Skip to main content
Erschienen in: Virology Journal 1/2014

Open Access 01.12.2014 | Short report

Identification of a novel nidovirus in an outbreak of fatal respiratory disease in ball pythons (Python regius)

verfasst von: Lorenzo Uccellini, Robert J Ossiboff, Ricardo EC de Matos, James K Morrisey, Alexandra Petrosov, Isamara Navarrete-Macias, Komal Jain, Allison L Hicks, Elizabeth L Buckles, Rafal Tokarz, Denise McAloose, Walter Ian Lipkin

Erschienen in: Virology Journal | Ausgabe 1/2014

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

Respiratory infections are important causes of morbidity and mortality in reptiles; however, the causative agents are only infrequently identified.

Findings

Pneumonia, tracheitis and esophagitis were reported in a collection of ball pythons (Python regius). Eight of 12 snakes had evidence of bacterial pneumonia. High-throughput sequencing of total extracted nucleic acids from lung, esophagus and spleen revealed a novel nidovirus. PCR indicated the presence of viral RNA in lung, trachea, esophagus, liver, and spleen. In situ hybridization confirmed the presence of intracellular, intracytoplasmic viral nucleic acids in the lungs of infected snakes. Phylogenetic analysis based on a 1,136 amino acid segment of the polyprotein suggests that this virus may represent a new species in the subfamily Torovirinae.

Conclusions

This report of a novel nidovirus in ball pythons may provide insight into the pathogenesis of respiratory disease in this species and enhances our knowledge of the diversity of nidoviruses.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1743-422X-11-144) contains supplementary material, which is available to authorized users.
Lorenzo Uccellini, Robert J Ossiboff contributed equally to this work.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Conceived and designed the experiments: LU, RJO, DM, WIL. Performed the experiments: LU, INM, AP. Analyzed the data: LU, RJO, ALH, KJ, RT, WIL. Clinical and pathological examination of study cases: RJO, RDM, JKM, ELB. Contributed reagents/materials/analysis tools: DM, WIL. Wrote the paper: LU, RO, RT, WIL, and DM. All authors read and approved the final manuscript.
Abkürzungen
ssRNA
Single-stranded RNA
kb
Kilobases
H&E
Hematoxylin and eosin
PCR
Polymerase chain reaction
nt
Nucleotide.

