Skip to main content
Erschienen in: Virology Journal 1/2014

Open Access 01.12.2014 | Short report

Identification of a new tospovirus causing necrotic ringspot on tomato in China

verfasst von: Yueyan Yin, Kuanyu Zheng, Jiahong Dong, Qi Fang, Shiping Wu, Lishuang Wang, Zhongkai Zhang

Erschienen in: Virology Journal | Ausgabe 1/2014

Abstract

Background

Emerging tospoviruses cause significant yield losses and quality reduction in vegetables, ornamentals, and legumes throughout the world. So far, eight tospoviruses were reported in China. Tomato fruits displaying necrotic and concentric ringspot symptoms were found in Guizhou province of southwest China.

Finding

ELISA experiments showed that crude saps of the diseased tomato fruit samples reacted with antiserum against Tomato zonate spot virus (TZSV). Electron microscopy detected presence of quasi-spherical, enveloped particles of 80–100 nm in such saps. The putative virus isolate was designated 2009-GZT. Mechanical back-inoculation showed that 2009-GZT could infect systemically some solanaceous crop and non-crop plants including Capiscum annuum, Datura stramonium, Nicotiana benthamiana, N. rustica, N. tabacum and Solanum lycopersicum. The 3012 nt full-length sequence of 2009-GZT S RNA shared 68.2% nt identity with that of Calla lily chlorotic spot virus (CCSV), the highest among all compared viruses. This RNA was predicted to encode a non-structural protein (NSs) (459 aa, 51.7 kDa) and a nucleocapsid protein (N) (278 aa, 30.3 kDa). The N protein shared 85.8% amino acid identity with that of CCSV. The NSs protein shared 82.7% amino acid identity with that of Tomato zonate spot virus(TZSV).

Conclusion

Our results indicate that the isolate 2009-GZT is a new species of Tospovirus, which is named Tomato necrotic spot virus (TNSV). This finding suggests that a detailed survey in China is warranted to further understand the occurrence and distribution of tospoviruses.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s12985-014-0213-0) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Designed the experiments, and critically revised the manuscript: JHD, ZKZ. Performed the experiments: YYY, KYZ, JHD, QF. Collected the samples: SPW, JHD, LSW. Analyzed the data: JHD, YYY, KYZ. Wrote the manuscript: JHD, YYY. All authors read and approved the final manuscript.
Abkürzungen
nt
Nucleotides
aa
Amino acids
N
Nucleocapsid protein
RdRp
RNA-dependent RNA polymerase protein
ELISA
Enzyme Linked Immunosorbent Assay

Background

Thrips-transmitted tospoviruses cause significant economic losses in tomato, chilli and many other important crops worldwide [1]. At least 13 thrips species have been identified as vectors [2]. Tospoviruses are quasi-spherical, enveloped particles of 80–120 nm in diameter. A tospoviral genome consists of three negative or ambisense ssRNAs designated S, M and L. The S RNA encodes a nucleocapsid protein (N) in viral-complementary sense orientation and the non-structural protein (NSs) in viral sense orientation [3]. NSs acts as a gene-silencing suppressor [4]. The M RNA encodes a non-structural protein (NSm), in the sense orientation, that is involved in cell-to-cell movement and a glycoprotein precursor in complementary sense orientation [5]. The L RNA encodes an RNA-dependent RNA polymerase protein (RdRp) in complementary sense orientation [6].
Among the more than 20 Tospoviruses reported so far [6]-[10], 8 were found in China. These 8 species include Calla lily chlorotic spot virus (CCSV) [11], Capiscum chlorosis virus (CaCV) [12] , Groundnut yellow spot virus (GYSV) [13], Hippeastrum chlorotic ringspot virus (HCRV) [14], Impatiens necrotic spot virus (INSV) [15], Tomato zonate spot virus (TZSV) [16], Tomato spotted wilt virus (TSWV) [17] and Watermelon silver mottle virus (WSMoV) [18]. In 2009, a new tomato disease causing black necrotic and concentric ringspot symptoms on tomato fruits was found in Wengan County, Guizhou province of China. In this study, we identified a new Tospovirus species, provisionally named Tomato necrotic spot virus (TNSV), as the causal agent of this tomato disease.

Material and methods

Virus source and maintenance

A virus (isolate 2009-GZT) was isolated from naturally infected tomato fruits exhibiting necrotic and concentric ring spots in Wengan County, Guizhou province, China in 2009. The virus was maintained in systemic hosts Nicotiana benthamiana and N. rustica and in local lesion host Chenopodium quinoa by mechanical inoculation as described previously [16].

