Skip to main content
Erschienen in: Virology Journal 1/2014

Open Access 01.12.2014 | Short report

Hyperimmune intravenous immunoglobulin containing high titers of pandemic H1N1 hemagglutinin and neuraminidase antibodies provides dose-dependent protection against lethal virus challenge in SCID mice

verfasst von: Christine Hohenadl, Walter Wodal, Astrid Kerschbaum, Richard Fritz, M Keith Howard, Maria R Farcet, Daniel Portsmouth, John K McVey, Donald A Baker, Hartmut J Ehrlich, P Noel Barrett, Thomas R Kreil

Erschienen in: Virology Journal | Ausgabe 1/2014

Abstract

Background

Convalescent plasma and fractionated immunoglobulins have been suggested as prophylactic or therapeutic interventions during an influenza pandemic.

Findings

Intravenous immunoglobulin (IVIG) preparations manufactured from human plasma collected before the 2009 H1N1 influenza pandemic, and post-pandemic hyperimmune (H)-IVIG preparations were characterized with respect to hemagglutination inhibition (HI), microneutralization (MN) and neuraminidase-inhibiting (NAi) antibody titers against pandemic H1N1 (pH1N1) and seasonal H1N1 (sH1N1) viruses. The protective efficacy of the IVIG and H-IVIG preparations was evaluated in a SCID mouse challenge model.
Substantial levels of HI, MN and NAi antibodies against pH1N1 (GMTs 1:45, 1:204 and 1: 727, respectively) and sH1N1 (GMTs 1:688, 1:4,946 and 1:312, respectively) were present in pre-pandemic IVIG preparations. In post-pandemic H-IVIG preparations, HI, MN and NAi antibody GMTs against pH1N1 were 1:1,280, 1:11,404 and 1:2,488 (28-, 56- and 3.4-fold enriched), respectively, compared to pre-pandemic IVIG preparations (p < 0.001). Post-pandemic H-IVIG (HI titer 1:1,280) provided complete protection from lethality of SCID mice against pH1N1 challenge (100% of mice survived for 29 days post-challenge). Pre-pandemic IVIG (HI titer 1:70) did not provide significant protection against pH1N1 challenge (50% of mice survived 29 days post-challenge compared to 40% survival in the buffer control group). There was a highly significant correlation between circulating in vivo HI and MN antibody titers and survival (p < 0001).

Conclusion

The substantial enrichment of HA- and NA-specific antibodies in H-IVIG and the efficacious protection of SCID mice against challenge with pH1N1 suggests H-IVIG as a promising intervention against pandemic influenza for immunocompromised patients and other risk groups.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1743-422X-11-70) contains supplementary material, which is available to authorized users.

Competing interests

All authors are employees of Baxter BioScience, manufacturer of the pandemic H1N1 hyperimmune intravenous immunoglobulin. WW, AK, MKH, JKMcV, DAB, HJE, PNB and TRK have stock options. The study was funded by Baxter BioScience.

Authors’ contributions

CH, WW, MKH, JKM, DAB and TRK conceived and planned the study. CH, WW; AK, RF and MRF collected the data. All authors were involved in data analysis and drafting and revision of the manuscript. All authors read and approved the final manuscript.

Background

Infectious diseases were commonly managed by passive transfer of human or animal sera prior to the development of effective vaccines and antimicrobials, and passive transfer of convalescent sera is currently still used to prevent and treat some viral and bacterial infections [1, 2]. The use of convalescent plasma and fractionated immunoglobulins [3, 4], and, more recently, monoclonal antibodies [58], has been suggested as a complementary strategy to prevent or treat virus infection during an influenza pandemic. Treatment of severe pH1N1 infection with convalescent plasma or H-IVIG was associated with lower viral load and reduced mortality [9, 10].
As previously reported [11], we investigated the feasibility of manufacturing H-IVIG as a response to the emergence of the 2009 H1N1 pandemic (pH1N1) virus. H-IVIG preparations were shown to have significantly elevated levels of pH1N1 hemagglutinating (HI) and neutralizing antibodies, as assessed by microneutralization (MN) assay, compared to standard IVIG preparations collected from donors either during or before the H1N1 pandemic [11].
In the present study, we further characterized post-pandemic H-IVIG preparations with respect to HI and MN antibodies against both pH1N1 and a seasonal H1N1 (sH1N1) virus (A/New Caledonia/20/1999, which circulated in the Northern hemisphere and was a recommended component of the trivalent seasonal vaccine from 2000–01 to 2006–07). We also assessed the level of pre-existing cross-reactive pH1N1 immunity in the donor population by determining the HI and MN titers against pH1N1 and sH1N1 in pre-pandemic IVIG preparations. In addition, we investigated the extent to which antibodies capable of inhibiting the enzymatic activity of the sH1N1 and pH1N1 neuraminidase (NA) antigens were enriched in the post-pandemic compared to pre-pandemic preparations. We also investigated the ability of pre-pandemic IVIG and post-pandemic H-IVIG to protect highly susceptible immunodeficient SCID mice against challenge with wild-type pH1N1 virus.