Findings

Nidovirales is a large order of positive sense, single-stranded RNA (ssRNA) viruses that consists of the many genera and species in the families Coronaviridae, Arteriviridae, Roniviridae and Mesoniviridae. Although the genomes of nidoviruses vary in length, ranging from 13 to 32 kilobases (kb), the organization of the genomes are similar across the entire order [14]. The 5′ end of the genome encodes two replicase polyproteins (pp1a and pp1ab), structural proteins and accessory proteins. Genes downstream of the replicase polyprotein gene are expressed from a nested set of 3′-coterminal subgenomic mRNAs, a replication strategy unique to the Nidovirales[57].
Nidoviruses infect a broad range of hosts including humans and other mammals, birds, fish, insects and crustaceans [811]. Although reptiles are susceptible to infection by a wide variety of viruses (as reviewed in [12]), nidovirus infections have not previously been described. Viruses affecting the reptile respiratory tract include herpesviruses [13], iridoviruses [14], adenoviruses [15], flaviviruses [16], and, of particular importance in snakes, paramyxoviruses [17] and reoviruses [18].
Here we report the discovery of a novel nidovirus in a collection of ball pythons (Python regius) in upstate New York with pneumonia, tracheitis and esophagitis. The snakes were found dead between July 2011 and September 2013.
Gross postmortem examination was performed on 4 snakes. Snake 1, a 6-year-old, female piebald color morph ball python, was submitted in July of 2011. Snake 2, a 6-year-old, male lesser platinum color morph ball python, was submitted in December of 2011. Snake 3, a 3-year-old female paradox color morph ball python, and snake 4, a 7-year-old female pastel color morph ball python, were submitted in September 2013. After gross evaluation, samples of tissues were collected and saved in 10% neutral buffered formalin, routinely processed and mounted in paraffin. Five μm paraffin ribbons were cut and stained with either hematoxylin and eosin (H&E) or Gram’s stain for histologic examination. Eleven tissues, including lung (n = 4), liver (n = 1), spleen (n = 3) and esophagus (n = 3) from the 4 snakes were collected and stored at −20°C.
Gross and histologic findings in all four snakes were primarily restricted to the respiratory and upper gastrointestinal tracts (Table 1). Hematoxylin and eosin stained sections (Figure 1A through F) revealed marked hyperplasia of epithelial cells lining air exchange areas (pneumocytes) with significant mononuclear (lymphocytes and plasma cells) and granulocytic (heterophils) interstitial inflammation and epithelial necrosis (Figure 1B). Similar inflammatory and hyperplastic changes were also present in the trachea (Figure 1D), esophagus (Figure 1F) and oral cavity. Gram-negative stained bacteria are shown in lung tissue from a snake with bacterial bronchopneumonia (Figure 1H).
Table 1
Pathologic and molecular findings in ball pythons ( Python regius ) with nidoviral-associated disease
Inflammationa
PCRb
ISHc
Snake
Lung
Trachea
Nasal Cavity
Esophagus
Oral Cavity
Liver
Spleen
Kidney
Lung
Spleen
Esophagus
Trachea
Liver
Lung
1
+, H
+, H
+
+, H
+
-
-
-
+
+
NT
NT
NT
+
2
+
+
+
+, H
+
Nec
-
-
+
+
+
NT
NT
+
3
+
+
NE
NE
+
-
Nec
-
NA
+
NA
NT
+
NT
4
+
+
NE
NE
+
-
NE
-
+
NT
NT
+
NT
NT
aH, epithelial hyperplasia; NE, Not examined; Nec, Necrosis.
bNT, Not tested.
cISH, In Situ Hybridization; NT, Not tested NA, not available.
+, PCR Positive.
-, PCR Negative.
Total nucleic acids were extracted from snake samples (lung and spleen for snake 1, lung, spleen and esophagus for snake 2, spleen and liver for snake 3, lung and trachea for snake 4) using the EasyMag (bioMérieux, Inc.) platform; Samples from snakes 1 and 2 were depleted of ribosomal RNA (Ribo-Zero™ rRNA Removal, Epibio) and treated with DNAse I (TURBO DNA-free™, Ambion). cDNA synthesis was performed using SuperScript II first-strand synthesis supermix (Invitrogen). Viral discovery was performed using broadly reactive consensus PCR assays targeting common respiratory viruses of animals, including paramyxoviruses [1921], reoviruses [16] and caliciviruses [22]. When PCR analysis failed to yield a causative agent, high-throughput sequencing was performed on all samples originating from snakes 1 and 2 (Ion PGM, Life Sciences). On average, 850,000 reads were obtained from each sample. All reads were processed by trimming primers and adaptors, length filtering, and masking of low-complexity regions (WU-BLAST 2.0). To remove host sequences, the remaining reads were subjected to a homology search using BLASTn against a database consisting of ribosomal and genomic metazoan sequences. Following the processing, an average of 250,000 reads per sample remained for further analysis.