ELISA

TZSV-specific antiserum (produced in our laboratory) and ELISA kits for detection of GRSV/TCSV, INSV, IYSV, and TSWV (Agdia, Elkhart, Indiana, USA) were used in ELISA to test saps collected from symptomatic tomato fruits and plants inoculated with isolate 2009-GZT.

Electron microscopy

Crude plant saps, extracted from natural symptomatic tomato fruits and from plant leaves mechanically inoculated with isolate 2009-GZT, were stained with 2% Ammonium Molybdate for electron microscopy as previously described [16].

RNA extraction, RT-PCR and sequencing

Total RNA was extracted from symptomatic tomato fruits using TRIzol Reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. The universal primer pairs (TospS-3 W:GC(a/t)GTTCCAGGGTT(a/g)CT(t/c/g)TC, and Tosp-3: AGAGCAATCGAGGCGCTAATAA) designed based on the 3ʹ-end sequences of S RNAs of the members of Watermelon silver mottle virus (WSMoV) were used to obtain the 3ʹ-end sequence of about 700 nt of 2009-GZT. The cDNA was synthesized using AMV reverse transcriptase (Promega, Madison, Wisconsin, USA). The primer pairs J13 and UHP were used to amplify the NSs and N genes following the protocols described previously [14],[19]. The RT-PCR products were purified with UNIQ-10 (Sangon, Shanghai, China) and then cloned into pGEM-T Easy (Promega, Madison, WI, USA). The recombinant clones were sequenced. Based on these sequences, the specific primers (GZ-S1: GTTCAGGACCACCACAAAGGGAT, and GZ-S6R: GCAATCTCTCTGAACAAGTA) were designed to amplify the remaining sequence of S RNA.

Sequence analysis

The complete sequence of 2009-GZT S RNA was assembled and analyzed with the aid of DNAMAN version 5.0 (Lynnon Biosoft, QC, Canada). Phylogenetic trees were constructed using the neighbor-joining method with 1000 bootstrap replications in MEGA 6.0 [20]. The sequences used for comparison were obtained from the GenBank database: NC_018071(Bean necrotic mosaic virus, BeNMV), NC_008301 (Capsicum chlorosis virus, CaCV), AY867502 (Calla lily chlorotic spot virus, CCSV), NC_003619 (Groundnut bud necrosis virus, GBNV), AF080526 (Groundnut chlorotic fan-spot virus, GCFSV), L12048 (Groundnut ringspot virus, GRSV), AF013994 (Groundnut yellow spot virus, GYSV), KC290943 (Hippeastrum chlorotic ringspot virus, HCRV), NC_003624 (Impatiens necrotic spot virus, INSV), AF001387 (Iris yellow spot virus, IYSV), EU275149 (Melon severe mosaic virus, MSMV), AB038343 (Melon yellow spot virus, MYSV), KF383956(Pepper chlorotic spot virus, PCSV), EF445397 (Polygonum ringspot virus, PolRSV), HQ728387 (Soybean vein necrosis associated virus, SVNaV), NC_002051(Tomato spotted wilt virus, TSWV), AY686718 (Tomato yellow ring virus, TYRV), NC_010489 (Tomato zonate spot virus, TZSV), EU249351 (Watermelon bud necrosis virus, WBNV), NC_003843 (Watermelon silver mottle virus, WSMoV) for S RNAs; GQ478668 (Alstroemeria necrotic streak virus, AlNSV), AF067068 (Chrysanthemum stem necrosis virus, CSNV), S54325 (Tomato chlorotic spot virus, TCSV), FJ946835 (Tomato necrotic ringspot virus, TNRV), and AF067069 (Zucchini lethal chlorosis virus, ZLCV) for N genes.