Methods

IVIG and H-IVIG

A total of 13 IVIG preparations (Gammagard Liquid/KIOVIG, Baxter Healthcare, Westlake Village, CA) manufactured from human plasma collected before the 2009 H1N1 influenza pandemic (manufactured January to November 2009, plasma collected >6 months prior to these dates), and two lots of post-pandemic H-IVIG preparations (manufactured July 2010) [11] were characterized in the present study. For IVIG production, collected plasma was pooled into two 7500-L batches, and the Cohn ethanol fractionation and downstream processes for the two H-IVIG lots were performed in full accordance with the licensed process for Gammagard Liquid/KIOVIG, a triple virus-reduced 10% IVIG preparation [12, 13].

Laboratory Assays

Pre-pandemic IVIG and H-IVIG preparations were characterized with respect to HI and MN titers against pH1N1 (A/California/07/2009 reassortant NYMC X-179A), and sH1N1 (A/New Caledonia/20/1999), as previously described [11].
Antibodies capable of inhibiting the enzymatic activity of NA (NAi antibodies) in the IVIG and H-IVIG preparations were detected using a highly sensitive enzyme-linked lectin assay (ELLA), as previously described [14]. N1 antigens were obtained by splitting wild-type A/California/07/2009 (CDC, Atlanta, GA) and A/New Caledonia/20/1999 virus preparations by overnight incubation with 0.5% Triton X-100 at 4°C, followed by detergent removal using 20% Bio-Beads (Biorad).

Mouse passive transfer studies

6–8 week old SCID mice (strain CB17/Icr-Prkdcscid/IcrCrl; Charles River Laboratories, Germany) were intranasally infected with 30 μl containing 6×104 tissue culture infectious dose 50% (TCID50) of H1N1 strain A/California/07/2009 (9.5-fold 50% lethal (LD50) dose [15]) and monitored 29 days. For passive protection studies, mice were intraperitoneally injected three days prior to challenge with 200 μl of H-IVIG, IVIG or PBS control. Two independent experiments with two different lots of H-IVIG (8–10 mice per group), and two independent experiments with a pool of 5 lots of IVIG or PBS control (10 mice per group) were done. For calculation of dose-dependency, 200 μl of undiluted and 2-fold serial dilutions of H-IVIG, undiluted IVIG or phosphate-buffered saline (PBS) were used. Serum was obtained from animals before challenge, at Day 3, and at Day 32 to determine circulating in vivo antibody titers.

Statistical analysis

Statistical differences between IVIG and H-IVIG antibody titers were calculated from combined data by unpaired Student t-test analysis. Differences in survival were analyzed with a Log-rank (Mantel-Cox) test. The significance of the correlation of in vitro and in vivo HI and MN titers, as determined on Day 3 and Day 32, as well as correlation of Day 3 antibody titers with survival was evaluated using a nonparametric Spearman correlation analysis (GraphPad Prism v.5.01 software).