Nucleotide sequence analysis (BLASTn) of processed reads was uninformative; however, amino acid analysis (BLASTx) revealed multiple reads with amino acid homology of <50% to the polyprotein region of the Nidovirales subfamily Torovirinae, including Breda virus, White bream virus, and Fathead minnow virus. Assembly of all Torovirinae-like reads generated a 3,408 nt contig with 33% amino acid homology to the replicase polyprotein 1ab of Fathead minnow virus. The presence of this 3,408 nt sequence in both snakes was confirmed by PCR using primers shown in Table 2. Cycling conditions are described in a footnote to Table 2. Samples from multiple tissues of snakes 3 and 4 were also screened and tested positive for this virus.
Table 2
Sequences of primers used to amplify the 3,408 fragment of ball python Nidovirus
Primer name*
Sequence 5′ – 3′
Nucleotide position
BPNV 1Fwd BPNV 1Rev
ACCTGCTACCGATGTCCAAG GTCGTTGTTGGCTGAGTGTG
1-963
BPNV 2Fwd BPNV 2Rev
TTCAAGCGAACCAAGTTCATCC TCTTGGACATCGGTAGCAGG
718-1485
BPNV 3Fwd BPNV 3Rev
AACATCCTCGACAACGCAGG ACGTAGTCTTGCCAGTTCCC
1446-1647
BPNV 4Fwd BPNV 4Rev
CCACAACCCGACAGTCAGTA GTACGTAGTCTTGCCAGTTCC
1456-2154
BPNV 5Fwd BPNV 5Rev
GGCACAGTAACAGCACAACG GTACTGCAAGATGCCGTTGC
2152-3030
BPNV 6Fwd BPNV 6Rev
GTGACTACACGAAATGCGACC GTCAAACATGAAAGCGTGCG
2995-3131
BPNV 7Fwd BPNV 7Rev
GTCGTCAACTTGTCCCACCA CTGCCATGCTACGGAAGACT
3088-3408
*PCR cycling conditions: 95°C for 10 minutes followed by 35 cycles of 95° C for 30 seconds, 55°C for 30 seconds, 72°C for 1 minute, except primer pair BPNV 1 and BPNV 6 where annealing temperature was 53°C.
For phylogenetic analysis, the 3,408 nt sequence was translated with Se-Al v2.0a11, and a 1,136 amino acid fragment was aligned against all Nidovirales sequences from GenBank using ClustalW. The best-fit model of amino acid substitution, the Whelan and Goldman (WAG) matrix, was selected using the maximum likelihood method implemented in MEGA version 5.2 [23]. A Bootstrap-supported (1000 replicates) maximum likelihood phylogenetic tree was constructed using MEGA version 5.2. The ball python-associated virus clustered within the Torovirinae subfamily (Figure 2). A neighbor-joining phylogenetic method was also implemented with congruent results. Based on the phylogenetic position and the genetic distances between species, this virus, tentatively called ball python nidovirus (BPNV, GenBank accession number KM267236) may represent a new species within the subfamily Torovirinae. In situ hybridization to a 934 nt fragment of the genomic polyprotein 1ab region was used to assess viral infection and distribution in the lung tissue. Positive cytoplasmic staining, consistent with the presence of viral nucleic acid, was confirmed in the cytoplasm of pulmonary cells, presumably epithelial cells (Figure 3A). The specificity of probes for in situ hybridization was confirmed by the absence of signal when the same probe was used on control pulmonary tissue from an uninfected, 6-year-old, female ball python maintained at College of Veterinary Medicine, Cornell University (Figure 3B).
Respiratory disease can be an important cause of morbidity and mortality in both wild and captive reptiles. In captivity, reptiles, and particularly snakes, are frequently maintained in collections with a high population density in relatively small spaces. As such, disease transmission within collections can occur rapidly, and early detection and diagnosis is critical in controlling disease spread.
Although 8 of 12 snakes with disease in the collection showed gram-negative rods by Gram stain and follow up culture in 4 revealed the presence of Aeromonas sp., Pseudomonas sp., Serratia sp., no evidence of bacterial infection was found in 4 snakes. In contrast, all snakes with epithelial hyperplasia in the trachea, lung and esophagus and mononuclear inflammatory infiltrates had viral signal by PCR and ISH. In concert, these data suggest a role for this nidovirus in the pathogenesis of respiratory disease. However, unequivocal implication will require experimental infection studies.
The identification of this novel nidovirus expands our understanding of nidoviral diversity and provides insight into the pathogenesis of respiratory disease in snakes. Phylogenetic analysis indicated that the virus belongs to a novel genus within the Torovirinae subfamily distinct from the Torovirus and recently characterized Banifivirus genera [24]. Due to overlapping clinical signs and pathologic lesions of the newly discovered nidovirus with the best characterized viral respiratory pathogens of snakes, paramyxoviruses and reoviruses [17, 18], it is possible that nidoviral infections were previously misdiagnosed or overlooked. PCR-based detection methods to rapidly determine infection status and etiology of respiratory disease in snakes are recommended to guide decisions for managing husbandry and veterinary care.