Results

Virus source, ELISA, virus isolation and host range

Tomato fruit samples showing necrotic ringspot and concentric ringspot symptoms were collected from Wengan County, Guizhou province, China in 2009 (Figure 1A). These samples were tested by ELISA with antisera against GRSV/TCSV, INSV, IYSV, TSWV, and TZSV, respectively. The symptomatic samples reacted with the antiserum against TZSV N protein. The virus isolate, 2009-GZT, was obtained via three consecutive single lesion transfer in C. quinoa and in systemically infected N. rustica after mechanical inoculation. Further infection studies were used to determine the experimental host range of 2009-GZT. Systemic infection was observed in C. annuum, D. stramonium, N. benthamiana, N. debneyi, N. rustica, N. tabacum and S. lycopersicum, with the infected plants showing leaf chlorosis, necrosis, ringspot and/or fruit deformation. Local lesion infection was found in C. amaranticolor, C. quinoa and N. glutinosa. The virus did not infect Cucumis sativus (Table 1). ELISA showed that samples from all infected plants reacted positively with the TZSV-antiserum, but did not react with GRSV/TCSV, INSV, IYSV and TSWV antisera.
Table 1
Symptoms induced by Tomato necrotic spot virus on mechanically inoculated plants
Family
Species
Local
Systemic
Chenopodiaceae
Chenopodium amaranticolor
NL
 
C. quinoa
NL
 
Cucurbitaceae
Cucumis sativus
Solanaceae
Datura stramonium
NL
NSCRS
 
Solanum Lycopersicum
NL
BN
 
Nicotiana benthamiana
NL
BN
 
N. rustica
NLCRS
CRS
 
N. glutinosa
NL
 
N. debneyi
M, NL
M, NL
 
N. tabacum var Honghuadajinyuan
NL
AN
 
N. tabacum var K326
NL
AL
 
Capiscum annuum var Hongxianfeng (sweet pepper)
NL
CRS
 
C. annuum var (chilli pepper)
NL
M, CRS
Asteraceae
Lactuca sativa L. var ramosa Hort
N
 
Lactuca sativa L. var longifoliaf. Lam
N
N: necrosis; NL: necrotic lesion; CRS: Chlorotic ring spot; BN: Bud necrosis; M: mosaic; —: nonsymptom.

Electron microscopy

Roughly spherical and enveloped virions of 80–100 nm in diameter, typical of tospoviruses, were observed in the saps collected from 2009-GZT-infected N. tabacum var Honghuadajinyuan by electron microscopy (Figure 1B).

Molecular characterization and sequence analysis of 2009-GZT S RNA

The complete nucleotide sequence of the 2009-GZT S RNA contained 3012 nt (accession no. KM355773). It had NSs and N open reading frames (ORFs) in an ambisense orientation, separated by a 670 nt intergenic region (IGR) with an AU content of 72.9%. The 1380 nt NSs ORF, from nt 67 to 1446 of the viral RNA (vRNA) strand, potentially encoded a protein of 459 amino acids. The 828 nt N ORF, from nt 2112 to 2945 of the viral complementary RNA strand, potentially encoded a protein of 276 amino acids. The predicted molecular masses of NSs and N proteins were 51.6 kDa and 30.2 kDa, respectively. The 5′- and 3′-untranslated regions were 66 and 68 nt long, respectively.
The 2009-GZT S RNA sequence shared the highest (68.2%) and lowest (28.9%) nucleotide identities with those of CCSV and GYSV, respectively. The N gene and protein shared higher nucleotide (60.2-76.3%) and amino acid (69.9-85.8%), respectively, sequence identities with those of the WSMoV serogroup (WSMoV, CaCV, GBNV, WBNV, TZSV and CCSV) than with those of the IYSV serogroup (IYSV, TYSV, HCRV and PolRSV) (53.5-55.7% nucleotide and 46.1-48.9% amino acid identities). It shared relatively low nucleotide (36.1-45.3%) and amino acid (16.4-36.1%) identities with those of GYSV, GCFSV, INSV, and those of the TSWV serogroup members (Table 2).
Table 2
Comparisons of the sequence identities of S RNA and deduced proteins of Tomato necrotic spot virus with those of other Tospoviruses
Virus
S RNA
5′UTR nt
NSs protein aa %
IGR nt
N protein aa %
3′UTR nt
nt
nt %
TNSV
3012
100
66
100
670
100
68
SVNaV
2603
36.3
58
16.8
320
36.1
71
BeNMV
2584
37.8
60
23.2
316
30.9
76
CaCV
3477
55.0
66
61.6
1202
70.3
67
CCSV
3172
68.2
66
80.8
831
85.8
65
GRSV
3049
38.6
87
18.4
636
24.2
152
PCSV
2786
58.1
65
57
449
53.4
67
GYSV
2970
28.9
57
14.9
653
16.4
77
INSV
2992
32.9
62
16.5
648
24.2
50
IYSV
3105
54.1
70
52.3
817
48.9
71
MYSV
3232
59.8
68
48.5
853
61.9
68
GBNV
3057
63.1
66
64.2
779
70.3
68
GCFSV
2833
30.7
67
14.4
461
17.4
80
TSWV
2916
38.8
88
17.1
509
23.3
54
TYRV
3061
54.6
71
52.0
768
47.0
72
TZSV
3297
67.0
64
82.7
934
81.7
65
WBNV
3405
57.0
66
63.1
1124
71.2
18
WSMoV
3534
57.8
67
61.8
1261
69.9
66
PolRSV
2484
54.4
72
51.2
183
46.1
71
MSMV
3283
38.4
80
17.9
887
27.4
159
HCRV
2744
58.5
73
51.2
437
46.6
71
ANSV
25.1
CSNV
24.7
ZLCV
23.3
TCSV
24.7
TNRV
61.9
The NSs gene shared relatively higher identities (58–76.3% nucleotide and 61.6-80.8% amino acid) with those of the WSMoV serogroup than those of the other tospoviruses (Table 2). The S RNA IGR sequence shared identities (40.3%-52.3%) with those of the other tospoviruses. Phylogenetic analyses showed that the 2009-GZT N and NSs proteins were closely related to those of CCSV and TZSV, thereby clustered into the WSMoV serogroup (Figure 2).