Results and Discussion

To investigate the titers of antibodies against sH1N1 and pH1N1 in pre-pandemic (n = 13) and post-pandemic IVIG (n = 2) preparations, sera were analyzed by HI, MN and NAi assays. Figure 1 shows HI, MN and NAi titers measured in pre-pandemic IVIG preparations (open bars) and post-pandemic H-IVIG preparations (hatched bars). Pre-pandemic IVIG preparations had substantial HI, MN and NAi titers against pH1N1 (grey bars) (geometric mean titer [GMT] 1:45, 1:204 and 1:727, respectively), as well as against sH1N1 (white bars) (GMT 1:688, 1:4,946, and 1:312 respectively). As expected, significantly higher HI, MN and NAi antibody titers against pH1N1 were present in the post-pandemic H-IVIG preparations compared to titers in the pre-pandemic IVIG preparations (P < 0.0001 for all serological assays). GMTs of 1:2,560 (HI), 1:11,404 (MN) and 1: 2,488 (NAi) were determined for the post-pandemic H-IVIG preparations, an increase of 28- 56- and 3.4-fold, respectively, compared to pre-pandemic IVIG preparations. In addition, higher titers of HI (1:2,560), MN (1:16,127) and NAi (1:717) antibodies against sH1N1 were also present in the post-pandemic H-IVIG preparations.
The finding that substantial levels of HI and MN antibodies against pH1N1 were also present in the pre-pandemic IVIG preparations is in agreement with other vaccine and seroepidemiological studies which reported high rates of seroprotective pre-exposure pH1N1 HI and neutralizing antibody titers, likely as a result of cross-reactive antibodies induced by repeated exposure to seasonal H1N1 viruses [16]. The relatively low increase in pH1N1-specific NA antibody titers in H-IVIG likely reflects the high level of antigenic similarity between seasonal and pandemic H1N1 NA proteins [17].
To analyze the protective potential of pre-pandemic IVIG and post-pandemic H-IVIG preparations, passive transfer experiments were done in SCID mice. Administration of post-pandemic H-IVIG, prior to challenge with wild-type pH1N1, provided complete protection (100% survival) of SCID mice during the 29 days monitoring period, whereas only 50% of animals receiving pre-pandemic IVIG and 40% of animals receiving buffer survived (Figure 2). Increased survival rates (compared to animals receiving pre-pandemic IVIG) afforded by post-pandemic were highly statistically significant (Mantel-Cox Log-rank P < 0.0001) but not for pre-pandemic IVIG compared to buffer control (P = 0.15). The relatively long survival time of the mice receiving buffer only is a result of the relatively low pathogenicity of the pH1N1 virus in mice [18, 19]. Due to constraints of the challenge volume used, it was however not possible to increase the challenge dose.
To investigate the extent to which protection against pH1N1 challenge by H-IVIG administration is dose-dependent, mice were administered with serial 2-fold dilutions of H-IVIG prior to challenge with pH1N1. Circulating in vivo HI and MN antibody titers were measured in sera taken from animals immediately prior to challenge and at the end of the experiment i.e. 29 days after virus challenge. Table 1 shows the HI and MN titers of H-IVIG preparations administered to mice, the circulating antibody titers measured at the time of challenge and 29 days after challenge, and the associated survival rates of mice challenged with pH1N1 virus. Protection was dose-dependent, and there was a highly significant correlation (nonparametric Spearman correlation r = 0.9, P <0.0001) between circulating in vivo HI and MN antibody titers measured on the day of virus challenge and survival.
Table 1
Antibody titers and protection
Sample (dilution)
HI GMT
MN GMT
% survival
In vitroa
In vivo
In vitroa
In vivo
 