Availability of supporting data

The data set supporting the results of this article is included within the article.

Acknowledgements

The authors would like to thank the following: Simon Williams; Raja Duraisamy; Simon J. Antony; Nischay Mishra; Sandra Abel Nielsen; Ingrid Lombardino, Andrew Cushing, Emi Knafo, Rebecca Eddy and Danielle Tarbert for clinical assistance, case submissions and case organization; Ellie Kahn for manuscript preparation; Don Schlafer, Gerald Duhamel, Brian Caserto, Julia Rodriguez-Ramos Fernandez, Heather Daverio, Kim Bonner, Gavin Hitchener, Laura Coffee, Allan Pessier and Scott Terrell for assistance with postmortem evaluation/consultation; Martin Slade and the Cornell University College of Veterinary Medicine Histopathology Laboratory for processing of histologic preparations and sample shipping; and the owner of the snakes for allowing the characterization of this potential pathogen. Lorenzo Uccellini was supported by an American-Italian Cancer Foundation Post-Doctoral research Fellowship. Support for work at the Center for Infection and Immunity comes from the National Institutes of Health (U19 AI109761 - Center for Research in Diagnostics and Discovery) and USAID PREDICT.
While this manuscript was in preparation, Bodewes et al. reported detection of a similar nidovirus in another species, Python molurus: Bodewes R, Lempp C, Schürch A, Habierski A, Hahn K, Lamers M, von Dörnberg K, Wohlsein P, Drexler JF, Haagmans B, Smits SL, Baumgärtner W, Osterhaus AD: Novel divergent nidovirus in a python with pneumonia. J Gen Virol 2014. Epub ahead of print.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Conceived and designed the experiments: LU, RJO, DM, WIL. Performed the experiments: LU, INM, AP. Analyzed the data: LU, RJO, ALH, KJ, RT, WIL. Clinical and pathological examination of study cases: RJO, RDM, JKM, ELB. Contributed reagents/materials/analysis tools: DM, WIL. Wrote the paper: LU, RO, RT, WIL, and DM. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Cavanagh D: Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Arch Virol 1997, 142: 629-633.PubMed Cavanagh D: Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Arch Virol 1997, 142: 629-633.PubMed
2.
Zurück zum Zitat Cowley JA, Dimmock CM, Spann KM, Walker PJ: Gill-associated virus of Penaeus monodon prawns: an invertebrate virus with ORF1a and ORF1b genes related to arteri- and coronaviruses. J Gen Virol 2000, 81: 1473-1484.PubMedCrossRef Cowley JA, Dimmock CM, Spann KM, Walker PJ: Gill-associated virus of Penaeus monodon prawns: an invertebrate virus with ORF1a and ORF1b genes related to arteri- and coronaviruses. J Gen Virol 2000, 81: 1473-1484.PubMedCrossRef
3.
Zurück zum Zitat Lauber C, Ziebuhr J, Junglen S, Drosten C, Zirkel F, Nga PT, Morita K, Snijder EJ, Gorbalenya AE: Mesoniviridae: a proposed new family in the order Nidovirales formed by a single species of mosquito-borne viruses. Arch Virol 2012, 157: 1623-1628. 10.1007/s00705-012-1295-xPubMedPubMedCentralCrossRef Lauber C, Ziebuhr J, Junglen S, Drosten C, Zirkel F, Nga PT, Morita K, Snijder EJ, Gorbalenya AE: Mesoniviridae: a proposed new family in the order Nidovirales formed by a single species of mosquito-borne viruses. Arch Virol 2012, 157: 1623-1628. 10.1007/s00705-012-1295-xPubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Snijder EJ, Horzinek MC, Spaan WJ: The coronaviruslike superfamily. Adv Exp Med Biol 1993, 342: 235-244.PubMedCrossRef Snijder EJ, Horzinek MC, Spaan WJ: The coronaviruslike superfamily. Adv Exp Med Biol 1993, 342: 235-244.PubMedCrossRef
