Eschbach J, Ròna-Vörös K, et al. A point mutation in the dynein heavy chain gene leads to striatal atrophy and compromises neurite outgrowth of striatal neurons. Hum Mol Genet 2010;19:4385-4398.CrossRefPubMed
66.
Zurück zum Zitat Liévens JC, Woodman B, Mahal A, et al. Impaired glutamate uptake in the R6 Huntington's disease transgenic mice. Neurobiol Dis 2001;8:807-821.CrossRefPubMed Liévens JC, Woodman B, Mahal A, et al. Impaired glutamate uptake in the R6 Huntington's disease transgenic mice. Neurobiol Dis 2001;8:807-821.CrossRefPubMed
67.
Zurück zum Zitat Bradford J, Shin JY, Roberts M, Wang CE, Li XJ, Li S. Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci USA 2009;106:22480-22485.CrossRefPubMed Bradford J, Shin JY, Roberts M, Wang CE, Li XJ, Li S. Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci USA 2009;106:22480-22485.CrossRefPubMed
68.
Zurück zum Zitat Bradford J, Shin JY, Roberts M, et al. Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. J Biol Chem 2010;285:10653-10661.CrossRefPubMed Bradford J, Shin JY, Roberts M, et al. Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. J Biol Chem 2010;285:10653-10661.CrossRefPubMed
69.
Zurück zum Zitat Xiang Z, Valenza M, Cui L, et al. Peroxisome-proliferator-activated receptor gamma coactivator 1 alpha contributes to dysmyelination in experimental models of Huntington's disease. J Neurosci 2011;31:9544-9553.CrossRefPubMed Xiang Z, Valenza M, Cui L, et al. Peroxisome-proliferator-activated receptor gamma coactivator 1 alpha contributes to dysmyelination in experimental models of Huntington's disease. J Neurosci 2011;31:9544-9553.CrossRefPubMed
70.
Zurück zum Zitat Lobsiger CS, Cleveland DW. Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci 2007;10:1355-1360.CrossRefPubMed Lobsiger CS, Cleveland DW. Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci 2007;10:1355-1360.CrossRefPubMed
71.
Zurück zum Zitat Palazuelos J, Aguado T, Pazos MR, et al. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity. Brain 2009;132:3152-3164.CrossRefPubMed Palazuelos J, Aguado T, Pazos MR, et al. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity. Brain 2009;132:3152-3164.CrossRefPubMed
72.
Zurück zum Zitat Politis M, Pavese N, Tai YF, et al. Microglial activation in regions related to cognitive function predicts disease onset in Huntington's disease: a multimodal imaging study. Hum Brain Mapp 2011;32:258-270.CrossRefPubMed Politis M, Pavese N, Tai YF, et al. Microglial activation in regions related to cognitive function predicts disease onset in Huntington's disease: a multimodal imaging study. Hum Brain Mapp 2011;32:258-270.CrossRefPubMed
73.
Zurück zum Zitat Kraft AD, Kaltenbach LS, Lo DC, Harry GJ. Activated microglia proliferate at neurites of mutant huntingtin-expressing neurons. Neurobiol Aging 2012;33:621.e17-33. Kraft AD, Kaltenbach LS, Lo DC, Harry GJ. Activated microglia proliferate at neurites of mutant huntingtin-expressing neurons. Neurobiol Aging 2012;33:621.e17-33.
74.
Zurück zum Zitat Cepeda C, Itri JN, Flores-Hernández J, Hurst RS, Calvert CR, Levine MS. Differential sensitivity of medium- and large-sized striatal neurons to NMDA but not kainate receptor activation in the rat. Eur J Neurosci 2001;14:1577-1589.CrossRefPubMed Cepeda C, Itri JN, Flores-Hernández J, Hurst RS, Calvert CR, Levine MS. Differential sensitivity of medium- and large-sized striatal neurons to NMDA but not kainate receptor activation in the rat. Eur J Neurosci 2001;14:1577-1589.CrossRefPubMed
75.
Zurück zum Zitat Rebec GV, Conroy SK, Barton SJ. Hyperactive striatal neurons in symptomatic Huntington R6/2 mice: variations with behavioral state and repeated ascorbate treatment. Neuroscience 2006;137:327-336.CrossRefPubMed Rebec GV, Conroy SK, Barton SJ. Hyperactive striatal neurons in symptomatic Huntington R6/2 mice: variations with behavioral state and repeated ascorbate treatment. Neuroscience 2006;137:327-336.CrossRefPubMed
76.
Zurück zum Zitat Graham RK, Pouladi MA, Joshi P, et al. Differential susceptibility to excitotoxic stress in YAC128 mouse models of Huntington disease between initiation and progression of disease. J Neurosci 2009;29:2193-2204.CrossRefPubMed Graham RK, Pouladi MA, Joshi P, et al. Differential susceptibility to excitotoxic stress in YAC128 mouse models of Huntington disease between initiation and progression of disease. J Neurosci 2009;29:2193-2204.CrossRefPubMed
77.
Zurück zum Zitat Ariano MA, Wagle N, Grissell AE. Neuronal vulnerability in mouse models of Huntington's disease: membrane channel protein changes. J Neurosci Res 2005;80:634-645.CrossRefPubMed Ariano MA, Wagle N, Grissell AE. Neuronal vulnerability in mouse models of Huntington's disease: membrane channel protein changes. J Neurosci Res 2005;80:634-645.CrossRefPubMed
78.
Zurück zum Zitat Rebec GV, Conroy SK, Barton SJ. Hyperactive striatal neurons in symptomatic Huntington R6/2 mice: variations with behavioral state and repeated ascorbate treatment. Neuroscience 2006;137:327-336.CrossRefPubMed Rebec GV, Conroy SK, Barton SJ. Hyperactive striatal neurons in symptomatic Huntington R6/2 mice: variations with behavioral state and repeated ascorbate treatment. Neuroscience 2006;137:327-336.CrossRefPubMed
79.
Zurück zum Zitat Cepeda C, Cummings DM, André VM, Holley SM, Levine MS. Genetic mouse models of Huntington’s disease: focus on electrophysiological mechanisms. ASN Neuro 2010;2:e00033.CrossRefPubMed Cepeda C, Cummings DM, André VM, Holley SM, Levine MS. Genetic mouse models of Huntington’s disease: focus on electrophysiological mechanisms. ASN Neuro 2010;2:e00033.CrossRefPubMed
80.
Zurück zum Zitat DiFiglia M, Sapp E, Chase KO, et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997;277:1990-1993.CrossRefPubMed DiFiglia M, Sapp E, Chase KO, et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997;277:1990-1993.CrossRefPubMed
81.