Day 3b
Day 32c
 
Day 3b
Day 32c
H-IVIG (undiluted)
1280
163
33
3420
349
34
100
H-IVIG (1:2)
640
143
26
1710
190
15
95
H-IVIG (1:4)
320
63
14
855
95
11
90
H-IVIG (1:8)
160
35
8
428
48
6
76
H-IVIG (1:16)
80
21
6
214
24
5
63
IVIG (undiluted)
70
6
7
60
5
5
50
Buffer control
n.a.
5
5
n.a.
5
5
40
ain vitro titer of neat samples determined prior to i.p. injection; titers of diluted H-IVIG are calculated accordingly.
bmouse serum titers 3 days after passive transfer; i.e. at the time of challenge.
cmouse serum titers 32 days after passive transfer; i.e. 29 days after challenge.
HI, hemagglutination inhibition; MN, microneutralization; GMT, geometric mean titer; n.a., not applicable.
Note: IVIG was a pooled preparation from 5 different IVIG lots; 2 different lots of H-IVIG were used separately. Data shown are combined data from 2 independent experiments.
Although these data demonstrate the potential of H-IVIG as a potential prophylactic intervention in the event of an influenza pandemic, there are several limitations to our study. In addition to showing the protective effect of H-IVIG with respect to survival of challenged animals, it would have been interesting to investigate the ability of H-IVIG to ameliorate disease symptoms (e.g. by prevention of weight loss) and to reduce viral load and cytokine levels in challenged animals. It would also have been interesting to determine whether post-pandemic H-IVIG also protects against influenza viruses of other subtypes. Several studies have reported that infection or vaccination with pH1N1 boosted broadly neutralizing HA stem antibodies in humans [2024].
An additional limitation is that we did not investigate the potential therapeutic efficacy of H-IVIG. Several recent studies have demonstrated that post-infection administration of influenza-specific monoclonal antibodies can effectively treat mice or ferrets which were previously subjected to virus challenge [58]. Treatment of humans with severe pH1N1 infection with convalescent plasma or H-IVIG was also associated with lower viral load and reduced mortality [9, 10]. However, prophylactic passive administration of H-IVIG could be administered to acutely immunocompromised individuals who are at high-risk of serious complications resulting from influenza infection and who may not mount an effective response to vaccination, such as HIV patients, transplant recipients and cancer patients. In the event of a pandemic caused by a highly pathogenic influenza virus, passive immunization might also be considered for first-line health care workers and for direct contacts of infected individuals.

Conclusion

Taken together, the data in this study demonstrating substantial enrichment of HA- and NA-specific antibodies in H-IVIG and the efficacious protection of SCID mice against challenge with pH1N1 indicate that H-IVIG could be used as a prophylactic intervention against pandemic influenza for immunocompromised patients and other risk groups.

Acknowledgements

We would like to thank Claudia Stanislaw, Isabella Strini and Ernst Waeger for performing HI and MN analysis, and Nicole Hetzelt and Cherry Abraham for conducting the ELLA.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​ ) applies to the data made available in this article, unless otherwise stated.

Competing interests

All authors are employees of Baxter BioScience, manufacturer of the pandemic H1N1 hyperimmune intravenous immunoglobulin. WW, AK, MKH, JKMcV, DAB, HJE, PNB and TRK have stock options. The study was funded by Baxter BioScience.