5.
Zurück zum Zitat Cowley JA, Dimmock CM, Walker PJ: Gill-associated nidovirus of Penaeus monodon prawns transcribes 3-coterminal subgenomic mRNAs that do not possess 5-leader sequences. J Gen Virol 2002, 83: 927-935.PubMedCrossRef Cowley JA, Dimmock CM, Walker PJ: Gill-associated nidovirus of Penaeus monodon prawns transcribes 3-coterminal subgenomic mRNAs that do not possess 5-leader sequences. J Gen Virol 2002, 83: 927-935.PubMedCrossRef
6.
Zurück zum Zitat Pasternak AO, Spaan WJ, Snijder EJ: Nidovirus transcription: how to make sense…? J Gen Virol 2006, 87: 1403-1421. 10.1099/vir.0.81611-0PubMedCrossRef Pasternak AO, Spaan WJ, Snijder EJ: Nidovirus transcription: how to make sense…? J Gen Virol 2006, 87: 1403-1421. 10.1099/vir.0.81611-0PubMedCrossRef
7.
Zurück zum Zitat Sittidilokratna N, Dangtip S, Cowley JA, Walker PJ: RNA transcription analysis and completion of the genome sequence of yellow head nidovirus. Virus Res 2008, 136: 157-165. 10.1016/j.virusres.2008.05.008PubMedCrossRef Sittidilokratna N, Dangtip S, Cowley JA, Walker PJ: RNA transcription analysis and completion of the genome sequence of yellow head nidovirus. Virus Res 2008, 136: 157-165. 10.1016/j.virusres.2008.05.008PubMedCrossRef
8.
Zurück zum Zitat Walker PJ, Bonami JR, Boonsaeng V, Chang PS, Cowley JA, Enjuanes L, Flegel TW, Lightner DV, Loh PC, Snijder EJ, Tang K: Virus Taxonomy: Classification and Nomenclature of Viruses. Eighth Report of the International Committee for Taxonomy of Viruses. Edited by: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA. San Diego: Academic; 2005:937-979. Walker PJ, Bonami JR, Boonsaeng V, Chang PS, Cowley JA, Enjuanes L, Flegel TW, Lightner DV, Loh PC, Snijder EJ, Tang K: Virus Taxonomy: Classification and Nomenclature of Viruses. Eighth Report of the International Committee for Taxonomy of Viruses. Edited by: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA. San Diego: Academic; 2005:937-979.
9.
Zurück zum Zitat Siddell S, Snijder EJ: An Introduction to Nidoviruses. In Nidoviruses. Edited by: Perlman S, Gallagher T, Snijder EJ. Washington, DC: American Society for Microbiology; 2008:1-13.CrossRef Siddell S, Snijder EJ: An Introduction to Nidoviruses. In Nidoviruses. Edited by: Perlman S, Gallagher T, Snijder EJ. Washington, DC: American Society for Microbiology; 2008:1-13.CrossRef
10.
Zurück zum Zitat Gaedke K, Zurbriggen A, Baumgärtner W: In vivo and in vitro detection of canine distemper virus nucleoprotein gene with digoxigenin-labelled RNA, double-stranded DNA probes and oligonucleotides by in situ hybridization. Zentralblatt fur Veterinarmedizin Reihe B J Vet Med 1997, 44: 329-340. Gaedke K, Zurbriggen A, Baumgärtner W: In vivo and in vitro detection of canine distemper virus nucleoprotein gene with digoxigenin-labelled RNA, double-stranded DNA probes and oligonucleotides by in situ hybridization. Zentralblatt fur Veterinarmedizin Reihe B J Vet Med 1997, 44: 329-340.