Zurück zum Zitat Hackam AS, Singaraja R, Zhang T, Gan L, Hayden MR. In vitro evidence for both the nucleus and cytoplasm as subcellular sites of pathogenesis in Huntington's disease. Hum Mol Genet 1999;8:25-33.CrossRefPubMed Hackam AS, Singaraja R, Zhang T, Gan L, Hayden MR. In vitro evidence for both the nucleus and cytoplasm as subcellular sites of pathogenesis in Huntington's disease. Hum Mol Genet 1999;8:25-33.CrossRefPubMed
82.
Zurück zum Zitat Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 2004;431:805-810.CrossRefPubMed Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 2004;431:805-810.CrossRefPubMed
83.
Zurück zum Zitat Perrin V, Dufour N, Raoul C, et al. Implication of the JNK pathway in a rat model of Huntington's disease. Exp Neurol 2009;215:191-200.CrossRefPubMed Perrin V, Dufour N, Raoul C, et al. Implication of the JNK pathway in a rat model of Huntington's disease. Exp Neurol 2009;215:191-200.CrossRefPubMed
84.
Zurück zum Zitat Hodgson JG, Agopyan N, Gutekunst CA, et al. A YAC mouse model for Huntington‘s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 1999;23:181-192.CrossRefPubMed Hodgson JG, Agopyan N, Gutekunst CA, et al. A YAC mouse model for Huntington‘s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 1999;23:181-192.CrossRefPubMed
85.
Zurück zum Zitat Schilling G, Becher MW, Sharp AH, et al. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet 1999;8:397-407. [Erratum in: Hum Mol Genet 1999;8:943]. Schilling G, Becher MW, Sharp AH, et al. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet 1999;8:397-407. [Erratum in: Hum Mol Genet 1999;8:943].
86.
Zurück zum Zitat Havel LS, Wang CE, Wade B, Huang B, Li S, Li XJ. Preferential accumulation of N-terminal mutant huntingtin in the nuclei of striatal neurons is regulated by phosphorylation. Hum Mol Genet 2011;20:1424-1437.CrossRefPubMed Havel LS, Wang CE, Wade B, Huang B, Li S, Li XJ. Preferential accumulation of N-terminal mutant huntingtin in the nuclei of striatal neurons is regulated by phosphorylation. Hum Mol Genet 2011;20:1424-1437.CrossRefPubMed
87.
Zurück zum Zitat Gu X, Greiner ER, Mishra R, et al. Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron 2009;64:828-840.CrossRefPubMed Gu X, Greiner ER, Mishra R, et al. Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron 2009;64:828-840.CrossRefPubMed
88.
Zurück zum Zitat Metzler M, Gan L, Mazarei G, et al. Phosphorylation of huntingtin at Ser421 in YAC128 neurons is associated with protection of YAC128 neurons from NMDA-mediated excitotoxicity and is modulated by PP1 and PP2A. J Neurosci 2010;30:14318-14329.CrossRefPubMed Metzler M, Gan L, Mazarei G, et al. Phosphorylation of huntingtin at Ser421 in YAC128 neurons is associated with protection of YAC128 neurons from NMDA-mediated excitotoxicity and is modulated by PP1 and PP2A. J Neurosci 2010;30:14318-14329.CrossRefPubMed
89.
Zurück zum Zitat Fienberg AA, Hiroi N, Mermelstein PG, et al. DARPP-32:regulator of the efficacy of dopaminergic neurotransmission. Science 1998;281:838-843.CrossRefPubMed Fienberg AA, Hiroi N, Mermelstein PG, et al. DARPP-32:regulator of the efficacy of dopaminergic neurotransmission. Science 1998;281:838-843.CrossRefPubMed
90.
Zurück zum Zitat Slow EJ, Graham RK, Osmand AP, et al. Absence of behavioral abnormalities and neurodegeneration in vivo despite widespread neuronal huntingtin inclusions. Proc Natl Acad Sci U S A 2005;102:11402-11407.CrossRefPubMed Slow EJ, Graham RK, Osmand AP, et al. Absence of behavioral abnormalities and neurodegeneration in vivo despite widespread neuronal huntingtin inclusions. Proc Natl Acad Sci U S A 2005;102:11402-11407.CrossRefPubMed
91.
Zurück zum Zitat Nucifora FC Jr, Sasaki M, Peters MF, et al. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 2001;291:2423-2428.CrossRefPubMed Nucifora FC Jr, Sasaki M, Peters MF, et al. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 2001;291:2423-2428.CrossRefPubMed
92.
Zurück zum Zitat Zhai W, Jeong H, Cui L, Krainc D, Tjian R. In vitro analysis of huntingtin-mediated transcriptional repression reveals multiple transcription factor targets. Cell 2005;123:1241-1253.CrossRefPubMed Zhai W, Jeong H, Cui L, Krainc D, Tjian R. In vitro analysis of huntingtin-mediated transcriptional repression reveals multiple transcription factor targets. Cell 2005;123:1241-1253.CrossRefPubMed
93.
Zurück zum Zitat Jiang H, Poirier MA, Liang Y, et al. Depletion of CBP is directly linked with cellular toxicity caused by mutant huntingtin. Neurobiol Dis 2006;23:543-551.CrossRefPubMed Jiang H, Poirier MA, Liang Y, et al. Depletion of CBP is directly linked with cellular toxicity caused by mutant huntingtin. Neurobiol Dis 2006;23:543-551.CrossRefPubMed
94.
Zurück zum Zitat Steffan JS, Bodai L, Pallos J, et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 2001;413:739-743.CrossRefPubMed Steffan JS, Bodai L, Pallos J, et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 2001;413:739-743.CrossRefPubMed
95.
Zurück zum Zitat Sadri-Vakili G, Cha JH. Mechanisms of disease: Histone modifications in Huntington's disease. Nat Clin Pract Neurol 2006;2:330-338.CrossRefPubMed Sadri-Vakili G, Cha JH. Mechanisms of disease: Histone modifications in Huntington's disease. Nat Clin Pract Neurol 2006;2:330-338.CrossRefPubMed
96.
Zurück zum Zitat Sadri-Vakili G, Bouzou B, Benn CL, et al. Histones associated with downregulated genes are hypo-acetylated in Huntington's disease models. Hum Mol Genet 2007;16:1293-1306.CrossRefPubMed Sadri-Vakili G, Bouzou B, Benn CL, et al. Histones associated with downregulated genes are hypo-acetylated in Huntington's disease models. Hum Mol Genet 2007;16:1293-1306.CrossRefPubMed
97.