Authors’ contributions

CH, WW, MKH, JKM, DAB and TRK conceived and planned the study. CH, WW; AK, RF and MRF collected the data. All authors were involved in data analysis and drafting and revision of the manuscript. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Luke TC, Casadevall A, Watowich SJ, Hoffman SL, Beigel JH, Burgess TH: Hark back: passive immunotherapy for influenza and other serious infections. Crit Care Med 2010, 38: e66-e73.PubMedCrossRef Luke TC, Casadevall A, Watowich SJ, Hoffman SL, Beigel JH, Burgess TH: Hark back: passive immunotherapy for influenza and other serious infections. Crit Care Med 2010, 38: e66-e73.PubMedCrossRef
2.
Zurück zum Zitat Keller MA, Stiehm ER: Passive immunity in prevention and treatment of infectious diseases. Clin Microbiol Rev 2000, 13: 602-614. 10.1128/CMR.13.4.602-614.2000PubMedPubMedCentralCrossRef Keller MA, Stiehm ER: Passive immunity in prevention and treatment of infectious diseases. Clin Microbiol Rev 2000, 13: 602-614. 10.1128/CMR.13.4.602-614.2000PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Leider JP, Brunker PA, Ness PM: Convalescent transfusion for pandemic influenza: preparing blood banks for a new plasma product? Transfusion 2010, 50: 1384-1398.PubMedCrossRef Leider JP, Brunker PA, Ness PM: Convalescent transfusion for pandemic influenza: preparing blood banks for a new plasma product? Transfusion 2010, 50: 1384-1398.PubMedCrossRef
5.
Zurück zum Zitat Friesen RH, Koudstaal W, Koldijk MH, Weverling GJ, Brakenhoff JP, Lenting PJ, Stittelaar KJ, Osterhaus AD, Kompier R, Goudsmit J: New class of monoclonal antibodies against severe influenza: prophylactic and therapeutic efficacy in ferrets. PLoS One 2010, 5: e9106. 10.1371/journal.pone.0009106PubMedPubMedCentralCrossRef Friesen RH, Koudstaal W, Koldijk MH, Weverling GJ, Brakenhoff JP, Lenting PJ, Stittelaar KJ, Osterhaus AD, Kompier R, Goudsmit J: New class of monoclonal antibodies against severe influenza: prophylactic and therapeutic efficacy in ferrets. PLoS One 2010, 5: e9106. 10.1371/journal.pone.0009106PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Nguyen HH, Tumpey TM, Park HJ, Byun YH, Tran LD, Nguyen VD, Kilgore PE, Czerkinsky C, Katz JM, Seong BL, Song JM, Kim YB, Do HT, Nguyen T, Nguyen CV: Prophylactic and therapeutic efficacy of avian antibodies against influenza virus H5N1 and H1N1 in mice. PLoS One 2010, 5: e10152. 10.1371/journal.pone.0010152PubMedPubMedCentralCrossRef Nguyen HH, Tumpey TM, Park HJ, Byun YH, Tran LD, Nguyen VD, Kilgore PE, Czerkinsky C, Katz JM, Seong BL, Song JM, Kim YB, Do HT, Nguyen T, Nguyen CV: Prophylactic and therapeutic efficacy of avian antibodies against influenza virus H5N1 and H1N1 in mice. PLoS One 2010, 5: e10152. 10.1371/journal.pone.0010152PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Prabhu N, Prabakaran M, Hongliang Q, He F, Ho HT, Qiang J, Goutama M, Lim AP, Hanson BJ, Kwang J: Prophylactic and therapeutic efficacy of a chimeric monoclonal antibody specific for H5 haemagglutinin against lethal H5N1 influenza. Antivir Ther 2009, 14: 911-921. 10.3851/IMP1413PubMedCrossRef Prabhu N, Prabakaran M, Hongliang Q, He F, Ho HT, Qiang J, Goutama M, Lim AP, Hanson BJ, Kwang J: Prophylactic and therapeutic efficacy of a chimeric monoclonal antibody specific for H5 haemagglutinin against lethal H5N1 influenza. Antivir Ther 2009, 14: 911-921. 10.3851/IMP1413PubMedCrossRef
8.