11.
Zurück zum Zitat Zirkel F, Kurth A, Quan PL, Briese T, Ellerbrok H, Pauli G, Leendertz FH, Lipkin WI, Ziebuhr J, Drosten C, Junglen S: An insect nidovirus emerging from a primary tropical rainforest. mBio 2011,2(3):e00077-11.PubMedPubMedCentralCrossRef Zirkel F, Kurth A, Quan PL, Briese T, Ellerbrok H, Pauli G, Leendertz FH, Lipkin WI, Ziebuhr J, Drosten C, Junglen S: An insect nidovirus emerging from a primary tropical rainforest. mBio 2011,2(3):e00077-11.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Jacobson ER, Gaskin JM, Roelke M, Greiner EC, Allen J: Conjunctivitis, tracheitis, and pneumonia associated with herpesvirus infection in green sea turtles. J Am Vet Med Assoc 1986,189(9):1020-1023.PubMed Jacobson ER, Gaskin JM, Roelke M, Greiner EC, Allen J: Conjunctivitis, tracheitis, and pneumonia associated with herpesvirus infection in green sea turtles. J Am Vet Med Assoc 1986,189(9):1020-1023.PubMed
14.
Zurück zum Zitat Westhouse RA, Jacobson ER, Harris RK, Winter KR, Homer BL: Respiratory and pharyngo-esophageal iridovirus infection in a gopher tortoise (Gopherus polyphemus). J Wildl Dis 1996,32(4):682-686. 10.7589/0090-3558-32.4.682PubMedCrossRef Westhouse RA, Jacobson ER, Harris RK, Winter KR, Homer BL: Respiratory and pharyngo-esophageal iridovirus infection in a gopher tortoise (Gopherus polyphemus). J Wildl Dis 1996,32(4):682-686. 10.7589/0090-3558-32.4.682PubMedCrossRef
15.
Zurück zum Zitat Jacobson ER, Gardiner CH: Adeno-like virus in esophageal and tracheal mucosa of a Jackson’s chameleon (Chamaeleo jacksoni). Vet Pathol 1990,27(3):210-212. 10.1177/030098589002700313PubMedCrossRef Jacobson ER, Gardiner CH: Adeno-like virus in esophageal and tracheal mucosa of a Jackson’s chameleon (Chamaeleo jacksoni). Vet Pathol 1990,27(3):210-212. 10.1177/030098589002700313PubMedCrossRef
16.
Zurück zum Zitat Jacobson ER: From Viruses and Viral Diseases of Reptiles. In Infectious Diseases and Pathology in Reptiles: Color Atlas and Text. 1st edition. Boca Raton: CRC Press/Taylor & Frances Group; 2007:413.CrossRef Jacobson ER: From Viruses and Viral Diseases of Reptiles. In Infectious Diseases and Pathology in Reptiles: Color Atlas and Text. 1st edition. Boca Raton: CRC Press/Taylor & Frances Group; 2007:413.CrossRef
17.
Zurück zum Zitat Jacobson ER, Adams HP, Geisbert TW, Tucker SJ, Hall BJ, Homer BL: Pulmonary lesions in experimental ophidian paramyxovirus pneumonia of Aruba Island rattlesnakes, Crotalus unicolor. Vet Pathol 1997,34(5):450-459. 10.1177/030098589703400509PubMedCrossRef Jacobson ER, Adams HP, Geisbert TW, Tucker SJ, Hall BJ, Homer BL: Pulmonary lesions in experimental ophidian paramyxovirus pneumonia of Aruba Island rattlesnakes, Crotalus unicolor. Vet Pathol 1997,34(5):450-459. 10.1177/030098589703400509PubMedCrossRef
18.
Zurück zum Zitat Lamirande EW, Nichols DK, Owens JW, Gaskin JM, Jacobson ER: Isolation and experimental transmission of a reovirus pathogenic in ratsnakes (Elaphe species). Virus Res 1999,63(1–2):135-141.PubMedCrossRef Lamirande EW, Nichols DK, Owens JW, Gaskin JM, Jacobson ER: Isolation and experimental transmission of a reovirus pathogenic in ratsnakes (Elaphe species). Virus Res 1999,63(1–2):135-141.PubMedCrossRef