Zurück zum Zitat Strand AD, Baquet ZC, Aragaki AK, et al. Expression profiling of Huntington's disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. J Neurosci 2007;27:11758-11768.CrossRefPubMed Strand AD, Baquet ZC, Aragaki AK, et al. Expression profiling of Huntington's disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. J Neurosci 2007;27:11758-11768.CrossRefPubMed
98.
Zurück zum Zitat Zucker B, Kama JA, Kuhn A, et al. Decreased Lin7b expression in layer 5 pyramidal neurons may contribute to impaired corticostriatal connectivity in huntington disease. J Neuropathol Exp Neurol 2010;69:880-895.CrossRefPubMed Zucker B, Kama JA, Kuhn A, et al. Decreased Lin7b expression in layer 5 pyramidal neurons may contribute to impaired corticostriatal connectivity in huntington disease. J Neuropathol Exp Neurol 2010;69:880-895.CrossRefPubMed
99.
Zurück zum Zitat Chai Y, Wu L, Griffin JD, Paulson HL. The role of protein composition in specifying nuclear inclusion formation in polyglutamine disease. J Biol Chem 2001;276:44889-44897.CrossRefPubMed Chai Y, Wu L, Griffin JD, Paulson HL. The role of protein composition in specifying nuclear inclusion formation in polyglutamine disease. J Biol Chem 2001;276:44889-44897.CrossRefPubMed
100.
Zurück zum Zitat Dunah AW, Jeong H, Griffin A, et al. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science 2002;296:2238-22343.CrossRefPubMed Dunah AW, Jeong H, Griffin A, et al. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science 2002;296:2238-22343.CrossRefPubMed
101.
Zurück zum Zitat Li SH, Cheng AL, Zhou H, et al. Interaction of Huntington disease protein with transcriptional activator Sp1. Mol Cell Biol 2002;22:1277-1287.CrossRefPubMed Li SH, Cheng AL, Zhou H, et al. Interaction of Huntington disease protein with transcriptional activator Sp1. Mol Cell Biol 2002;22:1277-1287.CrossRefPubMed
102.
Zurück zum Zitat Zuccato C, Belyaev N, Conforti P, et al. Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington's disease. J Neurosci 2007;27:6972-6983.CrossRefPubMed Zuccato C, Belyaev N, Conforti P, et al. Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington's disease. J Neurosci 2007;27:6972-6983.CrossRefPubMed
103.
Zurück zum Zitat Desplats PA, Lambert JR, Thomas EA. Functional roles for the striatal-enriched transcription factor, Bcl11b, in the control of striatal gene expression and transcriptional dysregulation in Huntington's disease. Neurobiol Dis 2008;31:298-308.CrossRefPubMed Desplats PA, Lambert JR, Thomas EA. Functional roles for the striatal-enriched transcription factor, Bcl11b, in the control of striatal gene expression and transcriptional dysregulation in Huntington's disease. Neurobiol Dis 2008;31:298-308.CrossRefPubMed
104.
Zurück zum Zitat Stroppolo A, Guinea B, Tian C, Sommer J, Ehrlich ME. Role of phosphatidylinositide 3-kinase in brain-derived neurotrophic factor-induced DARPP-32 expression in medium size spiny neurons in vitro. J Neurochem 2001;79:1027-1032.CrossRefPubMed Stroppolo A, Guinea B, Tian C, Sommer J, Ehrlich ME. Role of phosphatidylinositide 3-kinase in brain-derived neurotrophic factor-induced DARPP-32 expression in medium size spiny neurons in vitro. J Neurochem 2001;79:1027-1032.CrossRefPubMed
105.
Zurück zum Zitat Charron F, Nemer M. GATA transcription factors and cardiac development. Semin Cell Dev Biol 1999 Feb;10:85-91.CrossRefPubMed Charron F, Nemer M. GATA transcription factors and cardiac development. Semin Cell Dev Biol 1999 Feb;10:85-91.CrossRefPubMed
106.
Zurück zum Zitat Runne H, Régulier E, Kuhn A, et al. Dysregulation of gene expression in primary neuron models of Huntington’s disease shows that polyglutamine-related effects on the striatal transcriptome may not be dependent on brain circuitry. J Neurosci 2008;28:9723-9731.CrossRefPubMed Runne H, Régulier E, Kuhn A, et al. Dysregulation of gene expression in primary neuron models of Huntington’s disease shows that polyglutamine-related effects on the striatal transcriptome may not be dependent on brain circuitry. J Neurosci 2008;28:9723-9731.CrossRefPubMed
107.
Zurück zum Zitat Ivkovic S, Polonskaia O, Farinas I, Ehrlich ME. Brain-derived neurotrophic factor regulates maturation of the DARPP-32 phenotype in striatal medium size spiny neurons: Studies in vivo and in vitro. Neuroscience 1997;79:509-516.CrossRefPubMed Ivkovic S, Polonskaia O, Farinas I, Ehrlich ME. Brain-derived neurotrophic factor regulates maturation of the DARPP-32 phenotype in striatal medium size spiny neurons: Studies in vivo and in vitro. Neuroscience 1997;79:509-516.CrossRefPubMed
108.
Zurück zum Zitat Ivkovic S, Ehrlich ME. Expression of the striatal DARPP-32/ARPP-21 phenotype in GABAergic neurons requires neurotrophins in vivo and in vitro. J Neuroscience 1999;19:5409-5419. Ivkovic S, Ehrlich ME. Expression of the striatal DARPP-32/ARPP-21 phenotype in GABAergic neurons requires neurotrophins in vivo and in vitro. J Neuroscience 1999;19:5409-5419.
109.
Zurück zum Zitat Hodges A, Strand AD, Aragaki AK, et al. Regional and cellular gene expression changes in human Huntington’s disease brain. Hum Mol Genet 2006;15:965–977.CrossRefPubMed Hodges A, Strand AD, Aragaki AK, et al. Regional and cellular gene expression changes in human Huntington’s disease brain. Hum Mol Genet 2006;15:965–977.CrossRefPubMed
110.
Zurück zum Zitat Shao J, Diamond MI. Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Hum Mol Genet 2007;16 Spec No. 2:R115-R123.CrossRefPubMed Shao J, Diamond MI. Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Hum Mol Genet 2007;16 Spec No. 2:R115-R123.CrossRefPubMed
111.