Discussion

Although 2009-GZT was originally isolated from tomato, it could infect other solanaceous species. The viral symptoms in those host plants were similar to those described for other tospoviruses such as TSWV, TZSV and HCRV. The virion morphology, ELISA results, and S RNA sequence characteristics indicate that isolate 2009-GZT is a tospovirus. The S RNA sequence divergence between 2009-GZT and the other tospoviruses is at the inter-species level (Table 2 and Figure 2) [6]. Thus, we propose 2009-GZT as a new species of Tospovirus with a provisional name Tomato necrotic spot virus (TNSV). During the field survey, Thrips tabaci and T. palmi were found in tomato fields and the surrounding weeds. These two thrips species may represent potential vectors of TNSV.
Infection by tospoviruses has emerged as an important constraint to the productivity and quality of crops in many regions of the world [2],[21],[22]. Since 1980’s, emergence and geographic expansion of new variants of known tospoviruses and completely new tospoviruses have been occurring in many regions of China, including Beijing, Guangdong, Guangxi, Hebei, Shandong, Sichuan and Yunnan [12],[16],[18],[23],[24]. This is first report of occurrence of tospovirus disease in Guizhou province. While emergence of tospovirus diseases is a multifactorial process (including virus, vector, host, environment, and human behavior) and remains poorly understood, presence of tospoviruses-transmitting thrips (Frankliniella occidentalis, F. intonsa, T. palmi, and T. tabaci) [25] and large scale plantation of tospovirus-susceptible crops (tomato, chilli and tobacco) suggest potential occurrence of tospoviral diseases in other regions of China. So, a more detailed tospovirus survey in China is needed to understand the occurrence and distribution of tospoviruses and to develop measures preventing the epidemic of tospovirus diseases.