Zurück zum Zitat Simmons CP, Bernasconi NL, Suguitan AL, Mills K, Ward JM, Chau NV, Hien TT, Sallusto F, Ha DQ, Farrar J, De J, Lanzavecchia A, Subbarao K: Prophylactic and therapeutic efficacy of human monoclonal antibodies against H5N1 influenza. PLoS Med 2007, 4: e178. 10.1371/journal.pmed.0040178PubMedPubMedCentralCrossRef Simmons CP, Bernasconi NL, Suguitan AL, Mills K, Ward JM, Chau NV, Hien TT, Sallusto F, Ha DQ, Farrar J, De J, Lanzavecchia A, Subbarao K: Prophylactic and therapeutic efficacy of human monoclonal antibodies against H5N1 influenza. PLoS Med 2007, 4: e178. 10.1371/journal.pmed.0040178PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Hung IF, To KK, Lee CK, Lee KL, Chan K, Yan WW, Liu R, Watt CL, Chan WM, Lai KY, Koo CK, Buckley T, Chow FL, Wong KK, Chan HS, Ching CK, Tang BS, Lau CC, Li IW, Liu SH, Chan KH, Lin CK, Yuen KY: Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin Infect Dis 2011, 52: 447-456. 10.1093/cid/ciq106PubMedCrossRef Hung IF, To KK, Lee CK, Lee KL, Chan K, Yan WW, Liu R, Watt CL, Chan WM, Lai KY, Koo CK, Buckley T, Chow FL, Wong KK, Chan HS, Ching CK, Tang BS, Lau CC, Li IW, Liu SH, Chan KH, Lin CK, Yuen KY: Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin Infect Dis 2011, 52: 447-456. 10.1093/cid/ciq106PubMedCrossRef
10.
Zurück zum Zitat Hung IF, To KK, Lee CK, Lee KL, Yan WW, Chan K, Chan WM, Ngai CW, Law KI, Chow FL, Liu R, Lai KY, Lau CC, Liu SH, Chan KH, Lin CK, Yuen KY: Hyperimmune IV immunoglobulin treatment: a multicenter double-blind randomized controlled trial for patients with severe 2009 influenza A(H1N1) infection. Chest 2013, 144: 464-473. 10.1378/chest.12-2907PubMedCrossRef Hung IF, To KK, Lee CK, Lee KL, Yan WW, Chan K, Chan WM, Ngai CW, Law KI, Chow FL, Liu R, Lai KY, Lau CC, Liu SH, Chan KH, Lin CK, Yuen KY: Hyperimmune IV immunoglobulin treatment: a multicenter double-blind randomized controlled trial for patients with severe 2009 influenza A(H1N1) infection. Chest 2013, 144: 464-473. 10.1378/chest.12-2907PubMedCrossRef
11.
Zurück zum Zitat Kreil TR, Mc Vey JK, Lei LS, Camacho L, Wodal W, Kerschbaum A, Segura E, Vandamme E, Gavit P, Ehrlich HJ, Barrett PN, Baker DA: Preparation of commercial quantities of a hyperimmune human intravenous immunoglobulin preparation against an emerging infectious disease: the example of pandemic H1N1 influenza. Transfusion 2012, 52: 803-809.PubMedCrossRef Kreil TR, Mc Vey JK, Lei LS, Camacho L, Wodal W, Kerschbaum A, Segura E, Vandamme E, Gavit P, Ehrlich HJ, Barrett PN, Baker DA: Preparation of commercial quantities of a hyperimmune human intravenous immunoglobulin preparation against an emerging infectious disease: the example of pandemic H1N1 influenza. Transfusion 2012, 52: 803-809.PubMedCrossRef
12.
Zurück zum Zitat Poelsler G, Berting A, Kindermann J, Spruth M, Hammerle T, Teschner W, Schwarz HP, Kreil TR: A new liquid intravenous immunoglobulin with three dedicated virus reduction steps: virus and prion reduction capacity. Vox Sang 2008, 94: 184-192. 10.1111/j.1423-0410.2007.01016.xPubMedCrossRef Poelsler G, Berting A, Kindermann J, Spruth M, Hammerle T, Teschner W, Schwarz HP, Kreil TR: A new liquid intravenous immunoglobulin with three dedicated virus reduction steps: virus and prion reduction capacity. Vox Sang 2008, 94: 184-192. 10.1111/j.1423-0410.2007.01016.xPubMedCrossRef
13.
Zurück zum Zitat Teschner W, Butterweck HA, Auer W, Muchitsch EM, Weber A, Liu SL, Wah PS, Schwarz HP: A new liquid, intravenous immunoglobulin product (IGIV 10%) highly purified by a state-of-the-art process. Vox Sang 2007, 92: 42-55. 10.1111/j.1423-0410.2006.00846.xPubMedCrossRef Teschner W, Butterweck HA, Auer W, Muchitsch EM, Weber A, Liu SL, Wah PS, Schwarz HP: A new liquid, intravenous immunoglobulin product (IGIV 10%) highly purified by a state-of-the-art process. Vox Sang 2007, 92: 42-55. 10.1111/j.1423-0410.2006.00846.xPubMedCrossRef
14.