Zurück zum Zitat Kuhn A, Goldstein DR, Hodges A, et al. Mutant huntingtin’s effects on striatal gene expression in mice recapitulate changes observed in human Huntington’s disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. Hum Mol Genet 2007;6:1845-1861.CrossRef Kuhn A, Goldstein DR, Hodges A, et al. Mutant huntingtin’s effects on striatal gene expression in mice recapitulate changes observed in human Huntington’s disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. Hum Mol Genet 2007;6:1845-1861.CrossRef
112.
Zurück zum Zitat Luthi-Carter R, Strand A, Peters NL, et al. Decreased expression of striatal signaling genes in a mouse model of Huntington‘s disease. Hum Mol Genet 2000;9:1259-1271.CrossRefPubMed Luthi-Carter R, Strand A, Peters NL, et al. Decreased expression of striatal signaling genes in a mouse model of Huntington‘s disease. Hum Mol Genet 2000;9:1259-1271.CrossRefPubMed
113.
Zurück zum Zitat Luthi-Carter R, Strand AD, Hanson SA, et al. Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington’s disease mouse models reveal context-independent effects. Hum Mol Genet 2002;11:1927-1937.CrossRefPubMed Luthi-Carter R, Strand AD, Hanson SA, et al. Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington’s disease mouse models reveal context-independent effects. Hum Mol Genet 2002;11:1927-1937.CrossRefPubMed
114.
Zurück zum Zitat Ramanathan S, Hanley JJ, Deniau JM, Bolam JP. Synaptic convergence of motor and somatosensory cortical afferents onto GABAergic interneurons in the rat striatum. J Neurosci 2002:22:8158-8169.PubMed Ramanathan S, Hanley JJ, Deniau JM, Bolam JP. Synaptic convergence of motor and somatosensory cortical afferents onto GABAergic interneurons in the rat striatum. J Neurosci 2002:22:8158-8169.PubMed
115.
Zurück zum Zitat Cicchetti F, Prensa L, Wu Y, Parent A. Chemical anatomy of striatal interneurons in normal individuals and in patients with Huntington’s disease. Brain Res Rev 2000;34:80-101.CrossRefPubMed Cicchetti F, Prensa L, Wu Y, Parent A. Chemical anatomy of striatal interneurons in normal individuals and in patients with Huntington’s disease. Brain Res Rev 2000;34:80-101.CrossRefPubMed
116.
Zurück zum Zitat Lucas EK, Markwardt SJ, Gupta S, et al. Parvalbumin deficiency and GABAergic dysfunction in mice lacking PGC-1alpha. J Neurosci 2010;30:7227-7735.CrossRefPubMed Lucas EK, Markwardt SJ, Gupta S, et al. Parvalbumin deficiency and GABAergic dysfunction in mice lacking PGC-1alpha. J Neurosci 2010;30:7227-7735.CrossRefPubMed
117.
Zurück zum Zitat Vargas MR, Johnson JA. The Nrf2-ARE cytoprotective pathway in astrocytes. Expert Rev Mol Med 2009;11:e17.CrossRefPubMed Vargas MR, Johnson JA. The Nrf2-ARE cytoprotective pathway in astrocytes. Expert Rev Mol Med 2009;11:e17.CrossRefPubMed
118.
Zurück zum Zitat Stack C, Ho D, Wille E, et al. Triterpenoids CDDO-ethyl amide and CDDO-trifluoroethyl amide improve the behavioral phenotype and brain pathology in a transgenic mouse model of Huntington’s disease. Free Radic Biol Med 2010;49:147-158.CrossRefPubMed Stack C, Ho D, Wille E, et al. Triterpenoids CDDO-ethyl amide and CDDO-trifluoroethyl amide improve the behavioral phenotype and brain pathology in a transgenic mouse model of Huntington’s disease. Free Radic Biol Med 2010;49:147-158.CrossRefPubMed
119.
Zurück zum Zitat Obrietan K, Hoyt KR. CRE-mediated transcription is increased in Huntington’s disease transgenic mice. J Neurosci 2004;28:791-796.CrossRef Obrietan K, Hoyt KR. CRE-mediated transcription is increased in Huntington’s disease transgenic mice. J Neurosci 2004;28:791-796.CrossRef
120.
Zurück zum Zitat Qiu Z, Norflus F, Singh B, et al. Sp1 is up-regulated in cellular and transgenic models of Huntington disease, and its reduction is neuroprotective. J Biol Chem 2006;281:16672-16680.CrossRefPubMed Qiu Z, Norflus F, Singh B, et al. Sp1 is up-regulated in cellular and transgenic models of Huntington disease, and its reduction is neuroprotective. J Biol Chem 2006;281:16672-16680.CrossRefPubMed
121.
Zurück zum Zitat Butler R, Bates GP. Histone deacetylase inhibitors as therapeutics for polyglutamine disorders. Nat Rev Neurosci 2006;7:784-796.CrossRefPubMed Butler R, Bates GP. Histone deacetylase inhibitors as therapeutics for polyglutamine disorders. Nat Rev Neurosci 2006;7:784-796.CrossRefPubMed
122.
Zurück zum Zitat Yazawa I, Hazeki N, Nakase H, Kanazawa I, Tanaka M. Histone H3 is aberrantly phosphorylated in glutamine-repeat diseases. Biochem Biophys Res Commun 2003;302:144-149.CrossRefPubMed Yazawa I, Hazeki N, Nakase H, Kanazawa I, Tanaka M. Histone H3 is aberrantly phosphorylated in glutamine-repeat diseases. Biochem Biophys Res Commun 2003;302:144-149.CrossRefPubMed
123.
Zurück zum Zitat Chen-Plotkin AS, Sadri-Vakili G, Yohrling GJ, et al. Decreased association of the transcription factor Sp1 with genes downregulated in Huntington's disease. Neurobiol Dis 2006;22:233-241.CrossRefPubMed Chen-Plotkin AS, Sadri-Vakili G, Yohrling GJ, et al. Decreased association of the transcription factor Sp1 with genes downregulated in Huntington's disease. Neurobiol Dis 2006;22:233-241.CrossRefPubMed
124.
Zurück zum Zitat Hockly E, Richon VM, Woodman B, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc Natl Acad Sci USA 2003;100:2041-2046.CrossRefPubMed Hockly E, Richon VM, Woodman B, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc Natl Acad Sci USA 2003;100:2041-2046.CrossRefPubMed
125.
Zurück zum Zitat Gardian G, Browne SE, Choi DK, et al. Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J Biol Chem 2005;280:556-563.PubMed Gardian G, Browne SE, Choi DK, et al. Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J Biol Chem 2005;280:556-563.PubMed
126.