Acknowledgments

This work was partially supported by grants from the National Natural Science Foundation of China (31371919, 31060237), Provincial Natural Science Foundation of Yunnan (2012CH007), and Yunnan Academy of Agricultural Sciences (2014CZYY021). We are grateful to Dr. B. Ding for the revision of the manuscript.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Designed the experiments, and critically revised the manuscript: JHD, ZKZ. Performed the experiments: YYY, KYZ, JHD, QF. Collected the samples: SPW, JHD, LSW. Analyzed the data: JHD, YYY, KYZ. Wrote the manuscript: JHD, YYY. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Whitfield AE, Ullman DE, German TL: Tospovirus-Thrips Interactions. Annu Rev Phytopathol 2005, 43: 459-489. 10.1146/annurev.phyto.43.040204.140017PubMedCrossRef Whitfield AE, Ullman DE, German TL: Tospovirus-Thrips Interactions. Annu Rev Phytopathol 2005, 43: 459-489. 10.1146/annurev.phyto.43.040204.140017PubMedCrossRef
2.
Zurück zum Zitat Pappu HR, Jones RAC, Jain RK: Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Res 2009, 141: 219-236. 10.1016/j.virusres.2009.01.009PubMedCrossRef Pappu HR, Jones RAC, Jain RK: Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Res 2009, 141: 219-236. 10.1016/j.virusres.2009.01.009PubMedCrossRef
3.
Zurück zum Zitat De Haan P, Wagemakers L, Peters D, Goldbach R: The S RNA segment of tomato spotted wilt virus has an ambisense character. J Gen Virol 1990, 71: 1001-1007. 10.1099/0022-1317-71-5-1001PubMedCrossRef De Haan P, Wagemakers L, Peters D, Goldbach R: The S RNA segment of tomato spotted wilt virus has an ambisense character. J Gen Virol 1990, 71: 1001-1007. 10.1099/0022-1317-71-5-1001PubMedCrossRef
4.
Zurück zum Zitat Takeda A, Sugiyama K, Nagano H, Mori M, Kaido M, Mise K, Tsuda S, Okuno T: Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Lett 2002, 532: 75-79. 10.1016/S0014-5793(02)03632-3PubMedCrossRef Takeda A, Sugiyama K, Nagano H, Mori M, Kaido M, Mise K, Tsuda S, Okuno T: Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Lett 2002, 532: 75-79. 10.1016/S0014-5793(02)03632-3PubMedCrossRef
5.
Zurück zum Zitat Kormelink R, de Haan P, Meurs C, Peters D, Goldbach R: The nucleotide sequence of the M RNA segment of tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. J Gen Virol 1992, 73: 2795-2804. 10.1099/0022-1317-73-11-2795PubMedCrossRef Kormelink R, de Haan P, Meurs C, Peters D, Goldbach R: The nucleotide sequence of the M RNA segment of tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. J Gen Virol 1992, 73: 2795-2804. 10.1099/0022-1317-73-11-2795PubMedCrossRef
6.
Zurück zum Zitat Plyusnin A, Beaty BJ, Elliott RM, Goldbach R, Kormelink R, Lundkvist A, Schmaljohn CS, Tesh RB: Bunyaviridae. In Virus taxonomy-9th reports of the international committee on taxonomy of viruses. Edited by: King AMQ, Lefkowitz E, Adams MJ, Carstens E. Elsevier, New York; 2011:725-741. Plyusnin A, Beaty BJ, Elliott RM, Goldbach R, Kormelink R, Lundkvist A, Schmaljohn CS, Tesh RB: Bunyaviridae. In Virus taxonomy-9th reports of the international committee on taxonomy of viruses. Edited by: King AMQ, Lefkowitz E, Adams MJ, Carstens E. Elsevier, New York; 2011:725-741.
7.
Zurück zum Zitat de Oliveira AS, Bertran AG, Inoue-Nagata AK, Nagata T, Kitajima EW, Oliveira Resende R: An RNA-dependent RNA polymerase gene of a distinct Brazilian tospovirus. Virus Genes 2011, 43: 385-389. 10.1007/s11262-011-0639-zPubMedCrossRef de Oliveira AS, Bertran AG, Inoue-Nagata AK, Nagata T, Kitajima EW, Oliveira Resende R: An RNA-dependent RNA polymerase gene of a distinct Brazilian tospovirus. Virus Genes 2011, 43: 385-389. 10.1007/s11262-011-0639-zPubMedCrossRef
8.