19.
Zurück zum Zitat Homer BL, Sundberg JP, Gaskin JM, Schumacher J, Jacobson ER: Immunoperoxidase detection of ophidian paramyxovirus in snake lung using a polyclonal antibody. J Vet Diagn Invest 1995,7(1):72-77. 10.1177/104063879500700111PubMedCrossRef Homer BL, Sundberg JP, Gaskin JM, Schumacher J, Jacobson ER: Immunoperoxidase detection of ophidian paramyxovirus in snake lung using a polyclonal antibody. J Vet Diagn Invest 1995,7(1):72-77. 10.1177/104063879500700111PubMedCrossRef
20.
Zurück zum Zitat Orós J, Sicilia J, Torrent A, Castro P, Déniz S, Arencibia A, Jacobson ER, Homer BL: Immunohistochemical detection of ophidian paramyxovirus in snakes in the Canary Islands. Vet Rec 2001,149(1):21-23. 10.1136/vr.149.1.21PubMedCrossRef Orós J, Sicilia J, Torrent A, Castro P, Déniz S, Arencibia A, Jacobson ER, Homer BL: Immunohistochemical detection of ophidian paramyxovirus in snakes in the Canary Islands. Vet Rec 2001,149(1):21-23. 10.1136/vr.149.1.21PubMedCrossRef
21.
Zurück zum Zitat Sand MA, Latimer KS, Gregory CR, Rakich PM, Jacobson ER, Pennick KE: Molecular diagnosis of paramyxovirus infection in snakes using reverse transcriptase-polymerase chain reaction and complementary deoxyribonucleic acid:ribonucleic acid in situ hybridisation. J Vet Diagn Invest 2004, 16: 442-448. 10.1177/104063870401600514PubMedCrossRef Sand MA, Latimer KS, Gregory CR, Rakich PM, Jacobson ER, Pennick KE: Molecular diagnosis of paramyxovirus infection in snakes using reverse transcriptase-polymerase chain reaction and complementary deoxyribonucleic acid:ribonucleic acid in situ hybridisation. J Vet Diagn Invest 2004, 16: 442-448. 10.1177/104063870401600514PubMedCrossRef
22.
Zurück zum Zitat Radford AD, Coyne KP, Dawson S, Porter CJ, Gaskell RM: Feline calicivirus. Vet Res 2007,38(2):319-335. Epub 2007 Feb 13 10.1051/vetres:2006056PubMedCrossRef Radford AD, Coyne KP, Dawson S, Porter CJ, Gaskell RM: Feline calicivirus. Vet Res 2007,38(2):319-335. Epub 2007 Feb 13 10.1051/vetres:2006056PubMedCrossRef
23.
Zurück zum Zitat Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28: 2731-2739. 10.1093/molbev/msr121PubMedPubMedCentralCrossRef Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28: 2731-2739. 10.1093/molbev/msr121PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Batts WN, Goodwin AE, Winton JR: Genetic analysis of a novel nidovirus from fathead minnows. J Gen Virol 2012, 93: 1247-1252. 10.1099/vir.0.041210-0PubMedCrossRef Batts WN, Goodwin AE, Winton JR: Genetic analysis of a novel nidovirus from fathead minnows. J Gen Virol 2012, 93: 1247-1252. 10.1099/vir.0.041210-0PubMedCrossRef
Metadaten
Titel
Identification of a novel nidovirus in an outbreak of fatal respiratory disease in ball pythons (Python regius)
verfasst von
Lorenzo Uccellini
Robert J Ossiboff
Ricardo EC de Matos
James K Morrisey
Alexandra Petrosov
Isamara Navarrete-Macias
Komal Jain
Allison L Hicks
Elizabeth L Buckles
Rafal Tokarz
Denise McAloose
Walter Ian Lipkin
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Virology Journal / Ausgabe 1/2014
Elektronische ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-11-144

Weitere Artikel der Ausgabe 1/2014

Virology Journal 1/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.