Zurück zum Zitat Thomas EA, Coppola G, Desplats PA, et al. The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington’s disease transgenic mice. Proc Natl Acad Sci USA 2008;105:15564-15569.CrossRefPubMed Thomas EA, Coppola G, Desplats PA, et al. The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington’s disease transgenic mice. Proc Natl Acad Sci USA 2008;105:15564-15569.CrossRefPubMed
127.
Zurück zum Zitat Ferrante RJ, Kubilus JK, Lee J, et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci 2003;23:9418-9427.PubMed Ferrante RJ, Kubilus JK, Lee J, et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci 2003;23:9418-9427.PubMed
128.
Zurück zum Zitat Gomez GT, Hu H, McCaw EA, Denovan-Wright EM. Brain-specific factors in combination with mutant huntingtin induce gene-specific transcriptional dysregulation. Mol Cell Neurosci 2006;31:661-675.CrossRefPubMed Gomez GT, Hu H, McCaw EA, Denovan-Wright EM. Brain-specific factors in combination with mutant huntingtin induce gene-specific transcriptional dysregulation. Mol Cell Neurosci 2006;31:661-675.CrossRefPubMed
129.
Zurück zum Zitat Blau S, Daly L, Fienberg A, Teitelman G, Ehrlich ME. DARPP-32 promoter directs transgene expression to renal thick ascending limb of loop of Henle. Am J Physiol 1995;269:F564-F570.PubMed Blau S, Daly L, Fienberg A, Teitelman G, Ehrlich ME. DARPP-32 promoter directs transgene expression to renal thick ascending limb of loop of Henle. Am J Physiol 1995;269:F564-F570.PubMed
130.
Zurück zum Zitat Weydt P, Pineda VV, Torrence AE, et al. Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metab 2006;4:349-362.CrossRefPubMed Weydt P, Pineda VV, Torrence AE, et al. Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metab 2006;4:349-362.CrossRefPubMed
131.
Zurück zum Zitat Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 2006;127:59-69.CrossRefPubMed Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 2006;127:59-69.CrossRefPubMed
132.
Zurück zum Zitat Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature 1986;321:168-171.CrossRefPubMed Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature 1986;321:168-171.CrossRefPubMed
133.
Zurück zum Zitat Ellison DW, Beal MF, Mazurek MF, Malloy JR, Bird ED, Martin JB. Amino acid neurotransmitter abnormalities in Huntington's disease and the quinolinic acid animal model of Huntington's disease. Brain 1987;110(pt 6):1657-1673.CrossRefPubMed Ellison DW, Beal MF, Mazurek MF, Malloy JR, Bird ED, Martin JB. Amino acid neurotransmitter abnormalities in Huntington's disease and the quinolinic acid animal model of Huntington's disease. Brain 1987;110(pt 6):1657-1673.CrossRefPubMed
134.
Zurück zum Zitat DiFiglia M. Excitotoxic injury of the neostriatum: a model for Huntington's disease. Trends Neurosci 1990;13:286-289.CrossRefPubMed DiFiglia M. Excitotoxic injury of the neostriatum: a model for Huntington's disease. Trends Neurosci 1990;13:286-289.CrossRefPubMed
135.
Zurück zum Zitat Guidetti P, Luthi-Carter RE, Augood SJ, Schwarcz R. Neostriatal and cortical quinolinate levels are increased in early grade Huntington's disease. Neurobiol Dis 2004;17:455-461.CrossRefPubMed Guidetti P, Luthi-Carter RE, Augood SJ, Schwarcz R. Neostriatal and cortical quinolinate levels are increased in early grade Huntington's disease. Neurobiol Dis 2004;17:455-461.CrossRefPubMed
136.
Zurück zum Zitat Brouillet E, Hantraye P, Ferrante RJ, et al. Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc Natl Acad Sci USA 1995;92:7105-7109.CrossRefPubMed Brouillet E, Hantraye P, Ferrante RJ, et al. Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc Natl Acad Sci USA 1995;92:7105-7109.CrossRefPubMed
137.
Zurück zum Zitat Stahl WL, Swanson PD. Biochemical abnormalities in Huntington’s chorea brains. Neurology 1974;24:813-819.PubMed Stahl WL, Swanson PD. Biochemical abnormalities in Huntington’s chorea brains. Neurology 1974;24:813-819.PubMed
138.
Zurück zum Zitat Brennan WA Jr, Bird ED, Aprille JR. Regional mitochondrial respiratory activity in Huntington’s disease brain. J Neurochem 1985;44:1948-1950.CrossRefPubMed Brennan WA Jr, Bird ED, Aprille JR. Regional mitochondrial respiratory activity in Huntington’s disease brain. J Neurochem 1985;44:1948-1950.CrossRefPubMed
139.
Zurück zum Zitat Sawa A, Wiegand GW, Cooper J, et al. Increased apoptosis of Huntington disease lymphoblasts associated with repeat length dependent mitochondrial depolarization. Nat Med 1999;5:1194-1198.CrossRefPubMed Sawa A, Wiegand GW, Cooper J, et al. Increased apoptosis of Huntington disease lymphoblasts associated with repeat length dependent mitochondrial depolarization. Nat Med 1999;5:1194-1198.CrossRefPubMed
140.
Zurück zum Zitat Tabrizi SJ, Workman J, Hart PE, et al. Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann Neurol 2000;47:80-86.CrossRefPubMed Tabrizi SJ, Workman J, Hart PE, et al. Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann Neurol 2000;47:80-86.CrossRefPubMed
141.
Zurück zum Zitat Panov AV, Gutekunst CA, Leavitt BR, et al. Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci 2002;5:731-736.PubMed Panov AV, Gutekunst CA, Leavitt BR, et al. Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci 2002;5:731-736.PubMed
142.
Zurück zum Zitat Benchoua A, Trioulier Y, Zala D, et al. Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin. Mol Biol Cell 2006;17:1652-1663.CrossRefPubMed Benchoua A, Trioulier Y, Zala D, et al. Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin. Mol Biol Cell 2006;17:1652-1663.CrossRefPubMed
143.
Zurück zum Zitat Browne SE, Bowling AC, MacGarvey U, et al. Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 1997;41:646-653.CrossRefPubMed Browne SE, Bowling AC, MacGarvey U, et al. Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 1997;41:646-653.CrossRefPubMed
144.
Zurück zum Zitat Parker WD Jr., Boyson SJ, Luder AS, Parks JK. Evidence for a defect in NADH: ubiquinone oxidoreductase (complex I) in Huntington’s disease. Neurology 1990;40:1231-1234PubMed Parker WD Jr., Boyson SJ, Luder AS, Parks JK. Evidence for a defect in NADH: ubiquinone oxidoreductase (complex I) in Huntington’s disease. Neurology 1990;40:1231-1234PubMed
145.