Zurück zum Zitat Zhou J, Kantartzi SK, Wen R, Newman M, Hajimorad MR, Rupe JC, Tzanetakis IE: Molecular characterization of a new Tospovirus infecting soybean. Virus Genes 2011, 43: 289-295. 10.1007/s11262-011-0621-9PubMedCrossRef Zhou J, Kantartzi SK, Wen R, Newman M, Hajimorad MR, Rupe JC, Tzanetakis IE: Molecular characterization of a new Tospovirus infecting soybean. Virus Genes 2011, 43: 289-295. 10.1007/s11262-011-0621-9PubMedCrossRef
9.
Zurück zum Zitat Torres R, Larenas J, Fribourg C, Romero J: Pepper necrotic spot virus, a new tospovirus infecting solanaceous crops in Peru. Arch Virol 2012, 157: 609-615. 10.1007/s00705-011-1217-3PubMedCrossRef Torres R, Larenas J, Fribourg C, Romero J: Pepper necrotic spot virus, a new tospovirus infecting solanaceous crops in Peru. Arch Virol 2012, 157: 609-615. 10.1007/s00705-011-1217-3PubMedCrossRef
10.
Zurück zum Zitat Cheng YH, Zheng YX, Tai CH, Yen JH, Chen YK, Jan FJ: Identification, characterisation and detection of a new tospovirus on sweet pepper. Ann Appl Biol 2014, 164: 107-115. 10.1111/aab.12084CrossRef Cheng YH, Zheng YX, Tai CH, Yen JH, Chen YK, Jan FJ: Identification, characterisation and detection of a new tospovirus on sweet pepper. Ann Appl Biol 2014, 164: 107-115. 10.1111/aab.12084CrossRef
11.
Zurück zum Zitat Liu YT, Lu XP, Zhi L, Zheng YX, Chen XJ, Xu Y, Wu FJ, Li YZ: Calla lily chlorotic spot virus from Spider Lily ( Hymenocallis litteralis ) and Tobacco ( Nicotiana tabacum ) in the South-west of China. J Pathol 2012, 160: 201-205. Liu YT, Lu XP, Zhi L, Zheng YX, Chen XJ, Xu Y, Wu FJ, Li YZ: Calla lily chlorotic spot virus from Spider Lily ( Hymenocallis litteralis ) and Tobacco ( Nicotiana tabacum ) in the South-west of China. J Pathol 2012, 160: 201-205.
12.
Zurück zum Zitat Chen K, Xu Z, Yan L, Wang G: Characterization of a new strain of Capsicum chlorosis virus from peanut (Arachis hypogaea L.) in China. J Phytopathol 2007, 155: 178-181. 10.1111/j.1439-0434.2007.01217.xCrossRef Chen K, Xu Z, Yan L, Wang G: Characterization of a new strain of Capsicum chlorosis virus from peanut (Arachis hypogaea L.) in China. J Phytopathol 2007, 155: 178-181. 10.1111/j.1439-0434.2007.01217.xCrossRef
13.
Zurück zum Zitat Ding M, Luo YQ, Fang Q, Zhang ZK, Zhao ZW: First report of Groundnut yellow spot virus infecting capsicum annuum in China. J Plant Pathol 2007, 89: 295. Ding M, Luo YQ, Fang Q, Zhang ZK, Zhao ZW: First report of Groundnut yellow spot virus infecting capsicum annuum in China. J Plant Pathol 2007, 89: 295.
14.
Zurück zum Zitat Dong JH, Yin YY, Fang Q, McBeath JH, Zhang ZK: A new Tospovirus causing chlorotic ringspot on Hippeastrum sp . in China. Virus Genes 2013, 46: 567-570. 10.1007/s11262-012-0873-zPubMedCrossRef Dong JH, Yin YY, Fang Q, McBeath JH, Zhang ZK: A new Tospovirus causing chlorotic ringspot on Hippeastrum sp . in China. Virus Genes 2013, 46: 567-570. 10.1007/s11262-012-0873-zPubMedCrossRef
15.
Zurück zum Zitat Cheng XF, Dong JH, Fang Q, Ding M, McBeath JH, Zhang ZK: Detection of Impatiens necrotic spot virus infecting Phalaenopsis in Yunnan. J Plant Pathol 2010, 92: 545. Cheng XF, Dong JH, Fang Q, Ding M, McBeath JH, Zhang ZK: Detection of Impatiens necrotic spot virus infecting Phalaenopsis in Yunnan. J Plant Pathol 2010, 92: 545.
16.
Zurück zum Zitat Dong JH, Cheng XF, Yin YY, Fang Q, Ding M, Li TT, Zhang LZ, Su XX, McBeath JH, Zhang ZK: Characterization of Tomato zonate spot virus, a new Tospovirus species in China. Arch Virol 2008, 153: 855-864. 10.1007/s00705-008-0054-5PubMedCrossRef Dong JH, Cheng XF, Yin YY, Fang Q, Ding M, Li TT, Zhang LZ, Su XX, McBeath JH, Zhang ZK: Characterization of Tomato zonate spot virus, a new Tospovirus species in China. Arch Virol 2008, 153: 855-864. 10.1007/s00705-008-0054-5PubMedCrossRef
17.