Zurück zum Zitat Fritz R, Sabarth N, Kiermayr S, Hohenadl C, Howard MK, Ilk R, Kistner O, Ehrlich HJ, Barrett PN, Kreil TR: A vero cell-derived whole-virus H5N1 vaccine effectively induces neuraminidase-inhibiting antibodies. J Infect Dis 2012, 205: 28-34. 10.1093/infdis/jir711PubMedCrossRef Fritz R, Sabarth N, Kiermayr S, Hohenadl C, Howard MK, Ilk R, Kistner O, Ehrlich HJ, Barrett PN, Kreil TR: A vero cell-derived whole-virus H5N1 vaccine effectively induces neuraminidase-inhibiting antibodies. J Infect Dis 2012, 205: 28-34. 10.1093/infdis/jir711PubMedCrossRef
15.
Zurück zum Zitat Kistner O, Crowe BA, Wodal W, Kerschbaum A, Savidis-Dacho H, Sabarth N, Falkner FG, Mayerhofer I, Mundt W, Reiter M, Grillberger L, Tauer C, Graninger M, Sachslehner A, Schwendinger M, Bruhl P, Kreil TR, Ehrlich HJ, Barrett PN: A whole virus pandemic influenza H1N1 vaccine is highly immunogenic and protective in active immunization and passive protection mouse models. PLoS One 2010, 5: e9349. 10.1371/journal.pone.0009349PubMedPubMedCentralCrossRef Kistner O, Crowe BA, Wodal W, Kerschbaum A, Savidis-Dacho H, Sabarth N, Falkner FG, Mayerhofer I, Mundt W, Reiter M, Grillberger L, Tauer C, Graninger M, Sachslehner A, Schwendinger M, Bruhl P, Kreil TR, Ehrlich HJ, Barrett PN: A whole virus pandemic influenza H1N1 vaccine is highly immunogenic and protective in active immunization and passive protection mouse models. PLoS One 2010, 5: e9349. 10.1371/journal.pone.0009349PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Broberg E, Nicoll A, Mato-Gauci A: Seroprevalence to influenza A(H1N1) 2009 virus–where are we? Clin Vaccine Immunol 2011, 18: 1205-1212. 10.1128/CVI.05072-11PubMedPubMedCentralCrossRef Broberg E, Nicoll A, Mato-Gauci A: Seroprevalence to influenza A(H1N1) 2009 virus–where are we? Clin Vaccine Immunol 2011, 18: 1205-1212. 10.1128/CVI.05072-11PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Marcelin G, DuBois R, Rubrum A, Russell CJ, McElhaney JE, Webby RJ: A contributing role for anti-neuraminidase antibodies on immunity to pandemic H1N1 2009 influenza A virus. PLoS One 2011, 6: e26335. 10.1371/journal.pone.0026335PubMedPubMedCentralCrossRef Marcelin G, DuBois R, Rubrum A, Russell CJ, McElhaney JE, Webby RJ: A contributing role for anti-neuraminidase antibodies on immunity to pandemic H1N1 2009 influenza A virus. PLoS One 2011, 6: e26335. 10.1371/journal.pone.0026335PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Belser JA, Wadford DA, Pappas C, Gustin KM, Maines TR, Pearce MB, Zeng H, Swayne DE, Pantin-Jackwood M, Katz JM, Tumpey TM: Pathogenesis of pandemic influenza A (H1N1) and triple-reassortant swine influenza A (H1) viruses in mice. J Virol 2010, 84: 4194-4203. 10.1128/JVI.02742-09PubMedPubMedCentralCrossRef Belser JA, Wadford DA, Pappas C, Gustin KM, Maines TR, Pearce MB, Zeng H, Swayne DE, Pantin-Jackwood M, Katz JM, Tumpey TM: Pathogenesis of pandemic influenza A (H1N1) and triple-reassortant swine influenza A (H1) viruses in mice. J Virol 2010, 84: 4194-4203. 10.1128/JVI.02742-09PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Kalthoff D, Grund C, Harder TC, Lange E, Vahlenkamp TW, Mettenleiter TC, Beer M: Limited susceptibility of chickens, turkeys, and mice to pandemic (H1N1) 2009 virus. Emerg Infect Dis 2010, 16: 703-705. 10.3201/eid1604.091491PubMedPubMedCentralCrossRef Kalthoff D, Grund C, Harder TC, Lange E, Vahlenkamp TW, Mettenleiter TC, Beer M: Limited susceptibility of chickens, turkeys, and mice to pandemic (H1N1) 2009 virus. Emerg Infect Dis 2010, 16: 703-705. 10.3201/eid1604.091491PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Li GM, Chiu C, Wrammert J, McCausland M, Andrews SF, Zheng NY, Lee JH, Huang M, Qu X, Edupuganti S, Mulligan M, Das SR, Yewdell JW, Mehta AK, Wilson PC, Ahmed R: Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells. Proc Natl Acad Sci U S A 2012, 109: 9047-9052. 