Zurück zum Zitat Arenas J, Campos Y, Ribacoba R, et al. Complex I defect in muscle from patients with Huntington’s disease. Ann Neurol 1998;43:397-400.CrossRefPubMed Arenas J, Campos Y, Ribacoba R, et al. Complex I defect in muscle from patients with Huntington’s disease. Ann Neurol 1998;43:397-400.CrossRefPubMed
146.
Zurück zum Zitat Shirendeb U, Reddy AP, Manczak M, et al. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington’s disease: implications for selective neuronal damage. Hum Mol Genet 2011;20:1438-1455.CrossRefPubMed Shirendeb U, Reddy AP, Manczak M, et al. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington’s disease: implications for selective neuronal damage. Hum Mol Genet 2011;20:1438-1455.CrossRefPubMed
147.
Zurück zum Zitat Benchoua A, Trioulier Y, Diguet E, et al. Dopamine determines the vulnerability of striatal neurons to the N-terminal fragment of mutant huntingtin through the regulation of mitochondrial complex II. Hum Mol Genet 2008;17:1446-1456.CrossRefPubMed Benchoua A, Trioulier Y, Diguet E, et al. Dopamine determines the vulnerability of striatal neurons to the N-terminal fragment of mutant huntingtin through the regulation of mitochondrial complex II. Hum Mol Genet 2008;17:1446-1456.CrossRefPubMed
148.
Zurück zum Zitat Nicholls DG. Mitochondrial calcium function and dysfunction in the central nervous system. Biochim Biophys Acta 2009;1787:1416-1424.CrossRefPubMed Nicholls DG. Mitochondrial calcium function and dysfunction in the central nervous system. Biochim Biophys Acta 2009;1787:1416-1424.CrossRefPubMed
149.
Zurück zum Zitat Hansson O, Guatteo E, Mercuri NB, et al. Resistance to NMDA toxicity correlates with appearance of nuclear inclusions, behavioural deficits and changes in calcium homeostasis in mice transgenic for exon 1 of the Huntington gene. Eur J Neurosci 2001;14:1492-1504.CrossRefPubMed Hansson O, Guatteo E, Mercuri NB, et al. Resistance to NMDA toxicity correlates with appearance of nuclear inclusions, behavioural deficits and changes in calcium homeostasis in mice transgenic for exon 1 of the Huntington gene. Eur J Neurosci 2001;14:1492-1504.CrossRefPubMed
150.
Zurück zum Zitat Zeron MM, Fernandes HB, Krebs C, et al. Potentiation of NMDA receptor-mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington's disease. Mol Cell Neurosci 2004;25:469-479.CrossRefPubMed Zeron MM, Fernandes HB, Krebs C, et al. Potentiation of NMDA receptor-mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington's disease. Mol Cell Neurosci 2004;25:469-479.CrossRefPubMed
151.
Zurück zum Zitat Heng MY, Detloff PJ, Wang PL, Tsien JZ, Albin RL. In vivo evidence for NMDA receptor-mediated excitotoxicity in a murine genetic model of Huntington disease. J Neurosci 2009;29:3200-3205.CrossRefPubMed Heng MY, Detloff PJ, Wang PL, Tsien JZ, Albin RL. In vivo evidence for NMDA receptor-mediated excitotoxicity in a murine genetic model of Huntington disease. J Neurosci 2009;29:3200-3205.CrossRefPubMed
152.
Zurück zum Zitat Okamoto S, Pouladi MA, Talantova M, et al. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med 2009;15:1407-1413.CrossRefPubMed Okamoto S, Pouladi MA, Talantova M, et al. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med 2009;15:1407-1413.CrossRefPubMed
153.
Zurück zum Zitat Milnerwood AJ, Gladding CM, Pouladi MA, et al. Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron 2010;65:178-190.CrossRefPubMed Milnerwood AJ, Gladding CM, Pouladi MA, et al. Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron 2010;65:178-190.CrossRefPubMed
154.
Zurück zum Zitat Gascón S, Sobrado M, Roda JM, Rodríguez-Peña A, Díaz-Guerra M. Excitotoxicity and focal cerebral ischemia induce truncation of the NR2A and NR2B subunits of the NMDA receptor and cleavage of the scaffolding protein PSD-95. Mol Psychiatry 2008;13:99-114.CrossRefPubMed Gascón S, Sobrado M, Roda JM, Rodríguez-Peña A, Díaz-Guerra M. Excitotoxicity and focal cerebral ischemia induce truncation of the NR2A and NR2B subunits of the NMDA receptor and cleavage of the scaffolding protein PSD-95. Mol Psychiatry 2008;13:99-114.CrossRefPubMed
155.
Zurück zum Zitat Finn SF, Hyman BT, Storey E, Miller JM, Beal MF. Effects of aging on quinolinic acid lesions in rat striatum. Brain Res 1991;562:276-280.CrossRefPubMed Finn SF, Hyman BT, Storey E, Miller JM, Beal MF. Effects of aging on quinolinic acid lesions in rat striatum. Brain Res 1991;562:276-280.CrossRefPubMed
156.
Zurück zum Zitat Cepeda C, Li Z, Levine MS. Aging reduces neostriatal responsiveness to N-methyl-D-aspartate and dopamine: an in vitro electrophysiological study. Neuroscience 1996;73:733-750.CrossRefPubMed Cepeda C, Li Z, Levine MS. Aging reduces neostriatal responsiveness to N-methyl-D-aspartate and dopamine: an in vitro electrophysiological study. Neuroscience 1996;73:733-750.CrossRefPubMed
157.
Zurück zum Zitat Hansson O, Petersen A, Leist M, Nicotera P, Castilho RF, Brundin P. Transgenic mice expressing a Huntington’s disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity. Proc Natl Acad Sci USA 1999;96:8727-8732.CrossRefPubMed Hansson O, Petersen A, Leist M, Nicotera P, Castilho RF, Brundin P. Transgenic mice expressing a Huntington’s disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity. Proc Natl Acad Sci USA 1999;96:8727-8732.CrossRefPubMed
158.
Zurück zum Zitat Giacomello M, Hudec R, Lopreiato R. Huntington’s disease, calcium, and mitochondria. Biofactors 2011;37:206-218.CrossRefPubMed Giacomello M, Hudec R, Lopreiato R. Huntington’s disease, calcium, and mitochondria. Biofactors 2011;37:206-218.CrossRefPubMed
159.