Zurück zum Zitat Dong JH, Yin YY, Xu XY, Duan YM, Zhang ZK: First report of Tomato spotted wilt virus in tomato and tobacco in China. J Plant Pathol 2010, 92: 121. Dong JH, Yin YY, Xu XY, Duan YM, Zhang ZK: First report of Tomato spotted wilt virus in tomato and tobacco in China. J Plant Pathol 2010, 92: 121.
18.
Zurück zum Zitat Rao XQ, Wu ZY, Li Y: Complete genome sequence of a Watermelon silver mottle virus isolate from China. Virus Genes 2013, 46: 576-580. 10.1007/s11262-013-0885-3PubMedCrossRef Rao XQ, Wu ZY, Li Y: Complete genome sequence of a Watermelon silver mottle virus isolate from China. Virus Genes 2013, 46: 576-580. 10.1007/s11262-013-0885-3PubMedCrossRef
19.
Zurück zum Zitat Cortez I, Saaijer J, Wongjkaew KS, Pereira AM, Goldbach R, Peters D, Kormelink R: Identification and characterization of a novel Tospovirus species using a new RT-PCR approach. Arch Virol 2001, 146: 265-278. 10.1007/s007050170174PubMedCrossRef Cortez I, Saaijer J, Wongjkaew KS, Pereira AM, Goldbach R, Peters D, Kormelink R: Identification and characterization of a novel Tospovirus species using a new RT-PCR approach. Arch Virol 2001, 146: 265-278. 10.1007/s007050170174PubMedCrossRef
20.
Zurück zum Zitat Tamura K, Stecher G, Peterson D, Filipski A, Kumar S: MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 2013, 30: 2725-2729. 10.1093/molbev/mst197PubMedPubMedCentralCrossRef Tamura K, Stecher G, Peterson D, Filipski A, Kumar S: MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 2013, 30: 2725-2729. 10.1093/molbev/mst197PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Mandal B, Jain RK, Krishnareddy M, Krishna Kumar NK, Ravi KS, Pappu HR: Emerging Problems of Tospoviruses ( Bunyaviridae ) and their Management in the Indian Subcontinent. Plant Dis 2012, 96: 468-479. 10.1094/PDIS-06-11-0520CrossRef Mandal B, Jain RK, Krishnareddy M, Krishna Kumar NK, Ravi KS, Pappu HR: Emerging Problems of Tospoviruses ( Bunyaviridae ) and their Management in the Indian Subcontinent. Plant Dis 2012, 96: 468-479. 10.1094/PDIS-06-11-0520CrossRef
22.
Zurück zum Zitat Turina M, Tavella L, Ciuffo M: Tospoviruses in the Mediterranean area. Adv Virus Res 2012, 84: 403-437. 10.1016/B978-0-12-394314-9.00012-9PubMedCrossRef Turina M, Tavella L, Ciuffo M: Tospoviruses in the Mediterranean area. Adv Virus Res 2012, 84: 403-437. 10.1016/B978-0-12-394314-9.00012-9PubMedCrossRef
23.
Zurück zum Zitat Cai J, Qin B, Wei X, Huang J, Zhou W, Lin B, Yao M, Hu Z, Feng Z, Tao X: Molecular identification and characterization of Tomato zonate spot virus in tobacco in Guangxi. China Plant Dis 2011, 95: 1483.3. Cai J, Qin B, Wei X, Huang J, Zhou W, Lin B, Yao M, Hu Z, Feng Z, Tao X: Molecular identification and characterization of Tomato zonate spot virus in tobacco in Guangxi. China Plant Dis 2011, 95: 1483.3.
24.
Zurück zum Zitat Li F, Wu Q, Xu B, Xie W, Wang S, Zhang Y: Tomato spotted wilt virus was identified in Beijing. Plant Prot 2012, 38: 186-188. (in Chinese) Li F, Wu Q, Xu B, Xie W, Wang S, Zhang Y: Tomato spotted wilt virus was identified in Beijing. Plant Prot 2012, 38: 186-188. (in Chinese)
25.
Zurück zum Zitat Reitz SR, Gao YL, Lei ZR: Thrips: pests of concern to China and the United States. Agric Sci China 2011, 10: 867-892. 10.1016/S1671-2927(11)60073-4CrossRef Reitz SR, Gao YL, Lei ZR: Thrips: pests of concern to China and the United States. Agric Sci China 2011, 10: 867-892. 10.1016/S1671-2927(11)60073-4CrossRef
Metadaten
Titel
Identification of a new tospovirus causing necrotic ringspot on tomato in China
verfasst von
Yueyan Yin
Kuanyu Zheng
Jiahong Dong
Qi Fang
Shiping Wu
Lishuang Wang
Zhongkai Zhang
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Virology Journal / Ausgabe 1/2014
Elektronische ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-014-0213-0

Weitere Artikel der Ausgabe 1/2014

Virology Journal 1/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.