10.1073/pnas.1118979109PubMedPubMedCentralCrossRef Li GM, Chiu C, Wrammert J, McCausland M, Andrews SF, Zheng NY, Lee JH, Huang M, Qu X, Edupuganti S, Mulligan M, Das SR, Yewdell JW, Mehta AK, Wilson PC, Ahmed R: Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells. Proc Natl Acad Sci U S A 2012, 109: 9047-9052. 10.1073/pnas.1118979109PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Miller MS, Tsibane T, Krammer F, Hai R, Rahmat S, Basler CF, Palese P: 1976 and, H1N1 influenza virus vaccines boost anti-hemagglutinin stalk antibodies in humans. J Infect Dis 2009,2013(207):98-105. Miller MS, Tsibane T, Krammer F, Hai R, Rahmat S, Basler CF, Palese P: 1976 and, H1N1 influenza virus vaccines boost anti-hemagglutinin stalk antibodies in humans. J Infect Dis 2009,2013(207):98-105.
22.
Zurück zum Zitat Qiu C, Huang Y, Wang Q, Tian D, Zhang W, Hu Y, Yuan Z, Zhang X, Xu J: Boosting heterosubtypic neutralization antibodies in recipients of 2009 pandemic H1N1 influenza vaccine. Clin Infect Dis 2012, 54: 17-24. 10.1093/cid/cir753PubMedPubMedCentralCrossRef Qiu C, Huang Y, Wang Q, Tian D, Zhang W, Hu Y, Yuan Z, Zhang X, Xu J: Boosting heterosubtypic neutralization antibodies in recipients of 2009 pandemic H1N1 influenza vaccine. Clin Infect Dis 2012, 54: 17-24. 10.1093/cid/cir753PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Sangster MY, Baer J, Santiago FW, Fitzgerald T, Ilyushina NA, Sundararajan A, Henn AD, Krammer F, Yang H, Luke CJ, Zand MS, Wright PF, Treanor JJ, Topham DJ, Subbarao K: B cell response and hemagglutinin stalk-reactive antibody production in different age cohorts following 2009 H1N1 influenza virus vaccination. Clin Vaccine Immunol 2009,2013(20):867-876. Sangster MY, Baer J, Santiago FW, Fitzgerald T, Ilyushina NA, Sundararajan A, Henn AD, Krammer F, Yang H, Luke CJ, Zand MS, Wright PF, Treanor JJ, Topham DJ, Subbarao K: B cell response and hemagglutinin stalk-reactive antibody production in different age cohorts following 2009 H1N1 influenza virus vaccination. Clin Vaccine Immunol 2009,2013(20):867-876.
24.
Zurück zum Zitat Wrammert J, Koutsonanos D, Li GM, Edupuganti S, Sui J, Morrissey M, McCausland M, Skountzou I, Hornig M, Lipkin WI, Mehta A, Razavi B, Del RC, Zheng NY, Lee JH, Huang M, Ali Z, Kaur K, Andrews S, Amara RR, Wang Y, Das SR, O'Donnell CD, Yewdell JW, Subbarao K, Marasco WA, Mulligan MJ, Compans R, Ahmed R, Wilson PC: Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J Exp Med 2011, 208: 181-193. 10.1084/jem.20101352PubMedPubMedCentralCrossRef Wrammert J, Koutsonanos D, Li GM, Edupuganti S, Sui J, Morrissey M, McCausland M, Skountzou I, Hornig M, Lipkin WI, Mehta A, Razavi B, Del RC, Zheng NY, Lee JH, Huang M, Ali Z, Kaur K, Andrews S, Amara RR, Wang Y, Das SR, O'Donnell CD, Yewdell JW, Subbarao K, Marasco WA, Mulligan MJ, Compans R, Ahmed R, Wilson PC: Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J Exp Med 2011, 208: 181-193. 10.1084/jem.20101352PubMedPubMedCentralCrossRef
Metadaten
Titel
Hyperimmune intravenous immunoglobulin containing high titers of pandemic H1N1 hemagglutinin and neuraminidase antibodies provides dose-dependent protection against lethal virus challenge in SCID mice
verfasst von
Christine Hohenadl
Walter Wodal
Astrid Kerschbaum
Richard Fritz
M Keith Howard
Maria R Farcet
Daniel Portsmouth
John K McVey
Donald A Baker
Hartmut J Ehrlich
P Noel Barrett
Thomas R Kreil
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Virology Journal / Ausgabe 1/2014
Elektronische ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-11-70

Weitere Artikel der Ausgabe 1/2014

Virology Journal 1/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.