Zurück zum Zitat Beal MF, Brouillet E, Jenkins BG, et al. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 1993;13:4181-4192.PubMed Beal MF, Brouillet E, Jenkins BG, et al. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 1993;13:4181-4192.PubMed
160.
Zurück zum Zitat Oliveira JM, Chen S, Almeida S, et al. Mitochondrial-dependent Ca2+ handling in Huntington’s disease striatal cells: effect of histone deacetylase inhibitors. J Neurosci 2006;26:11174-11186.CrossRefPubMed Oliveira JM, Chen S, Almeida S, et al. Mitochondrial-dependent Ca2+ handling in Huntington’s disease striatal cells: effect of histone deacetylase inhibitors. J Neurosci 2006;26:11174-11186.CrossRefPubMed
161.
Zurück zum Zitat Hardingham GE. Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem Soc Trans 2009;37:1147-1160.CrossRefPubMed Hardingham GE. Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem Soc Trans 2009;37:1147-1160.CrossRefPubMed
162.
Zurück zum Zitat Missale C, Fiorentini C, Busi C, Collo G, Spano PF. The NMDA/D1 receptor complex as a new target in drug development. Curr Top Med Chem 2006;6:801-808.CrossRefPubMed Missale C, Fiorentini C, Busi C, Collo G, Spano PF. The NMDA/D1 receptor complex as a new target in drug development. Curr Top Med Chem 2006;6:801-808.CrossRefPubMed
163.
Zurück zum Zitat Lovinger DM. Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 2010;58:951-961.CrossRefPubMed Lovinger DM. Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 2010;58:951-961.CrossRefPubMed
164.
Zurück zum Zitat Tang TS, Chen X, Liu J, Bezprozvanny I. Dopaminergic signaling and striatal neurodegeneration in Huntington's disease. J Neurosci 2007;227:7899-7910.CrossRef Tang TS, Chen X, Liu J, Bezprozvanny I. Dopaminergic signaling and striatal neurodegeneration in Huntington's disease. J Neurosci 2007;227:7899-7910.CrossRef
165.
Zurück zum Zitat Deyts C, Galan-Rodriguez B, Martin E, et al. Dopamine D2 receptor stimulation potentiates PolyQ-Huntingtin-induced mouse striatal neuron dysfunctions via Rho/ROCK-II activation. PLoS One 2009;4:e8287.CrossRefPubMed Deyts C, Galan-Rodriguez B, Martin E, et al. Dopamine D2 receptor stimulation potentiates PolyQ-Huntingtin-induced mouse striatal neuron dysfunctions via Rho/ROCK-II activation. PLoS One 2009;4:e8287.CrossRefPubMed
166.
Zurück zum Zitat Cepeda C, Colwell CS, Itri JN, Gruen E, Levine MS. Dopaminergic modulation of early signs of excitotoxicity in visualized rat neostriatal neurons. Eur J Neurosci 1998;10:3491-3497.CrossRefPubMed Cepeda C, Colwell CS, Itri JN, Gruen E, Levine MS. Dopaminergic modulation of early signs of excitotoxicity in visualized rat neostriatal neurons. Eur J Neurosci 1998;10:3491-3497.CrossRefPubMed
167.
Zurück zum Zitat Gladding CM, Raymond LA. Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol Cell Neurosci 2011;48:308-320.CrossRefPubMed Gladding CM, Raymond LA. Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol Cell Neurosci 2011;48:308-320.CrossRefPubMed
168.
Zurück zum Zitat Iwakura Y, Nawa H, Sora I, Chao MV. Dopamine D1 receptor-induced signaling through TrkB receptors in striatal neurons. J Biol Chem 2008;283:15799-15806.CrossRefPubMed Iwakura Y, Nawa H, Sora I, Chao MV. Dopamine D1 receptor-induced signaling through TrkB receptors in striatal neurons. J Biol Chem 2008;283:15799-15806.CrossRefPubMed
169.
Zurück zum Zitat Altar CA, Cai N, Bliven T, et al. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 1997;389:856-860.CrossRefPubMed Altar CA, Cai N, Bliven T, et al. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 1997;389:856-860.CrossRefPubMed
170.
Zurück zum Zitat Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S. Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 1997;17:2295-2313.PubMed Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S. Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 1997;17:2295-2313.PubMed
171.
Zurück zum Zitat Yurek DM, Hipkens SB, Wiegand SJ, Altar CA. Optimal effectiveness of BDNF for fetal nigral transplants coincides with the ontogenic appearance of BDNF in the striatum. J Neurosci 1998;18:6040-6047.PubMed Yurek DM, Hipkens SB, Wiegand SJ, Altar CA. Optimal effectiveness of BDNF for fetal nigral transplants coincides with the ontogenic appearance of BDNF in the striatum. J Neurosci 1998;18:6040-6047.PubMed
172.
Zurück zum Zitat Fusco FR, Zuccato C, Tartari M, et al. Co-localization of brain-derived neurotrophic factor (BDNF) and wild-type huntingtin in normal and quinolinic acid-lesioned rat brain. Eur J Neurosci 2003;18:1093-1102.CrossRefPubMed Fusco FR, Zuccato C, Tartari M, et al. Co-localization of brain-derived neurotrophic factor (BDNF) and wild-type huntingtin in normal and quinolinic acid-lesioned rat brain. Eur J Neurosci 2003;18:1093-1102.CrossRefPubMed
173.
Zurück zum Zitat Hermel E, Gafni J, Propp SS, et al. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease. Cell Death Differ 2004;11:424-438.CrossRefPubMed Hermel E, Gafni J, Propp SS, et al. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease. Cell Death Differ 2004;11:424-438.CrossRefPubMed
174.
Zurück zum Zitat Gines S, Bosch M, Marco S, et al. Reduced expression of the TrkB receptor in Huntington's disease mouse models and in human brain. Eur J Neurosci 2006;23:649-658.CrossRefPubMed Gines S, Bosch M, Marco S, et al. Reduced expression of the TrkB receptor in Huntington's disease mouse models and in human brain. Eur J Neurosci 2006;23:649-658.CrossRefPubMed
175.
Zurück zum Zitat Zuccato C, Marullo M, Conforti P, MacDonald ME, Tartari M, Cattaneo E. Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington’s disease. Brain Pathol 2008;18:225-238.CrossRefPubMed Zuccato C, Marullo M, Conforti P, MacDonald ME, Tartari M, Cattaneo E. Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington’s disease. Brain Pathol 2008;18:225-238.CrossRefPubMed
176.
Zurück zum Zitat Baquet ZC, Gorski JA, Jones KR. Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J Neurosci 2004;24:4250-4258.CrossRefPubMed Baquet ZC, Gorski JA, Jones KR. Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J Neurosci 2004;24:4250-4258.CrossRefPubMed
177.
Zurück zum Zitat Rauskolb S, Zagrebelsky M, Dreznjak A, et al. Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth. J Neurosci 2010;30:1739-1749.CrossRefPubMed Rauskolb S, Zagrebelsky M, Dreznjak A, et al. Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth. J Neurosci 2010;30:1739-1749.CrossRefPubMed
178.
Zurück zum Zitat Bogush A, Pedrini S, Pelta-Heller J, et al. AKT and CDK5/p35 mediate brain-derived neurotrophic factor induction of DARPP-32 in medium size spiny neurons in vitro. J Biol Chem 2007;282:7352-7359.CrossRefPubMed Bogush A, Pedrini S, Pelta-Heller J, et al. AKT and CDK5/p35 mediate brain-derived neurotrophic factor induction of DARPP-32 in medium size spiny neurons in vitro. J Biol Chem 2007;282:7352-7359.CrossRefPubMed
179.
Zurück zum Zitat Gharami K, Xie Y, An JJ, Tonegawa S, Xu B. Brain-derived neurotrophic factor over-expression in the forebrain ameliorates Huntington's disease phenotypes in mice. J Neurochem 2008;105:369-379.CrossRefPubMed Gharami K, Xie Y, An JJ, Tonegawa S, Xu B. Brain-derived neurotrophic factor over-expression in the forebrain ameliorates Huntington's disease phenotypes in mice. J Neurochem 2008;105:369-379.CrossRefPubMed
180.
Zurück zum Zitat Costantini LC, Feinstein SC, Radeke MJ, Snyder-Keller A. Compartmental expression of trkB receptor protein in the developing striatum. Neuroscience 1999;89:505-513.CrossRefPubMed Costantini LC, Feinstein SC, Radeke MJ, Snyder-Keller A. Compartmental expression of trkB receptor protein in the developing striatum. Neuroscience 1999;89:505-513.CrossRefPubMed
181.
Zurück zum Zitat Koh JY, Gwag BJ, Lobner D, Choi DW. Potentiated necrosis of cultured cortical neurons by neurotrophins. Science 1995;268:573-575.CrossRefPubMed Koh JY, Gwag BJ, Lobner D, Choi DW. Potentiated necrosis of cultured cortical neurons by neurotrophins. Science 1995;268:573-575.CrossRefPubMed
182.
Zurück zum Zitat Fryer HJ, Wolf DH, Knox RJ, et al. Brain-derived neurotrophic factor induces excitotoxic sensitivity in cultures embryonic rat spinal motor neurons through activation of the phosphatidylinositol 3-kinase pathway. J Neurochem 2000;74:582-595.CrossRefPubMed Fryer HJ, Wolf DH, Knox RJ, et al. Brain-derived neurotrophic factor induces excitotoxic sensitivity in cultures embryonic rat spinal motor neurons through activation of the phosphatidylinositol 3-kinase pathway. J Neurochem 2000;74:582-595.CrossRefPubMed
183.
Zurück zum Zitat Hu P, Kalb RG. BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB. J Neurochem 2003;84:1421-1430.CrossRefPubMed Hu P, Kalb RG. BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB. J Neurochem 2003;84:1421-1430.CrossRefPubMed
184.
Zurück zum Zitat Mojsilovic-Petrovic J, Jeong GB, Crocker A, et al. Protecting motor neurons from toxic insult by antagonism of adenosine A2a and Trk receptors. J Neurosci 2006;26:9250-9263.CrossRefPubMed Mojsilovic-Petrovic J, Jeong GB, Crocker A, et al. Protecting motor neurons from toxic insult by antagonism of adenosine A2a and Trk receptors. J Neurosci 2006;26:9250-9263.CrossRefPubMed
185.
Zurück zum Zitat Domenici MR, Scattoni ML, Martire A, et al. Behavioral and electrophysiological effects of the adenosine A2A receptor antagonist SCH58261 in R6/2 Huntington’s disease mice. Neurobiol Dis 2007;28:197-205CrossRefPubMed Domenici MR, Scattoni ML, Martire A, et al. Behavioral and electrophysiological effects of the adenosine A2A receptor antagonist SCH58261 in R6/2 Huntington’s disease mice. Neurobiol Dis 2007;28:197-205CrossRefPubMed
186.
Zurück zum Zitat Popoli P, Blum D, Martire A, Ledent C, Ceruti S, Abbracchio MP. Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington’s disease. Prog Neurobiol 2007;81:331-348.CrossRefPubMed Popoli P, Blum D, Martire A, Ledent C, Ceruti S, Abbracchio MP. Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington’s disease. Prog Neurobiol 2007;81:331-348.CrossRefPubMed
187.
Zurück zum Zitat Torres-Peraza JF, Giralt A, García-Martínez JM, Pedrosa E, Canals JM, Alberch J. Disruption of striatal glutamatergic transmission induced by mutant huntingtin involves remodeling of both postsynaptic density and NMDA receptor signaling. Neurobiol Dis 2008;29:409-421.CrossRefPubMed Torres-Peraza JF, Giralt A, García-Martínez JM, Pedrosa E, Canals JM, Alberch J. Disruption of striatal glutamatergic transmission induced by mutant huntingtin involves remodeling of both postsynaptic density and NMDA receptor signaling. Neurobiol Dis 2008;29:409-421.CrossRefPubMed
188.
Zurück zum Zitat Xifró X, Giralt A, Saavedra A, et al. Reduced calcineurin protein levels and activity in exon-1 mouse models of Huntington’s disease: role in excitotoxicity. Neurobiol Dis 2009;36:461-469.CrossRefPubMed Xifró X, Giralt A, Saavedra A, et al. Reduced calcineurin protein levels and activity in exon-1 mouse models of Huntington’s disease: role in excitotoxicity. Neurobiol Dis 2009;36:461-469.CrossRefPubMed
Metadaten
Titel
Huntington’s Disease and the Striatal Medium Spiny Neuron: Cell-Autonomous and Non-Cell-Autonomous Mechanisms of Disease
verfasst von
Michelle E. Ehrlich
Publikationsdatum
01.04.2012
Verlag
Springer-Verlag
Erschienen in
Neurotherapeutics / Ausgabe 2/2012
Print ISSN: 1933-7213
Elektronische ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-012-0112-2

Weitere Artikel der Ausgabe 2/2012

Neurotherapeutics 2/2012 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.